Cubupckuil scypHan Hayku u mexvoaoeui. Tom 18, Ne 4

UDC 004.41(075.8)
Siberian Journal of Science and Technology. 2017, Vol. 18, No. 4, P. 744-747

TO THE QUESTION ON IMPLEMENTATION OF MULTI-VERSION EXECUTION ENVIRONMENT
SOFTWARE OF ONBOARD AUTONOMOUS UNMANNED OBJECTS BY MEANS OF REAL-TIME
OPERATING SYSTEM

I. V. Kovalev, V. V. Losev, M. V. Saramud’, D. I. Kovalev, M. O. Petrosyan, V. V. Brezitskaya

Reshetnev Siberian State University of Science and Technology
31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation
"E-mail: msaramud@gmail.com

The article deals with the functional and algorithmic implementation of multi-version execution environment
of modules as components of the onboard software of autonomous pilotless objects by means of real-time operating
system. One of the approaches to implementation multi-version execution environment — implementation of the princi-
ple of a pseudo-parallelism (imitation of concurrent execution of tasks by dividing the time of their execution) are given.
Messaging process between multiple tasks implemented by cycloram, as the procedure of returning of voting result by
queuing mechanism.

Keywords: multi-version programming, reliability, real-time operating system, execution environment.
Cubupckuii xypHan Hayku 1 TexHosoruid. 2017, T. 18, Ne 4. C. 744-747

UCIOJIb30BAHUE HHCTPYMEHTAJIBHBIX CPEJCTB ONIEPAIIMOHHOM CUCTEMBI PEAJIBHOT'O
BPEMEHM JJ151 PEAJIM3ALIMA MYJIbTUBEPCUOHHOM CPE/Ibl UCIIOJIHEHUS BOPTOBOI'O
INPOI'PAMMHOI'O OBECIIEYEHH A ABTOHOMHBIX BECITMJIOTHBIX OBBEKTOB

. B. Kosaies, B. B. Jloces, M. B. CapaMyz[*, J. U. Kosanes, M. O. Iletpocsin, B. B. bpesunikast

Cubupckuii rocy1apcTBEHHbII YHUBEPCUTET HayKH U TexHonoruit umenu M. @. PemerneBa
Poccwuiickas @enepaunsi, 660037, r. KpacHosipck, mpocrt. um. ra3. «KpacHosipckuii pabounii», 31
ES . .
E-mail: msaramud@gmail.com

Paccmampusaemcs QyHKYUOHATbHAA U AT2OPUMMUYECKAS PEATU3AYUs MYTbMUBEPCUOHHOU CPeObl UCHOTHEHUS KAK
KOMNOHEHMO8 6CMPOEHH020 NPOSPAMMHO20 00eCneyeHUs. A6MOHOMHBIX OECNUNOMHBIX 00bEKHO8 ¢ NOMOWbIO Onepa-
YUOHHOIL cuCmeMbl PeanbHO20 epemeHu. JJaemes 00un u3 no0X0008 K peanrusayuu MyaibmueepCUOHHOU cpedbl UCHOTHe-
HUsL — peanu3ayus NPUHYUNa ncesoonapaiielbHOCmu (UMumayusi 0OHO8PEMEHHO20 BbLINOIHEHUS 3a0ay NYymem OeleHuUs.
epemeHu ux gvinonnenus). Ilpoyecc obmeHa coobueHUAMU MeHCOY HeCKONbKUMU 3a0adamu, npeoCcmasieHHblil 8 guoe
YUKTOSPAMMDbL, UCHOTb3Yem 8 Kauecmeae cpedcmed 00MeHa uH@opmayueli Mexanusm ouepeoel.

Kniouesvle cnosa: mynsmueepcuonas cpeda UCROIHEHUs], 20/10CO8AHUe, 3a0add, YUKTOSPAMMA, COOOWeHUs], ouepedl,
HAOEICHOCD.

