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The problems of identification and control of stochastic objects with a discrete — continuous technological process
nature under conditions of nonparametric indeterminacy are considered. This term means a situation when the process
structure with the accuracy to within parameters remains unknown. A more general class of dynamical nonlinear proc-
esses, later of quasilinear processes, is investigated. The processes in this category are characterized by a low degree
of nonlinearity, that is the superposition principle for this type of object is insolvent. Such processes often occur in vari-
ous control loops for aerospace objects and systems. Nonparametric models where the dynamic process memory depth
is specified on the basis of the selection of essential variables rule are given. According to this rule, the only variables
included in the nonparametric model, at which the optimum blurring factor of the kernel is minimal. Nonparametric
algorithms of quasilinear objects dual control are given. Control devices built on the basis of these algorithms not only
perform the object control function directly, but also its study. The case when the control device corresponding to its
inverse model “turns on” at the object input is considered. The process of dual control system training with active
information accumulation is analyzed. The results of a numerical study of nonparametric models for quasilinear proc-
esses with memory are presented in detail, as well as the results of a computational experiment using the algorithm
of nonparametric adaptive dual control. In the simulation, objects characteristics were described by equations with
different degrees of nonlinearity, the form of which was unknown, and which, during active information accumulation,
were automatically restituted on the basis of the input-output variables process measurement. Also, the influence of
various noise levels affecting an object and in measurement channels was investigated. The given computational ex-
periments confirmed the possibility of using nonparametric algorithms for identifying and controlling of quasilinear
Systems.

Keywords: nonparametric algorithms, nonlinear processes, blur coefficient of nuclear function, a priori informa-
tion, dynamic system, dual control algorithm.
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Paccmampusaiomesa npobaemul uoenmugpukayuu u ynpaeienus cmoxacmuieckumu 00beKmamu ¢ OUCKpPemHO-
HenpepvleHbIM XAPAaKmMepom MexXHOI02ULeCKo20 Npoyecca 6 YCI08UAX Henapamempuyeckou neonpeoenennocmu. 1100
OMUM MEPMUHOM NOHUMAEMCA CUMYayus, Ko20a CMPYKmypd npoyecca ¢ moOYHOCMbIO 00 Napamempos oCmaemcs
neusgecmuou. Hccnedyemes 6onee oowuii Kiacc OUHAMUYECKUX HeUHElHbIX NPOYeccos, 8 OalbHeliuemM — KA3UTUHETIHbIX
npoyeccos. IIpoyeccoi, 6x00suue 6 My Kamezopuio, Xapakmepusyiomcs Maioll CIenenblo HeIUHeliHOCMU, M. e. NPUH-
yun cynepnosuyuu 0 0aHHO20 Muna 00vbexmog Agisemcs Hecocmosmenvivim. Ilo0obuvie npoyeccwvl yvacmo umerom
MeCmo 8 pasiuyHblX KOHMYpPax YnpasieHus aspokoCMudeckumu oovekmamu u cucmemamu. Ilpusooames nenapamem-
puyeckue Mooenu, 8 KOMopuix 21yOUHa NamAmu OUHAMUYECKO20 NPOYecca YmoyHAemcs Ha OCHO8AHUU NPABUNA bl0e-
JleHus cyujecmeennbix nepemennvix. Co2nacHo smomy npasuiy 6 HenapamempuiecKyto Mooeib eKIIUAIOMCs MOJIbKO
me nepemennvle, ONMUMATbHBII KOIQDUYUeHm pasmulmocmu 20pa npu Komopulx munumanet. Ipusooamces nenapa-
Mempuueckue aizopummsl 0yaibHO20 YNPAGIeHUs K8A3UIUHEUHbIMU 00bekmamu. Ynpasnawowue ycmpoicmaa,
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nOCMpOoeHHble HA OCHOSAHUU OAHHBIX AN2OPUIMMOB, GbINONHAIONM QYHKYUIO He MONbKO HeNnocpeoCmEeHHO YRPAGieHUs.
00vekmoMm, HO ewe u e2o usyuenua. Paccmampueaemcs cumyayus, ko20a Ha 6xo0e 00beKMaA «SKIIOUAENCAy YRpag-
Jsowee  yCmpoucmeo, coomeemcmeayiowee e2o 0opamuou mooenu. Aumanuzupyemcs npoyecc o0yHeHus: cucmembvl
0yanbHO20 YNPAGNeHus ¢ aKMUusHuIM Hakonienuem un@opmayuu. 1100podoHO npueooamcsa pe3yibmanmsl YUCIEHHO2O
UCCne008aHUs Henapamempuieckux mooenell 0Jis KGasUIUHeUHbIX nPpoYecco8 ¢ Namamolo, a maxdice pe3yIbmamsl 6bi-
YUCTUMENLHO20 IKCHEPUMENMA NPUMEHEHUs AN20PUmMa Henapamempuiecko2co aoanmueHo20 0yaibHo20 YRPaGIeHUs.
Ilpu modenuposanuu xapaxmepucmuky 06beKmo8 ONUCLIBAIUCH YDPAGHEHUAMU C PA3IUYHOU CIMENeHbIO HeTUHEeUHoOCm,
8UO KOMOPLIX ObLT Heuzsecmer U KOmopbvle 8 npoyecce aKMUGHO20 HAKONJIEHUA UHGOPMAYUU A8MOMAMUYecKU 80C-
CMAHABIUBANUCH HA OCHOBAHUYU USMEPEHUS BXOOHBIX-BLIXOOHBIX nepeMeHHblX npoyecca. Taxoice ucciedo8anocs enusHue
DPA3TUYHBIX NOMeX, 0elicmEyIowux Ha 00bekm u 6 Kananax usmepenus. [lpusedennvle sblyucaumenbubie IKCNepUMeHmol
nOOMEEPOUNU 8O3MONCHOCHL UCNONL308AHUS HENAPAMEMPUYECKUX AN2OPUMMO8 OISl UOeHMUPUKAYUU U YRPAGTEeHUs]

