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The theory of limit state deals with statically determinate condition of solids. In this case the system is closed due to
extreme conditions, such properties of matter such as viscosity, elasticity, etc. cannot influence the limit state. In other
words, when reaching the limit state the nature of the relationship between stress and strain has no effect on the ulti-
mate state. The study of such systems has been consistently pursued by D. D. Ivlev and his coauthors. To the equilib-
rium equations they attached two or an equation relating the components of the stress tensor. This led to the closure of
the system of equilibrium equations. In the theory of plasticity equations, which are closed with a single yield stress are
studied well. The most well-known system describing the ultimate state of deformable bodies are well-studied equations
describing the torsion of the plastic bodies, the two-dimensional stationary problem of the theory of plasticity. The arti-
cle discusses some other systems of equations which are closed only by one equation of flow, which corresponds to the
classical theory of plasticity. It is assumed that the components of the velocity vector depend only on two spatial coor-
dinates. In addition, for the component of velocity vector conditions of deformations compatibility are performed identi-
cally. The constructed systems can be used to describe the twisting of the parallelepiped around the three orthogonal
axes. For the constructed system of equations point group symmetries, conservation laws have been found. It is shown
that the system allows 8 -dimensional Lie algebra. On the basis of the symmetry group some classes of invariant solutions
of rank 1 have been constructed. They depend on arbitrary functions of one variable. It is shown that these solutions
can be used to describe plastic torsion of a parallelepiped around three orthogonal axes. It is shown that the system
admits infinite series of conservation laws. The concluding paragraph describes the construction of elastic solutions
to the problem. It is shown that it boils down to finding three harmonic functions.
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Teopus npedenvbno2o coOCMOsiHUL uMeem 0en0 cO CIMAMU4ecKyu OnPeoerumMblM COCMOsTHUEM meepovix mei. B smom
cyyae Cucmema 3amMKHyma 3a cuem npeoebHbIX YCI06Ull, U makue C0UCMea Mamepuu, Kax 633K0Chb, YpyeoCHb U m. .,
Ha npedeivbHoe COCMOosHUe 6IUAMb He MO2Yym. JIpy2umu Cl08aMu, npu OOCMUNICEHUU NPEOeIbHO20 COCIMOAHUA XapaKmep
CBA3U MeIHCOY HANPANCEHUAMU U Oehopmayusmy He OKasvleaem GIUAHUsL Ha npedenvHoe cocmosnue. HMccreoosanue
maxkux cucmem nociedogamensvro nposooun /1. Ji. Heneea u eco coaemopul. K ypasnenuam pagrnogecus onu npucoeou-
HAMU 08A UNU YPABHEHUs, CEA3bIBAIOUUEe KOMNOHEHMbL MeH30pa HANPSCeHUll. Dmo npusoouio K 3amMKHYmMOCmu CUc-
membl ypasHerull pagnosecus. B meopuu niacmuunocmu Xopowio uzydervl YpagHeHus:, Komopbie 3aMbIKaromcs 0OHUM
npedenom mekyuecmu. K naubonee uzgecmuvim cucmemam, onucvlearouum npeoeibHoe cocmosnue 0ehopmupyemoix
mej, OMHOCAMCA XOPOULO UCCTIe008AHHbIe YPABHEHU, ONUCHI8AIOWUe KpYUeHUe NIacmuieckux mei, 08yMepHble 3a0auu
cmayuoHapHotl meopuu niacmuyHocmu. Paccmompensi Hekomopule Opyaue cucmembl YpagHeHull, Komopbie 3aMbIKAOmCcs
MONLKO OOHUM YPABHEHUAM MeKy4ecmu, 4mo cOoOmeemcmeayem Kiaccuyeckou meopuu niacmuyrnocmu. Ilpeonona-
2aemcs, 4mo KOMHOHEHMbl GEKMOPA CKOPOCMEU 3a6UCAm MOIbKO Om 08YX NPOCMPAHCMEEHHBIX Koopounam. Ilpu
9MOM 051 KOMNOHEHM 6eKMOpa CKOpocmu O0ehopmayuti 6bINOIHAIOMCA MONCOECMBEHHO VCI08USL COBMECHOCMU
oeghopmayuii. Illocmpoennvie cucmemvl Mocym Oblms UCHONBL308AHbL OJisL ONUCANHUSL KDYUEHUs NApallelenunedd 8OKpye
mpex opmo2oHANbHLIX ocell. [{isi ROCMPOEHHOU CUCeMbL YPABHEHUT! HATIOeHbl MOYedHbLe SPYNNbI CUMMEMPUL, 3aKOHbI
coxpanenus. Ilokazamo, umo cucmema Oonyckaem eocbMumepHylo aneedopy Jlu. Ha ocnoee epynnel cummempuii
NOCMPOEHbl HEKOMOopble KAACChl UHBAPUAHMHBIX peuwtenutl panea 1. Onu 3a8ucim om npousBoNbHbIX GYHKYULL 0OHOU
nepementnou. Ilokazano, umo 3mu peuieHuss MOHCHO UCNONb308aMb OJil ONUCAHUA NAACTIUYECKO20 KPYYeHUs napai-
Jenenuneda 8OKpye mpex opmo2oHAIbHuIX ocell. Tlokazano, umo cucmema OOnycKaem OeCKOHeUHYI0 Cepurd 3aKOHO8
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COXpAaHeHUusl. Onucano nocmpoeHue ynpy2oco peulerus NOCMABNIeHHOU 3a0a4uU. HOKaS’aHO, UMmo OHO C8OOUMCS K HAXO-