Introduction. The task of designing and software dividing their execution time. Such a functional principle
implementation of multiversion on-board software (OBS) is realized by the real-time operating system RTOS (real-
of autonomous unmanned objects (AUO), is not trivial [1; 2]. time operating system), namely one of the versions —
At the same time, the task of forming a multiversion envi- FreeRTOS [4] ported. This version is portable i. e.
ronment is no less important. There are a number of con- adapted for execution on the SoC (System on a Chip) [5].
ditions necessary to ensure the operation of such an envi- Consider the schedule (fig. 1) of process of message
ronment. Firstly, the implementation of an adequate exchange between multiple tasks implementation. Ex-
mechanism of voting [3]. Secondly, to ensure data changing process implement procedure of voting result
exchange between software modules. Thirdly, to provide return by queuing mechanism implemented by FreeR-
a mechanism for extrusion of module in case that a simi- TOS.

lar decision is made by the arbitrator, as well as the sub- Task-receiver is a task that realizes the collection of
sequent addition of a new module, to maintain the speci- data from N-version modules (Task-1, Task-2, ..., Task-N)
fied reliability indicator of OBS AUO. with the purpose of subsequent decision by the arbitrator,

Search of solution. One of the approaches to imple- however, in the described process performing only the
mentation multi-version execution environment — imple- receiver function [5; 6].
mentation of the principle of a pseudo-parallelism. For Task-1, -2 — these are tasks that interpret N-version
example — the imitation of parallel execution of tasks by = modules [7; 8], which implement functions of OBS AUO.

744

Mamemamuxka, mexanuxa, ungopmamuxa

N

Task- Receiver

Task-1

Task-2

L 2

5 6 7 8 9 10 Time,

quantum

Fig. 1. Cyclogram of message exchange process between multiple tasks

Puc. 1. HI/IKHOI‘paMMa mponecca oOMeHa COOOIIEHUAMU MEXKAY 3a1a4aMu

Algorithmizing the messaging process. The time
component of the given cyclogram is distributed over
equal time quanta.

Time point “0” — Initialized launch of FreeRTOS
planner, which uses the “execution” status of the task with
the highest priority. In this instance it is Task-Receiver
(Com. API-function vTaskSrartScheduler() is responsible
for the launch of the scheduler, API-function xTaskCreate()
is responsible for task creation).

Time point “ 1" — Task-Receiver initiates an attempt to
read an item from the queue, but goes into the “blocking”
state, since the queue is empty at the time it was created.
In this state Task-Receiver resides until the data occur
in the queue, or up to the moment of time-out (120 ms).
The next stage is the transition to the “execution” state of
one of the Task-transmitters. (Task-1 or Task-2). It is not
possible to declare, which task will go into this state,
because each of them has equal priority. Let’s suppose,
this is Task-1 (Com. API-function vTaskSuspend()and
vTaskResume() are respectively responsible for transition
to the “blocking” state and exit from it).

Time point “2" — Task-1 writes a value “25” in the
created empty queue. There is a return from “blocked”
state at this point. Main function of this task is to capture
data from the queue, and its priority is the highest (Com.
API-function xQueueCreate(), is responsible for queue
creation. To write an element to the end of the queue —
FIFO principle implementation, API-function xQueue-
SendToBack() is used, to write an element at the begin-
ning of the queue — FIFO principle implementation, API-
function xQueueSendToFront() is used).

Time point “3" — After accessing the queue and read-
ing the data from it, the Trader-receiver is blocked again,
since the queue is now empty. Control returns to the inter-
rupted Task-1, which runs by call scheduler API-function
taskYIELD() (Com. API-function xQueueReceive(),
is responsible for reading element followed by removing
it from the queue).

Time point “4” — The scheduler converts to the “exe-
cution” state an equitable Task-2, which, in turn, records
the value of “50” in the queue.

745

Time point “5” — Leaves the “blocking” state of the
high-priority Task-receiver and reads the data from the
queue. Iteration of the loop happens next (Com. The cur-
rent value of the time quantum counter may be received
through API-function xTaskGetTickCount()).