KBA3UIUHEUHBIMU CUCTEMAMU.

Kniouegvie cnosa: nenapamempuueckue aieopummbl, HeauHelinble npoyeccyl, KOIG@uyuenm pazmulimocmu 10epHou
@yHKYUU, anpuopHas uHgopmayus, OUHAMUYECKAs CUCTeMA, Al0pUmM 0YaibHO20 YAPAGLeHUs.

Introduction. Traditionally nonlinear dynamic proc-
esses identification and control theories developed for
particular classes of systems and models. In the first
works on these problems the methods based on Voltaire
number [1; 2] — the convolution linear integral, with its
use it was possible to describe nonlinear systems, gener-
ally prevailed. It is necessary to consider that for early
stages of identification for nonlinear systems methods
development the noise was most often assumed by the
additive white Gaussian noise [3] that was serious restric-
tion for many relevant processes. Further other types of
models were actively developed, especially important
among them are block structure models, for example,
a Wiener model and a Gammerstein’s model [4; 5]. This
type of models consists of static nonlinear and dynamic
linear elements. Also, methods based on correlation and
separable functions able to define which block and struc-
tural models would be suitable for system description
were developed. The basic feature of the above listed re-
search directions is that they include a stage of a model
parametrical structure choice therefore these methods are
applicable only for identification and control of rather
well studied processes for which the studied process equa-
tion type is in some way or other defined, for example, in

others. It is necessary to consider that essential difficulties
of identification and control of nonlinear objects problem
solving are caused by object structure complexity and
incompleteness of mathematical description and informa-
tion about an object. In this case, if a priori information
on the studied process is insufficient for the reasonable
choice of parametrical structure, the use of nonparametric
identification theory is expedient [6]. The nonparametric
theory, unlike previous, assumes that only qualitative
characteristics of system, such as, for example, linearity
or nonlinearities, stability or instability and others are
known. It means that the use of nonparametric theory
allows to deviate, completely in many cases, from a ques-
tion of an object parametrical structure determination.

Identification problem definition. Let us consider
the following modeling scheme of one-dimensional non-
linear dynamic process (fig. 1).

In fig. 1 the designations are accepted: x(¢)— an output

process variable, u(f) — the control action, x (/) — an
object model output; (f) — the continuous time; the index

h* — random noise of measure-

t — discrete time; A, h;

ments of process corresponding variables; the index /4 at
object variables for the simplicity reason is omitted:

the form of differential or Qifference equat'ions, transfer , — " =X &(t) — vector random noise.
functions, a set of standard links of a dynamic system and
=(1)
Hff} - A dynamic x(t) -
object
i h:
1’_ Ty
h j
u, x
= A model -

x,(0)

¥

Fig. 1. A flowchart of quasilinear dynamic processes modeling

Puc. 1. biaok-cxema MOJCIIMPOBAHUA KBa3WJIMHCWHBIX JUHAMUYECKUX IPOLECCOB
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Let us enter the following designations:
th(zl, oo zk+1):(xt_l,...,xt_k,ut), (1
then
X, = f(z,). 2)

