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An effective numerical method for calculating linearly elastic multilayer cylindrical shells under static loading
implemented on the basis of Finite Element Method (FEM) procedures using the multilayer curved Lagrangian multi-
grid finite elements (MFE) of the shell type was proposed. Such shells are widely used in rocket-space and aircraft
engineering. MFE are developed in local Cartesian coordinate systems based on small (basic) shell partitions that take
into account their heterogeneous structure, irregular shape, combined loading and fixing. The stress strained state
(SSS) in the MFE was described by the equations of the three-dimensional elasticity problem without using the addi-
tional kinematical and static hypotheses, which allow one to use MFE for the shells of various thicknesses to be calcu-
lated. The procedure of constructing the Langrage polynomials in local curvilinear coordinate systems used to develop
the shell MFE is presented. The displacements in the MFE were approximated by the power and Lagrange polynomials
of different orders. When constructing a n -grid finite element (FE), n > 2, n-nested grids were used. The fine grid was
generated by the basic partition of the MFE; the other (coarse) grids were used to reduce its dimension. According
to the method, the nodes of the coarse MFE grids are located on the common boundaries of the different modular layers
of the shell. The proposed law of the expansion in the number of discrete models using MFE with a constant thickness,
multiple of the shell thickness, provides a uniform and rapid convergence of approximate solutions, allowing one
to frame solutions with a small error. Multigrid discrete models have 10°...10° times less unknown MFE than the basic
ones. The implementation of the MFE for multigrid models requires 10°...10" times less computer storage space than
for the reference models, which allows one using the proposed method to calculate some large shells. An example of
calculating a multilayer cylindrical local loading shell of irregular shape was given. In the calculation, three-grid shell —
type FE, developed on the basis of the reference models having from 2 million to 3.7 billion of the nodal MFE unknowns
were used. To study the approximate solution convergence and error, a well-known numerical method was used.

Keywords: elasticity, cylindrical shells, composites, multigrid finite elements of shell type, Lagrange polynomials,
small error.
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MHOT'OCJIOUHBIX IUJIMHAPUYECKHUX OBOJIOYEK

A. JI. Marsees'’, A. H. I'pumanos’

'MuctuTyT BeluncuTensHOro Mogenuposanus CO PAH
Poccuiickas ®eneparms, 660036, r. KpacHospck, Akagemropoaok, 50/44
*HoBOCHOMPCKHiT FOCY 1aPCTBEHHBIN TEXHHYCCKHi YHUBEPCHTET
Poccuiickas ®eaepanus, 630073, r. HoBocubupck, npocn. K. Mapkca, 20
"E-mail: mtv241@mail.ru