Status of tasks during the system operation. The
software system running under FreeRTOS, consists of a
set of tasks. Tasks carried out separately, and in their own
context. The scheduler controls the execution order, the
change of tasks and their contexts. Each task has its own
stack. Thread context is stored in stack extracted from the
stack, when you pause and resume execution, respec-
tively. Fig. 2 shows possible state of tasks. New ready-
made task is created by command xTaskCreate(). The
scheduler provide it with a time quantum for execution.
The scheduler can leave thread in “ready” state if it is
possible, taking into account the priorities or until such an
opportunity arises. Also it is possible to send to the
“blocking” state with the vTaskSuspend() command, from
which only the scheduler can issue it by the vTask-
Resume() command. From the “execution” state, the task
can be transferred back to the “ready” state if it has not
finished its work. However, the scheduler can decide
to switch the task. For example, if a task with a higher
priority has switched to a “ready” state. If the task needs
to wait (the appearance of the element in the queue, the
release of the mutex, the switching of the traffic light, and
so on), then it is translated into the “waiting” state. Which
can also be done by the command vTaskDelay(),setting
the timeout after which the task goes into the “ready”
state. When the expected event appears, the thread will
be transferred to the ready state. By vTaskSuspend() com-
mand you can send the task from “execution” state to
“blocking” state. If several tasks are in the “ready” state,
the scheduler executes the task with the highest priority.
Herewith tasks with lower priority are executed only after
the higher priority task does not go into the “waiting” or
“blocking” state. Task in the “waiting” or “blocking” state
do not spend CPU time. The main difference between
them is that the task in the “blocking” state does not re-
spond to any events. And can be removed from this state
only by the vTaskResume () command manually.

Cubupckuil scypHan Hayku u mexvoaoeui. Tom 18, Ne 4

There was an element of the queue,
The mutex, the semaphore, ete.,
O it's tme out

xTaskCreate

vTaskResume

Task awans the event (mutex,
Semaphore, quene element, etc.)

VT askSuspend

Fig. 2. Possible state of tasks

Puc. 2. Bo3MoXXHBIE COCTOSIHUS 3aa4

Conclusion. This example demonstrates the messag-
ing mechanism. According to which, value, placed
in queue by task, represented by constant. This task inter-
prets N-version modules (Task-1, -2). Returned by the
module as a result of voting true value, demands addi-
tional algorithmization of N-version module [9; 10].
While the value generated by the module can take a dif-
ferent format, including the format of both boolean and
integer variables [11], depending on voting mechanism [12].
Thus, the messaging mechanism, together with the sched-
uler, and the priority system implemented by FreeRTOS
tools, allow you to build more flexible algorithms of vot-
ing, able to vary the weights of N-version modules, and as
a consequence, affect the reliability of the multiversion
software [13], including for the implementation of a mul-
tiversion environment for the execution of OBS AUO.
In addition, thanks to the priority system, implementation
of algorithm for changing the priority of each module,
depending on its weight (reliability rating) is possible.
This solution in conditions of limited resources will en-
sure the priority execution of the most error-free versions.
Moreover, improve the reliability of the multiversion sys-
tem in cases where, due to the limitation of the computing
resources of the hardware platform, it is impossible
to execute all versions within a specified period. Thus, the
most reliable versions will not only have more weight
in voting, but will be performed first, also. With the help
of the priority system, the time limit for issuing answers
to versions is limited. Task-receiver with the highest
priority through the given time quantum reads all the
responses from the queue and deletes (vTaskDelete ())
versions that did not have time to respond in time.

As a result of further analysis of mechanisms of the
functioning of FreeRTOS and other real-time operating
systems, one can note potential problems:

1. Inversion of priorities — a situation in which Traid-1,
which has priority higher than Task-2, expects completion
of its work, since Task-2 was the first to capture the
mutex. The peculiar feature of the mutex capture is that

746

only the thread that captures the mutex takes the decision
to release it. The mutex release occurs only when the
thread does its work, regardless of its duration and the
priority value of other threads.

2. Interlocking — The situation is possible when sev-
eral tasks need to access the same resources for its com-
pletion:

Task-1 is executed, captures mutex A, its performance
is interrupted by Task-2, captures mutex B, tries to cap-
ture mutex A, because it is busy, switches to standby,
Task-1 continues its execution, tries to capture mutex B,
since it is busy, it’s also goes into waiting. As a result,
both tasks will not release needed mutexes and will be in
the standby mode, effectively blocking each other.

We can exclude the occurrence of mutual interlocking
during system design. Moreover, we can exclude the
inversion of priorities or minimize the negative conse-
quences when it occurs.

References

1. Kovalev I., Semenko T., Tsarev R. Metodologiya
otsenki i povysheniya nadezhnosti programmno-informa-
tsionnykh tekhnologiy i struktur [The assessment method-
ology and improve the reliability of software and informa-
tion technologies and structures]. Krasnoyarsk, Feder.
agentstvo po obrazovaniyu, Krasnoyar. gos. tekhn. un-t
Publ., 2005, 160 p.