In the conditions of nonparametric indeterminacy
the structure of nonlinear dynamic process model can be
described by the equation in a discrete form:

Xt :f(xt—l’xt—2’ o0y xt—lw”t)’ 3)

where f{.) is an unknown functional, k — “the depth” of a
dynamic object memory (on A. A. Feldbaum’s termi-
nology) [7]. If we draw analogy to the studied process
description in the continuous time in the form of differen-
tial equations, then k — an order of the senior derivative in
the corresponding equation. It is essential here that the
functional type is not defined to within parameters. With
regard to redesignations the process model (3) can be
shown on the following scheme (fig. 2) which illustrates
the dynamic system model in a discrete time reduced to
a static system model when not only variables u,, but also
X5 X oy
of the last.
The considered process refers to a class of discrete-
continuous, that is the process is continuous by nature,
however, the process “input-output” variables are controlled
through discrete time points Af, forming an “input-

. X,_;, and others are delivered to an entry

output” variables {xi,ui,i = L_s} sample of observations,

where s — is a sample size, the index / at object variables
for the simplicity reason is omitted.

Nonparametric identification. As we said before,
under conditions of nonparametric indeterminacy the
description of an object to within parameters is unknown.
In this case, a conditional mathematical expectation of
a form can be accepted as an object model:

xg (1) = M {x(2) /u(t)}. “4)

As the studied object model the following nonpara-

metric estimation of regression function on observations

{xl.,ui,i = L_s} in a discrete form can be accepted [8]:

k
1< U, —u, 1 Xoj = Xij
_ s " Ui s=j — Mi-j
xx——le.-H - || Y/_H — | %)
Szl Cs ) j=l C;

where H(-) — a nuclear bell-shaped function, a ¢},
c;‘l s e

satisfy convergence conditions [8].
The only output variables x,_;, ...

k
, ¢, — nuclear function blur coefficients which

, X,_; are included

in the model (5), which were defined with the use of dy-
namic process memory depth rule determination [9; 10].
The essence of this rule is as follows: if we put into corre-

X2

. . *
spondence a nuclear function blur coefficient ¢ © ,c

s 2 s 2

sk

¢ for each output variable x

€ 1>+ X,_; Of nonpara-

metric estimation (5), which delays at some values, at
which the difference between the obtained model and the
actual object output will be minimum, then that variable
with the smallest coefficient contributes a lot to generation
of total estimation and thereby has a greater influence on
an output variable. These particular variables have to be
considered in model (5). It should be noted that the model (5)
can be used only at equal intervals of measurement Af.

1 9%—1334

l 2(1)

Xl
Xz o .
- , x(1)
e A dynamic - -
Xek - object
it
11 .' " h::
Wi
)
_J
b }
i, x;
- A model -l
x (1)

Fig. 2. A quasilinear dynamic process control flowchart

Puc. 2. briok-cxema ynpaBieHUs KBa3WINHEHHBIM THHAMHUYECKIM MPOLIECCOM

756



Mamemamuxka, mexanuxa, ungopmamuxa

Dual control algorithms. Dual control was opened by
A. A. Feldbaum in 1960 and developed on the basis of the
statistical decisions theory [7]. It should be noted that the
studying control systems are systems “with memory”, that
means they are not only able to study characteristics of an
object, but also, keeping them in memory, to develop
rational control actions. The theory of dual management
gained its further development in researches of various
authors [11-14], in particular B. Vittenmarka [15]. Let us
note that when we set a problem, most often the noise
probability distribution and also an object parametrical
model are assumed to be known. That is the developed
regulation algorithms are applicable in conditions when
the model structure of an object or a regulator is set to
within parameters. In case when the dynamic process
structure is not certain, one of possible solutions of a con-
trol task is the application of nonparametric adaptive con-
trol systems keeping dualism components.

Let us consider an idealized case at first. We enter an
object operator A, which describes the process, that is
x(t)=A<u(t)>, where u(t) — a control action,
x(t) — an object output. If there is an operator, inverse to
A, thatis 47", A7'4=1-a unity operator, then

A'x()= A" A <u(t) >,u(t) = A 'x(¢). (6)

Assuming now x(7) = x'(¢), where x'(f) — the setting
trajectory, we find from (6) the ideal value u(f) = u'(?).
Thus, the type of the ideal regulator (9[-regulator) [6] can
be presented in the form (6). The main problem is that in
most cases operators 4 and 4~ are unknown, and, there-
fore, the given method of the 9[-regulator construction
becomes very problematic. Therefore, there is a question
of dual control scheme construction which is close to actual.