JHCOCHUIO MPEX 2APMOHUYECKUX YHKYULL.

Kniouesvie cnosa: meopus niacmudHocmu, npedeﬂbyoe cocmosrue, movHvle peulerusl.

Introduction. Some tasks of the deformable solid
body mechanics are studied rather well. These are
so-called statically definable tasks. These tasks deal with
torsion of prismatic bars and with plane strain state. They
belong to the wide range of tasks — limit state of deform-
able bodies. The theory of the limit state is one of the
fundamental sections of the deformable solid body
mechanics [1]. The theory of the limit state deals with
statically definable state of solid bodies. In this case the
system is closed at the expense of limit conditions and
such properties of matter as viscosity, elasticity, etc. can-
not influence the limit state. In other words once the limit
state has been achieved, the nature of relation between
stress and strain does not influence the limit state. Some
of such systems are considered in [1-3].

In the first part one system of plasticity equations
which describes the limit state is considered. This system
can be used for the description of plastic current around
three orthogonal axes.

Problem setting. Suppose x = x|, y = X, z = X3 —
orthogonal axes, u, v, w — components of velocity defor-
mation vector, e; — components of velocity deformation
tensor, 6; — components of stress tensor. Components of
stress tensor conforms with the equilibrium equations

9,0, =0. (1)

On the repeating indexes summing is supposed. De-
viator of stress tensor and deformation velocity tensor are
coaxial

2

where 3; — Kronecker delta; A — unspecified nonnegative
function, 3p = o,

Equation system (1)—(2) closes by Mises yield condi-
tion

Oy ~ ;P = hey,

(o1 =p) +(00 —p) +(05-p) +

2 2 2 2
+2(of, +0p + 0% ) = 2k5. 3)
It is known [1] that in case of prismatic bar torsion
around oz axis, the field of deformation velocities is as
folows

u=-yz,v=xz, w=wxy). 4)
Generalizing ratios (1) we will demand
u=uyz),v=v(xz),w=wkx,y). ®)

We will construct the system of equations correspond-
ing to the field of deformation velocities. As a result
we receive the following system which will be researched
in the study presented

8yr' +0.17"=0,p, 0,1 +0,7° = 0,p,
0.1 +8yr3 =0.p, (Tl )2 +(r2 )2 +(r3 )2

The system of equations (6) can be used, in particular,
for the description of rectangular parallelogram in the
plastic state torsion around three axes (see a figure.).

(6)

=kg.

The torsion of parallelepiped around the three axes

Kpyuenue napamienenumnena BOKpyr Tpex oceit
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We will assume that the parallelogram twists around
axes of ox, oy, oz in equal and opposite pairs of forces
with the moments M, M,, M. At the same time there are
some limit moments M, M,, M3 when the parallelepiped
passes into the plastic state and begins to twist. From the
system (6) it is visible that such task is statically definable
and can serve for limit moment values finding via formulas

Ml* = ”(yrz -zt )dydz,

M; = _U(zrl —xt° )dxdz, @)

M; = ”(xr3 —yt? )dydz.

Except the moments (7) the body is affected by hydro-
static pressure

P|z =P,

> — lateral surface of a parallelepiped.
We will now study some properties of the system (7).
1. Characteristic surfaces of system (6).
The system (6) contains the finite ratio, connecting

values t',1° ,T5. After having differentiated it on x, y, z
we receive the system

1 2 1 3
0,T +0,1" =0,p, 0,1 +0,T =0,p,
2 3
0,1 +0,T" =0,p,
0.1 +1%0, 7 +7°0, 7 =0, (8)
Iy 1, 24 2 34 3_
16},1 +7T 6y1: +7T 6y1: =0,
0.t +1%0.7° +7°0.7° =0.