2. Kovalev 1. V. Multiversion environment creation
for control algorithm execution by autonomous unmanned
objects. IOP Conference Series: Materials Science and
Engineering V International Workshop on Mathematical
Models and their Applications. 2016 7-9 November 2016,
Krasnoyarsk, Russia. Vol. 173 (2017), 012025.

3. Kovalev I. [Analysis of problems in the field of re-
search of software reliability: the multistage and the archi-
tectural aspect]. Vestik SibGAU. 2012, No. 3 (55), P. 78-92
(In Russ.).

Mamemamuxka, mexanuxa, ungopmamuxa

4. Stel’'makh V. O., Kovalev I. V. [Building fault-
tolerant control systems based on the multiversion
approach]. Materialy vserossiiskoi molodezhnoi konferentsii
“Informatsionno-telekommunikatsionnye sistemy i tekh-
nologii (ITSIT-2012)”. 2012. P. 172-173.

5. Kovalev P. V. [Graphoanalytical method for analyzing
the multiversion software architectures]. Mezhdunarodnyi
zhurnal prikladnykh i fundamental nykh issledovanii,
Akademiya estestvoznaniya. 2009. No. 6, P. 70 (In Russ.).

6. Kovalev 1., Zelenkov P., Ognerubov S. The
minimization of inter-module interface for the
achievement of reliability of multi-version software IOP
Conference Series: Materials Science and Engineering 17.
XVII International Scientific Conference “Reshetnev
Readings” 2015. P. 012006.

7. Kovalev 1. V., Zelenkov P. V., Tsarev M. Y. The
control of developing a structure of a catastrophe-resistant
system of information processing and control IOP
Conference Series: Materials Science and Engineering 17.
XVII International Scientific Conference “Reshetnev
Readings” 2015. P. 012008.

8. Kovalev 1. V. [Multiversioned views method for
increasing software reliability information and telecom-
munication technologies in corporate structures]. Telekom-
munikacii i informatizaciya obrazovaniya. 2003, No. 2,
P. 50-55 (In Russ.).

9. Kovalev I. V., Dgioeva N. N., Slobodin M. Ju. The
mathematical system model for the problem of
multiversion software design Proceedings of Modelling
and Simulation, MS’2004 AMSE : Intern. Conf. on
Modelling and Simulation, MS’2004. AMSE, French
Research Council, CNRS, Rhone-Alpes Region,
Hospitals of Lyon. Lyon-Villeurbanne, 2004.

10. Kovalev 1. V., Slobodin M. Ju., Stupina A. A.
[Mathematical formulation of the problem of designing
n-version software systems]. Problemy mashinostroenija
i avtomatizacii. 2005, No. 3, P. 16-23 (In Russ.).

11. Engel E. A., Kovalev 1. V. [Information processing
using intelligent algorithms by solving wcei 2010 tasks].
Vestnik SibGAU. 2011, No. 3, P. 4-8 (In Russ.).

12. Kovalev I. Evaluation of the reliability of ACS
with blocking protection modules. The Devices. 2013,
No. 6, P. 20-23.

13. Saramud M. V., Zelenkov P. V., Kovalev 1. V.,
Kovalev D. 1., Bresizkaja V. V. Characteristics of
software module reliability XVII International Scientific
Conference “Reshetnev Readings” 2015, P. 87-88.

bubnauorpaguyeckue cCblIKH

1. Kosanes U. B., Cemenrsko T. U., Hapes P. 0. Me-
TONOJIOTHSI OLIEHKH M TIOBBILICHHS HAJEKHOCTH IPOrpaM-
MHO-HH(OPMAIIMOHHBIX TEXHOJIOTHII 1 cTpyKTYyp / Dexnep.

areHTCTBO 1Mo oOpa3zoBaHMIO ; KpacHosAp. TOC. TEXH. YH-T.
Kpacnosipk, 2005. 160 c.

2. Multiversion environment creation for control
algorithm execution by autonomous unmanned objects /
I. V. Kovalev [et al.] // IOP Conference Series: Materials
Science and Engineering V International Workshop
on Mathematical Models and their Applications 2016 (7-9
November 2016, Krasnoyarsk). 2017. Vol. 173. P. 012025.