Under conditions of nonparametric indeterminacy the
description of an object to within parameters, as it was
already mentioned, is unknown. In this case, as direct
operator A estimation the conditional expectation (4) can
be accepted, and estimates of the inverse operator 4

u (1) =M {u(t)/ x(t)=x (1)}. (7

It is equivalent to “inclusion” of an “anti-object” to the
entry of the operated object

If we accept expression (5) as a direct operator 4 estima-
tion, then the inverse operator 4" estimation will be (8):

* S * —X. k xv— . _xi— .
u, :lzul .H[xs-ﬂ Xi ]H 1 H S—J - J . (8)
S =1 ¢ ¥

j
s j=tey c

The nonparametric dual control algorithm explicitly
described in [6] is:

*
Usi) = U +Aus+1’ (9)
where u: — an augend in charge of an object information
accumulation, and Au,, :s(x:+1 —xs) — the “studying”

search steps. Let us analyze the character of algorithm
dualism (9). On the initial control step the main role
belongs to the second addend Au ,, from formula (9). It

is a case of active information accumulation in the system
of dual control which begins with the first observation of
input and output object variables emergence. In the proc-
ess of training (information accumulation) when forming
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41> the first augend, that is u: starts
obtaining an escalating role. Thus, in the process of an
object dual control both the stage of object studying, and
the stage of its reduction to the purpose appear.

For control estimation the relative error was used:
W =R D,

2

1$ * .
where R = ;Z(xi - X; ) , X; — an output variable meas-
=1

the operating action u

(10)

ured value, xi* — the setting action, D, — estimation of the
output variable x, dispersion.

Computing experiment. Let us consider the linear
case for a start. Let an object be described by the follow-
ing simple equation:

x,=02-x,_,-03-x,_,+0.4-x,_5+1.54,. (11)

In the described experiment the training sample is
formed in the following way. Let a series of various input
actions u,(t) —u4(t) be described by the equations (12),
their charts are in fig. 3.

u(t)=0.6+0.3-sin(0.15-¢);
uy(1)=0.5+0.2-cos(0.05-¢);
uy (1) =0.23+0.1-sin (0.2 -¢);
uy(t)=0.1+0.4-sin(0.2-1);

us(t)=0.3+0.8-sin(0.05-1).

The received values form the common input variables
u(f) sample defined in the range of u(¢)e[-0.5,1.1]. The

values of the input variable u(f) are substituted in the
equation (12), thus we receive an input-output variables

(12)

{x;,u,,0 = 5} sample, where s — the training sample size.
In this case s = 500.

For the offered identification algorithm operability
check we will create a new sample of input actions
ug(t)=1+0.5-sin(0.1-7) . The identification algorithm

is carried out according to the following scheme. We set
initial value k = 6. Further we develop a model in pursu-
ance of formula (5). The relative modeling error is
Wy = 0.017. Further we find optimum coefficients with
the coordinate descent algorithm use. The found coefficients

are equal to ¢; =0.38 — at u,, ¢, =0231 — at x_,,
c; =0.378 —at x, ,, ¢; =0.456 —at x, 5, c; =1.876 —
at x,_,, cz =1.999 —at x,_, c; =1.983 —at x,_,. After
realization of all algorithm stages, variables x,_,, X,_s,

x,_¢ were excluded. Thus the developed dynamic object
final structure is:

Xy = 04X,y +0,X,_, +05X,_5 +PBu,

what corresponds to a difference object equation structure
(11), and a nonparametric model is:

1< U, —u; 1 X —X;
_ . s i, s—1 i—1
X, =— E x;-H ” - D — X
S =l Cy C, c

s s

1 Xg_p =X 1 Xo_3 = X;_
3 H[% o H[QJ a3

c; c; c;

The forecast of the output x¢(f) variable with non-
parametric model use (13) is shown in fig. 4.
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The relative identification error for the first experi-
ment is equal to W = 0.12, that means satisfactory quality
of the model. Thus, it is possible to draw a conclusion that
the nonparametric algorithm (5) can be applicable for the
linear dynamic processes identification with the known
depth of memory k. We enter power functions into the
process input difference equation. Let the object equation
be described as:

x, =0.2-x —03-x,_, +0.4-x3 +1.5u,. (14)

Let the process (14) be affected by the additive noise
level &(¢) =5 %, distributed according to the normal law

with a zero expectation and dispersions 1. To model
a random value distributed according to the normal law
the method of polar coordinates was used. The coefficient
of k was found in the same way as earlier. The results
of object identification (14) when delivering to the entry
of input action u(¢) are shown in fig. 5.