Let’s represent the equation of the characteristic sur-
face of the equation system (9) as

\V:\V(xayaz)s )

Characteristic surfaces of the system (8) are found
from the determinant

oy o,y o,y 0

oy oy 0 Oy

=0. (10)
gy 0 dwy 0o,y
0 7! 2 o

Note. 1t is easy to see that all three latter equations of
the system (8) give identical lines in the determinant (10).

Expending the determinant (10) on the last line we
receive

rlaz\v((é’z\v)2 ~(@.w) -(o,u) )+

+20,u((0,w) ~(@.) -0’ )+
+ f3axw((5x\v)2 ~(0,v) —(@z\v)z) =0.

This equation can be written as

t'n, (27132 —1)+T2n2 (an —l)+7:3n1 (27112 —1) =0, (11)
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o,y o, A
where 1 =——=, n, =—, N =———.
(V) (Vw) (V)

One of solutions of the equation (11) which does not
depend on values 12,7 s

2t =1,

1

i=1 2, 3.
Therefore, an angle between the normal to a character-

ristic surface y(x,y,z)=0 and vector n equals i%.

Set of elements of the characteristic surface forms the

solution cone i% around the direction which is defined

by the third root of the equation (11) and depends on tension.

Point symmetries of the equation system (6). Point
symmetries are widely used in the studies of differential
equations. Necessary data on symmetries and their appli-
cation to the equations of plasticity and elastic plasticity
can be found in [4-8]. Since the system (6) contains finite
ratio, we should work with its consequences, which looks
like (9), where for convenience the following designations
are entered

0,v =q, 0,7 =¢qf, 0,7 =¢qj, O, p=yq etc,

1, 2_ 4 1,3 4 2. 3 4
9 t493 =41, 91 t493 =495, 41 ¥4, =43,
‘clqll+12q12+r3ql3:0,

rlq; +12q§ +r3q§ =0,

(12)

11, 22,33
Tg+tg; +1g; =0,

[ () 0 =

We will search for point symmetries relative to which
the diversity determined by the system of equations (12)
is invariant.

According to Lie-Ovsyannikov’s technique, we will
search for the admissible operator of point symmetry
in view of

X:gfﬂm"i, j=1,2 3 i=1, 2,3, 4 (13)
ax, v

We continue the operator (13) on the first derivatives
by formulas

)?:X+g2£,

,. (14)
oqy,

. . , Pl B
where ¢t =D, (n')-¢'D, (¢?), D, =—+qi —.
Sk k(n) qp k(C ) k o, qi or
With the operator (14) we affect the system of equa-
tions (13) and transfer to the diversity set by this system.
As a result we receive polynoms of the second level

in relation to “internal” — endogenous variables qkz,,q,z.

“External” — exogenetic variables g¢},q; are determined

from the system (12) via endogenous variables. In the
received polynoms of the second level we equate coef-
ficients to zero in case of the first and second levels of
endogenous variables. It allows to receive the redefined
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system of linear differential equations with respect to
coefficients q,f,q,f. Solving this system, obtained is the

following result.
Theorem. The system of equations (6) allows Lie
algebra Lg, generated by operators

NI R
Ox; Ox; op
)(12—x2i x|i+rzil—rliz,
ox, 0x, ot ot
0 0 0 0
Xz =X ———x— 1—7—3—?
[ 0x, ot ot
Ko ey Ly 2 2l
0Ox, Ox; ot ot

Availability of the operators X;, i = 1, 2, 3, 4 means
that the system (6) allows shifts and stretching on axes x,

y, z xl'. =x;+a;, 1=1,2,73, x; =x;expa,, shift for
hydrostatical pressure p'= p+as, as well as rotation

around three coordinate axes.
2. Invariant solutions of equation system (6).
2.1. Let’s create invariant solution relative to subalgebra
generated by the operator
x =2
oz
This type of solution should be searched in the follow-
ing view

=1 (x,y), p:p(x,y). (15)
We add (15) in system (6) and we obtain
0,7 =0,p, 0,7 =0,p, 0,7 +0,T° =0,
(O +(2) () =& 1o
From (16) easily obtain
T=f(x+y)re(x-p), p=f(x+r)-g(x-»), an

6},r1 +0,t" =0,p.

Now functions t2,7° are determines from the equation
systems
2 2 2
0.7 +0,0 =0, () +(7) =k (<) . @8)
The equation system (18) describes the bar torsion in
the conditions when the yield stress (limit of fluctuation)
depends on variables x, y. These tasks are considered
in [4] and in the literature quoted.
2.2. Let’s construct the invariant decision relative
to subalgebra generated by the operator Xj,. This operator

in cylindrical coordinate system 78z looks like X, = ﬁ
00

In this case the system (6) will be written as follows
aetrG +az‘crz = rarpa rartre +raztez + 2Tr9 = aep7

rﬁr‘crz +69T62 + T = azP’ (19)
To + T + T, = ks

Invariant solution in this case is determined from the
following system
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0,1, =r0,p, r0,T,q+70,Ty, +27,4 =0,

rarrrz + T = azp’ (20)

Ty +125 + 15, = ks

In this case T,, is determined from the linear differen-
tial equation

ro 1, +r’0Xt,. —1,_ +r°02t, =0.

rz rz

Other functions are determined from the system (21).