3. Kosanes U. B. Ananu3 npoGiem B 061acTu ccie-
JOBaHUS HAJeKHOCTH IPOTPAaMMHOIO OOECIEeUYeHHs:
MHOT'03TaIHOCTh M apXUTEKTYpHBIH acnekt // BecTHuk
Cu6I'AY. 2012. Boin. Ne 3 (55). C. 78-92.

4. Crenemax B. O., Komames . B. Iloctpoenue
OTKa30yCTOMYMBBIX CHCTEM YIIPABJICHHS HAa OCHOBE MYJIb-
TUBEPCHOHHOTO Toaxona // VH(popMaroHHO-TEIEKOM-
MYHHKaIMOHHbIe cucteMbl 1 TexHosornu (MTCUT-2012) :
MaTepuainsl Beepoc. monoaex. koung. 2012. C. 172-173.

5. Kosanés II. B. I'padoananuruaecknii MeTon aHa-
JHM3a MYJIBTHBEPCHOHHBIX APXUTEKTYp MPOrPaMMHOIO
obecrieueHust // MexayHapOIHbINH KypHaT MPHKIATHBIX
u pyHaaMeHTanbHbIX nccnepoBanmid. 2009. Ne 6. C. 70.

6. Kovalev 1., Zelenkov P., Ognerubov S. The
minimization of inter-module interface for the achievement
of reliability of multi-version software // Reshetnev
Readings: IOP Conference. Series: Materials Science and
Engineering, 17. 2015. P. 012006.

7. Kovalev 1. V., Zelenkov P. V., Tsarev M. Y. The
control of developing a structure of a catastrophe-resistant
system of information processing and control // Reshetnev
Readings: IOP Conference. Series: Materials Science and
Engineering, 17. 2015. P. 012008.

8. Kosanes 1. B., IOnycoB P. B. MynsTHBEpCHOH-
HbI METOJ TIOBBIINIEHUS MPOrPAMMHON HAaJIEKHOCTH
MH(OPMALIMOHHO-TEIEKOMMYHHUKAIIMOHHBIX TEXHOJIOTHIA
B KOPHOPATHBHBIX CTpyKTypax // TenekoMMmyHHKaMu
n uHpopmaTuzanus oopazosanus. 2003. Ne 2. C. 50-55.

9. Kovalev 1. V., Dgioeva N. N., Slobodin M. Ju. The
mathematical system model for the problem of
multiversion software design // International Conference
on Modelling and Simulation, MS’2004. AMSE / French
Research Council, CNRS, Rhone-Alpes Region, Hospi-
tals of Lyon. Lyon-Villeurbanne, 2004.

10. Kosaner U. B., Cnoboaus M. 10., CtynuHa A. A.
MartemaTiyeckas IIOCTAaHOBKA 3aladyd HPOSKTUPOBAHUS
n-BEPCHOHHBIX MPOrpaMMHBIX cuctem // IIpoOiembr Ma-
HnIMHOCTpoeHud 1 aBTomarusanuu. 2005. Ne 3. C. 16-23.

11. Engel E. A., Kovalev I. V. Information processing
using intelligent algorithms by solving weci 2010 tasks //
Bectauk Cu6I’'AY. 2011. Ne 3. C. 4-8.

12. Onenka HagexxHoctn ACY ¢ OIOKMpYOIMMH
Moxynsmu 3amutel / 1. B. Kosanes [u np.] // TIpubGopsr.
2013. Ne 6. C. 20-23.

13. XapakTepucTuka HAJEKHOCTH MPOTPAMMHBIX
moxayneit / M. B. Capamya [u ap.] // Marepuansr XIX
MexyHap. Hayd.-IIpaKT. KOHQ., TOCBSIEHHON 55-JIeTHIO
CubupCcKOro TOCYIapCTBEHHOTO a’pPOKOCMUYECKOTO
yHUBepcuTeTa MMeHu akagemuka M. ®. Pemwernesa /
CubI'AY. KpacHosipek, 2015. Y. 2. C. 87-88.

© Kovalev 1. V., Losev V. V., Saramud M. V.,
Kovalev D. L., Petrosyan M. O., Brezitskaya V. V., 2017

	СибЖНТ
	1.6