The relative identification error for the second ex-
periment is equal to = 0.19, that also means satisfactory

us(r)

model quality, even at rather high level of the external
noise affecting the process. From the analysis of fig. 5 and
relative error values, it is possible to draw a conclusion
that in spite of the fact that the process (14) does not refer
to the linear processes class, the nonparametric algorithm
(5) copes with an identification task, and, thus, it can be
applicable also for identification of nonlinear dynamic
processes at partial nonparametric indeterminacy.

Let us consider the possibility of nonparametric algo-
rithms application to control different types of quasilinear
dynamic objects. To begin with, in the first experiment
we will consider the linear dynamic object which
is described by the following simple equation:

x,=02-x,_,-03-x,_, +0.4-x,_5 +1.5u,.

(15)

The results of nonparametric object control (15) with
the use of control law (9) are presented in fig. 6. In fig. 6
the case of active information accumulation is presented,
that is the initial training sample before performing
an experiment was absent.

us(f)

-1.0 t t { : -
0 20 40 60 80 100 ¢
Fig. 3. Series of input actions u, (t) —u,(?)
Puc. 3. Cepust BXOTHBIX BO3JIEHCTBUH (1) — u4(?)
xg(1)
1.0 7
x:(1)
0.5 s
0.0
0.5 : : : : : : : : -

Fig. 4. Object output (11) x,4(¢) and nonparametric model
output (13) x,(¢), at an input variable u(¢) delivered to the entry

Puc. 4. Beixon o6bexra (11) X(¢) 1 BbIX0OJ HeapaMeTpHuecKOn

mozenu (13) x,(¢) mpu nogade Ha BXOJ BXOJHOM nmepeMeHHOH g (¢)
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xs(t)
)
()
1.0 1
0.5 ]
0.0
0.5 : ' : : : : : : -
0 20 40 60 80 t

Fig. 5. Object output (14) and nonparametric model output x4(¢) (14) x,(¢),

when delivering an input variable u(¢) to the entry, with the noise &(¢) =5 %

Puc. 5. Beixon oobekra (14) x4(f) u BbIXOA HemapameTpudeckoi mogenu (14) x ()

IpH 110ja4€e Ha BXOJ BXOIHOM NepeMeHHON u4(f) , mpu momexe &(¢) =5 %

A

]

[&

x(t)

xX(t)

0

Il

T
-
=

1]

30 40

Fig. 6. Linear dynamic object control (15)

Puc. 6. YipaBienne TMHeHHbIM THHAMUYECKHM 00BbekTOM (15)

The relative control error for the first experiment is
equal to W = 0,076, this suggests high quality of non-
parametric control. In the analysis of figure 6 it is possible
to observe how the dual control algorithm at active infor-
mation accumulation behaves. On the initial steps of con-
trol, from the 1st to the 20th steps, the algorithm needs
more time for reduction of an object to the control action
as at this stage a sample training and accumulation take
place. After the training level, starting from the 20th step,
at the control action change an output object variable
practically at once becomes equal to the task. We consider
the possibility of nonparametric control algorithm appli-
cation (9) for quasilinear dynamic systems. In the follow-
ing experiments dynamic objects with different degree
of nonlinearity will perform as the studied objects.

Let the dynamic object difference equation contain
power functions, the object equation is described as fol-
lows:

x, =0,2-x%-0,3-x,_,+0,4-x, 5 +1.5u,. (16)

759

The results of object control (16) at passive informa-
tion accumulation, that is in case when there is a training
sample with the size equal to s = 300, are presented
in fig. 7.

The relative object control error (16) is equal to
W =0,085. We increase a sample size to s = 500 (fig. 8).

For the experiment presented in fig. 8 the relative con-
trol object error (16) is W = 0.045. We enter a £=5%

noise level (the noise is added to an output variable meas-
urement, distributed by normal distribution), the control
results for this experiment are presented in fig. 9.