3. Conservation laws of equation system (6).

Conservation laws are applied to solutions of elastic —
plasticity equations. Necessary determination and exam-
ples conservation laws usability can be found in [9—15].

Let’s find conservation laws of equation system (6)
in the following view

8XA(11,12,13,p)+ay3(rl,12,13,p)+
+6ZC<TI,12,13,p) =0.

The equate is done on the account of equation system (6).
From this follow the ratio

X,A-10,B+1'9,C =0,
X;;B-70,4+10,C=0, X,,B-1°0,4=0,
X,,C-1'9,4=0,
X;C+1'9,B=0, X;3;4-1°0,B=0,

where X, =—t28t1 +’E1512, X5 =—T3(311 +11813.
Let’s show that these equations are compatible. Sup-
pose 0,4=0,B=0,C =0, than — one of the solutions

will be the infinite series
A(S).B(S),C(S),

where S:(rl)2+(12)2+(r3)2, A(S),B(S),C(S) -

random differentiable functions.

Remark. Are there other laws? Not stated, but accord-
ing to the author other conservation laws do not exist.

4. 1Tt is clear, for the system (6) tension state is the
most relevant. Supposing it is known. Than to find three
components of the velocity vector we have three equa-
tions

t=hey, T =hey, T =Ley, 1)
where
2e, = 8yu +0,v, 2e5=0,u+0,w,
(22)
2e;; =0,v+0,w.

Let’s show that the equations (21) can be solved
in terms of deformation velocity tensor components. It is
known that except the equations (21) deformation veloc-
ity tensor components shall satisfy equations of compati-
bility as well. Owing to ratios (22) and (5) only six
of them remain.

a>2fy612 =0, 0r.e5=0, aizex =0,
o (aer3 —0.e5—0,e; ) =0,
0, (0,5 —0.¢,, —0,ex5) =0,
0.(0.e,— 0,6, -0,e5) = 0.

(23)
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Theorem. The compatibility equations of deformation
speeds are done identically.
In this case from (21) we have

2
1 2, 2, 2\ 22
(T ) (612 te +e23)— kseiy,
2\ ( 2 ) = k22
T €y T3 T3 | =Kg3,

2
3V (2 o2 .2 )22
(‘E ) (e1z+e13+ez3)—kse13~

Equation system (24) is a system of linear homogeneous

24

equations relevant to variables ey, efs, e5;. Its determinant is
-8 &) ()
() @8 ()
O I (O I G
This determinant equals zero as the amount of all lines

is equal to zero. It means that the system (24) has only
two independent equations for three components of a

deformation speed tensor. For example, value ej, can

be picked up randomly, thus for the given tension state,
defined from the system (6), velocity field is defined with
the functional arbitrariness.

5. In this part we will consider three-dimensional
equations of elasticity in static. The system of equilibrium
equations is described using equations (1), relation be-
tween components of stress tensor and deformation tensor
is as follows

(011 —v(0oy, +033 ))

e = £ >
B (022 —v(o), +03;3 ))
€p = E )
(25)
B (033 _V(Gzz +011))
€43 = )
E
c c
€12 :_21; > €13 :2_1:3 €23 :_22; >

where € deformation tensor components, E,,v elastic

constants.
Supposing vector deformation components are as fol-
lows

wo=w (1.2), wy,=w,(x,2), wy=w(x,z). (26)
Inserting (26) into (25) we obtain
6yw1 +0,w, :&, O,W, +0, Wy :&,
. @7)
0wy +0, Wy =2,
z"™2 y"3 2“

In this case equation (1) with regard to (26), (27) is as
follows
ayywl + azzvvl = 0’ a)cxm)2 + 8zz‘/VZ = 0’ (28)
0 W, +6yyw3 =0.
It is shown that components of deformation vector are
harmonic functions. The solutions obtained here can be

used for the description of elastic status of the parallelepi-
ped twisted around three orthogonal axes. The moments
are defined from formulas (7). As g, +g,, +&33 =0,

dilatation (volume change) is equal to zero. The solution (27)
describes vortex movement characterized by the vector ®

W W, W

Herewith movement paths will be vortex lines which
are defined from the equation

dx _dy _dz
W W W3.

Conclusion. In the present work for the first time con-
sidered is the system which can be used for the analysis of
stress state appearing under torsion of the parallelepiped
around three orthogonal axes. At that it can be in either
plastic or elastic state.
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