Thus, from the analysis of fig. 7-9 and values of the
relative control errors, it is possible to draw a conclusion
that the nonparametric control algorithm (9) successfully
copes with the task of quasilinear dynamic systems regu-
lation in case of passive information accumulation, even
at external noise influence on the object under study, at
the same time the quality of control practically does not
differ from the linear object control at active information
accumulation.
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201 %
15 ]

ra
wn
1
t

0.0 -
0 10 20 30 40

Fig. 7. Dynamic object control (16) at a sample size s =300

Puc. 7. Yopaenenue nuaamudeckiM o0bekToM (16) mpu o6beme BeIOopku s = 300

}

251 (Y X r)

15 4

1.0

5

0.0 - } — } } -
0 10 20 20 40

Fig. 8. Quasilinear dynamic object control (16) at a sample size s = 500

. 8. Ympasnenre KBa3WINHEHHBIM JUHAMIYECKHM 00bekToM (16) mpu o6beme BeiOOpkH s = 500

Fig. 9. Quasilinear dynamic object control (16) at a sample size s = 300, £=5 % noise level

Puc. 9. Ynpapnenue KBa3WIHHEHHBIM JHHAMHYECKUM 00beKkTOM (16) mpu 06bemMe BRIOOPKH
s =300, momexa £=5 %

We consider the dependence of the relative control Fig. 10 shows that if a power function index is less
error W on a power function index p (fig. 10). A variable than 1.5, a relative control error is sufficiently low. On the
function index will change x, ;: x, =0.2-x, ; —0.3-x, , + contrary, at power function index increase more than 1.6,

+0.4-x", +1.5u,.

the sharp increase of the relative control error is observed.
Information on dependence of the relative modeling error
on the studied function type is provided in table.
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w

0.9
0.8
0,7
0,6
0.5
0.4
03
0.2
1
0,0

0,0 0.5

15 20 P

Fig. 10. Dependence between the relative regulation error
on a power function index

Puc. 10. 3aBHCHMOCTE MeXIy OTHOCHTEIBHON OIIHOKOI
PETYJIMPOBAHNS 1 TTOKa3aTeIeM CTEeHHOH (QYHKINI

Dependence of the relative control error on an object equation type

Type of the equation The relative control error

I. The linear equation:
x,=02-x,_,-03-x,_,+04 -x,_5+1.5u, 0.076
I1. Non-linear equations (algebraic)
X, =02-x2-03-x, ,+04-x,_,+1.5u, 0.085
X, =02-x,,-03-x'2 +04.x,_,+1.5u, 0.088
X, =02-x,_,-03-x,_,+0.4-x% +1.5u, 0.113
X, =02-x12-03-x'2 404 x'% +1.54, 0.124
X, =02-x3-03-x,_,+0.4-x,_5+1.5u, 0.115
X, =02-x2,-03-x,_,+0.4-x,_5+1.5u, 0.66
X, =02-x,,-03-x2,+0.4-x,_5+1.5u, 0.78
X, =02 %, —03-x,_,+0.4-[x,_, +1.5u, 0.082
X, =02-x,,'"" =03-Jx,_, +0.4-x,_;5 +1.5u, 0.23

1 0.456
x,=02-——-03-x,_, +0.4-x,_5 +1.5u,

X

II1. Non-linear equations (transcendental)
x,=0.2-sin(x,_,)—0.3-x,_, +0.4-x,_5+1.5u, 0.105
X, =02-x,_,—0.3-log,o(x, ,)+0.4-x, 5 +1.5u, 0.128
x,=02-€"1-03-x,_,+0.4-x,_;+1.5¢, 089
X, =0.2-cos(x, ) —0.3-x,_, +0.4-sin(x, ;) + 1.5, 0.117

From the table analysis it is possible to draw the fol-
lowing conclusions: if the dynamic object difference
equation contains degrees up to the second order, the con-
trol algorithm (9) successfully copes with the control task.
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The relative control error increases if the power function
is entered for the variable at which the coefficient has a
greater influence on an output value. At increase in degree
the quality of control considerably worsens. If the degree
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at some variable is equal to 2 or more in a difference
equation, then a nonlinear dynamic object control with
a control algorithm (9) use is impossible.

If an object difference equation contains fractional
degrees, the control algorithm (9) also copes with the con-
trol task. The results of this computing experiment show
that even at each variable involution, the control algo-
rithm (9) copes with the task of an object reduction to the
setting action. It is also possible to notice that if a dy-
namic object difference equation contains trigonometric
or logarithmic functions, then a control algorithm applica-
tion (9) is possible. The considerable deterioration of con-
trol is observed in the presence of exponential function
in the object equation. At the negative degrees the control
quality considerably decreases.

Conclusion. The following important conclusion can
be considered as the result of the present article. Non-
parametric algorithms, as it was previously known, can be
efficiently applicable for identification problem solving
and also are rather qualitatively able to conduct the oper-
ated process of the linear class or category. It was natu-
rally interesting, what if the process is nonlinear, in a
varying degree. The computing experiments given above
showed that identification and control algorithms can be
also used for nonlinear dynamic objects control or objects
for which the principle of superposition is not performed
any more. Thus, the main conclusion which we can make
is that the class of dynamic discrete continuous processes
slightly extends for the nonparametric identification and
control theory of the linear dynamic processes.

References

1. Pavlenko V. D. [Identification of nonlinear dynami-
cal systems in the form of Volterra kernels based on im-
pulse response measurements]. Elektronnoye modeliro-
vaniye. 2010, Vol. 32, No. 3, P. 3—-18 (In Russ.).

2. Gel’dner K., Kubik S. Nelineynyye sistemy uprav-
leniya [Nonlinear control systems]. Moscow, Mir Publ.,
1987, 368 p.

3. Andriyevskiy B. R., Matveyev A. S., Fradkov A. L.
[Management and evaluation under information constraints:
to a unified management theory, computing and commu-
nication]. Avtomat. i telemekh. 2010, No. 4, P. 34-99
(In Russ.).

4. Koplyarova N. V., Medvedev A. V. [Nonparamet-
ric control algorithms for systems of the Hammerstein
class]. Vestnik SibGAU. 2015, Vol. 16, No. 1, P. 62-73
(In Russ.).

5. Koplyarova N. V., [Nonparametric identification of
stochastic objects of the Wiener class]. Sistemy avtomati-
zatsii v obrazovanii, nauke i proizvodstve: Trudy IX
Vserossiyskoy nauchno-prakticheskoy konferentsii. Novo-
kuznetsk, SibGIU Publ., 2013, P. 445-451 (In Russ.).

6. Medvedev A. V. Osnovy teorii adaptivnyh system
[Basic theory of adaptive systems]. Krasnoyarsk, SibGAU
Publ., 2015, 525 p.

7. Fel’dbaum A. A. Osnovy teorii optimal'nyh
avtomaticheskih system [Fundamentals of the theory of
optimal automatic systems]. Moscow, Fizmatgiz Publ.,
1963, 552 p.

762

8. Nadaraja Je. A. Neparametricheskie ocenki plotnosti
verojatnosti i krivoy regressii [Nonparametric estimation
of probability density and the regression curve]. Tbilisi,
Tbil. un-t Pabl., 1983, 194 p.

9. Raskina A. V. [Determination of the structure of
a linear dynamic object in nonparametric identification
problems]. Vesmik SibGAU. 2016, Vol.17, No. 4, P. 891-898
(In Russ.).

10. Medvedev A. V. [Adaptation and learning in
a non-parametric uncertainty]. Basic Research) (fiziko-
matematicheskie i tehnicheskie nauki). Novosibirsk, Nauka
Publ., 1977, P. 92-97.

11. Wenk C. J. Bar-Shalom Y. A multiple model
adaptive dual control algorithm for stochastic systems
with unknown parameters. Automatic Control, IEEE
Transactions. 2003, Vol. 25, Iss. 4, P. 703-710.

12. Duan Lia, Fucai Qianb, Peilin Fuc. Optimal nominal
dual control for discrete-time linear-quadratic Gaussian
problems with unknown parameters. Automatica. 2008,
Vol. 44, Iss. 1, P. 119-127.

13. Tse E., Bar-Shalom Y. An actively adaptive con-
trol for linear systems with random parameters via the
dual control approach. Automatic Control, IEEE Transac-
tions. 2003, Vol. 18, Iss. 2, P. 109-117.

14. Filatov N. M., Keuchel U., Unbehauen H. Dual
control for an unstable mechanical plant. Control Systems,
IEEE. 1996, Vol. 16, Iss. 4, P. 31-37.

15. Wittenmark B. Adaptive dual control methods:
An overview. In 5th IFAC Symposium on Adaptive Systems
in Control and Signal Processing. Budapest, Hungary
[Survey article], 1995, P. 67-72.

Bbub6aunorpaguyeckue ccblIKM

1. IMaBnenko B. /. UnenTudukarys HeMUHEHHBIX IH-
HaMUYECKUX CHCTEM B BHIE szep BonbTeppa Ha ocHOBe
JTAHHBIX U3MEPECHUI UMITYJIbCHBIX OTKIUKOB // DJIEKTPOH-
Hoe monenmupoBarne. 2010. T. 32, Ne 3. C. 3—18.

2. 'empnrep K., KyOuk C. HenmunelHBIE CHCTEMBI
ynopasieHus : nep. ¢ HeM. M. : Mup, 1987. 368 c.

3. Aunpuesckuit b. P., MatseeB A. C., ®pagkos A. JL.
VYnpaBneHne W OLEHHBaHHE NMPU WH(OOPMALMOHHBIX OT-
PaHWUYEHHSIX: K €IMHOI TEOPUH yIPaBIICHUS, BEIYUCICHHN
U cBs3M // ABToMaThka u TeneMexaHuka. 2010. Ne 4.
C. 34-99.

4. KomsipoBa H. B., Mensenes A. B. Henapamertpu-
YecKne aJIrOpPUTMBl YIPABICHHS CHCTEMaMH Kiacca
I'ammepmrreiina // Bectauk Cubl’AY. 2015. T. 16, Ne 1.
C. 62-73.

5. Kommsiposa H. B. O Henapamerpuueckoi UIeHTHU-
(uKanmu cToXacTHYecKuX OOBEKTOB Kiacca Bunepa //
CucremMbl aBTOMaTH3alWM B 00pa30BaHHUU, HayKe U MpO-
uzBonctee : Tp. IX Bceepoc. Hay4.-mpakr. koH}. / mon
pen. C. M. KymakoBa, JI. II. Memuisiea ; Cub. roc.
uHAycTp. YH-T. HoBokysmenk : M3p. mentp Cubl'NY,
2013. C. 445-451.

6. Mensenes A. B. OCHOBBI T€OpHH aJallTUBHBIX CHC-
tem / Cubl’AY. Kpacnosipck. 2015. 525 c.

7. ®enpnbaym A. A. OCHOBBI TEOPHH ONTUMAaJIbHBIX
aBToMaTtHueckux cucteM. M. : dusmarrus, 1963. 552 c.

8. Hamapas O. A. HemapameTrpudeckue OLEHKH IIIOT-
HOCTH BEPOSTHOCTHU M KpHBOii perpeccun. Towmmcu : NU3g.
Towun. yu-ta, 1983. 194 c.



Mamemamuxka, mexanuxa, ungopmamuxa

9. Packuna A. B. Onpeznenenue CTpyKTypbl JTHHEHHO-
ro JWHAMHYECKOTO0 OOBEKTa B 3a/ladyax HemapaMeTpHhue-
ckoit unenTudukannu // Bectank Cubl'AY. 2016. T. 17,
Ne 4. C. 891-898.

10. MenseneB A. B. Ananranust u o0ydeHne B ycio-
BUSIX HEMapaMeTpHyecKoil HeomnpeaeieHHoctn // OyHua-
MEHTaJIbHBIE HccaeoBaHus  ((H3UKO-MaTeMaTHUECKUE
u TexHnueckue Hayku). HoBocubupcek : Hayka. Cub. otn-
Hue, 1977. C. 92-97.

11. Wenk C. J., Bar-Shalom Y. A multiple model
adaptive dual control algorithm for stochastic systems
with unknown parameters // Automatic Control: IEEE
Transactions on. 2003. Vol. 25, iss. 4. Pp. 703-710.

12. Duan Lia, Fucai Qianb, Peilin Fuc. Optimal nomi-
nal dual control for discrete-time linear-quadratic Gaus-

sian problems with unknown parameters // Automatica.
2008. Vol. 44, iss. 1. Pp. 119-127

13. Tse E., Bar-Shalom Y. An actively adaptive con-
trol for linear systems with random parameters via the
dual control approach // Automatic Control: IEEE Trans-
actions on. 2003. Vol. 18, iss. 2. Pp. 109-117.

14. Filatov N. M., Keuchel U., Unbehauen H. Dual
control for an unstable mechanical plant // Control
Systems: IEEE. 1996, Vol. 16, iss. 4. P. 31-37.

15. Wittenmark B. Adaptive dual control methods:
An overview // 5th IFAC Symposium on Adaptive Sys-
tems in Control and Signal Processing. 1995. Pp. 67-72.

© Medvedev A. V., RaskinaA. V., 2017



	СибЖНТ
	1.8