Ipeonooicen 3¢phexmuerbvill YUCTEHHBIL MEMOO paciema JUHEUHO-YAPYeUX MHO20CIOUHBIX YUTUHOPUYECKUX 00010~
Yex npu CMAmu4ecKkom HAZPYICeHUU ¢ NPUMEHEHUEM MHO2OCIOUHBIX KPUBOIUHEUHBIX 1A2PAHINCEGHIX MHO2OCEMOYHBIX
KoneuHwlx anemenmos (MuKD) oboroueunozo muna. Taxue 060104Ku WUPOKO UCHOTLIVIOMCS 8 PAKEMHO-KOCMUYECKOU
u asuayuonHol mexunuxe. MuKO npoexmupyromca 6 10KAIbHBIX 0eKAPMOBbIX CUCHEMAX KOOPOUHAN HA OCHO8e MEIKUX
(6azoevix) pasdoueHuti 0060104YeK, KOMopble YUUMBIBAIOM UX HEOOHOPOOHYIO CHPYKMYDY, CAONCHYIO (DOPMY, CILOAHCHOE
Haepyscenue u 3axpennenue. Hanpascennoe oepopmuposannoe cocmosinue 6 MHKD onucvisaemcs ypagHeHusMu
mpexmepHoll 3a0auu meopuu ynpyeocmu 6e3 UCnoab308aHUs OONOTHUMETbHBIX KUHEMATNUYECKUX U CHAMUYecKux
eunomes, 4umo no3eonsiem npumensmo MuKDO ons pacuema muoeocnotinvix 060n04ex pasnuunou moawunsl. Tloxazana
npoyedypa nOCMpoenus 8 I0KATbHbIX KPUBOIUHEUHBIX CUCIEMAX KOOPOUHAm NOAUHOMO8 Jlazpanica, komopule npume-
Hslomcs npu npoexmuposanuu obonoveunvix MuKD. Ilepemewenus 6 MuKD annpokcumupylomes cmeneHHbiMu
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U NASPAHIHCEBLIMU NOTUHOMAMYU PA3TUYHBIX NOpAOKos. IIpu nocmpoenuu n-cemournozo KoHmeyHozo dnemenma (K3),
n > 2, ucnone3yrom n 61odxceHHvix cemok. Menxas cemrxa nopoocoena 6azosvim pazouenuem MuKD, ocmanvhvie n — 1
(KpynHovle) cemru NPUMEHAIOMCA Ol NOHUdCEeHUs e20 pasmepHocmu. B npednazaemom memoode y3ivl KpYynHbIX cemok
MuKD3 pacnonosicenvt Ha 06Wux epaHuyax pasHOMOOYIbHbIX Cl0e8 00010UKU. 3aKOH UsMenbyeHUs OUCKPEMHbIX MoOe-
Jell, 8 komopwsix ucnoav3ytomes MuKO ¢ nocmoanHol moawuHou, Kpamuot moauure o00a04KU, NOPOA*COAen PABHO-
MepHYIO U OLICMPYIO CXOOUMOCMb NPUOTUNCEHHBIX peuleHUll, Ymo Odaem B03MONCHOCMb CIMPOUMb peuleHUss ¢ MAou
noepewmnocmoio. Mruozocemounvie duckpemnuvie modenu umeiom & 10°—10° pas menviue y3106v1x Heussecmmuuvix, vem
6azoevie. Peanuzayus memoda koneunvix snemenmos (MKD) ons mrozocemounvix modeneii mpebyem ¢ 10°—10" pas
Menbue ob6vema namamu IBM, uem 0ns 6a306b1X, 4mo n0360715em UCNOLb308AMb NPEOLOINCEHHBIN MEMOO Ol paciema
0bon0uex 6onvuux pazmepos. B npusedennom pacueme MHOZOCIOUHOU YUTUHOPULECKOU 0O0N0UKU CILONCHOU (OpMbi,
umeroujell T0KAIbHOe HA2pyACceHue, UCTONb3YIOmcs 000104eyHble mpexcemoynbie KO, nocmpoennvie na 6a306ix mooe-
JI5X, Komopvle umerom om 2 MUIIuoHo8 0o 3,7 munnuapoa neuzeecmuwvix MKD. [[na ananuza cxooumocmu npubaudiCceH-
HbIX peueHUl UCNOIb3YemCst U3ECMHbLLL YUCTEHHBI MEMOO.

Kniouesvie cnosa: ynpyzsocmbo, uuﬂuHOpuquKue 060]10’”(‘1/{, KOMno3umasl, MHO20CEMOYHblE KOHEUHble IJIeMEHNIbl
000104e4H020 muna, NOJAUHOMbL ﬂaepamfca, Majas noepeunocns.

Introduction. Finite Element Method (FEM) [1; 2] Lagrange polynomials of different orders in local curvilinear
is widely used in the study of stress strained state (SSS) of  coordinates is proposed. In constructing approximate
elastic shells [3—6]. In the calculation of shells, construct-  solutions a multi-layer Lagrangian, MFE shell with a con-
ing the curvilinear finite elements (FE) causes various  stant thickness, a multiple of the thickness of the shell is
difficulties [3], in particular, related to the fulfillment wused. The order of the Lagrange polynomial in thickness
of conformality conditions, which is necessary for the is taken by a multiple to the number of shell layers. Cal-
convergence of finite element solutions [7]. These dif- culations show that the arrangement of nodes of large
ficulties are largely due to the fact that to reduce the order =~ MFE grids on the common boundaries of different-
of equations in the theory of shells, hypotheses are intro- modular shell layers provides homogenous and fast con-
duced, that impose certain restrictions on the fields of  vergence of sequences of finite-element solutions, which
displacement, strain and stress [8—14], which generates allows to construct approximate solutions with low error.
irreducible errors in solutions and limits the applications  The proposed MFE are effective in calculating the SSS
of these theories. For example, in the work [15; 16] three-  of multilayer cylindrical shells of different thicknesses,
dimensional finite elements are considered with a given especially in the calculation of thin shells having a com-
distribution of displacements through the thickness, given  plex shape, the complex nature of the fixations and loads.
the compression of the shell. In the work [17] the review  Multilayer shells are widely used in rocket-space and
of the basic options of use of FEM for calculation of aviation technology.

composite plates and covers in two-dimensional statement The advantages are as follows. Multilayer Lagrangian
is presented. The attempts to calculate composite cylin-  shell MFE:

drical shells with application of FE in the formulation of — take into account the heterogeneous structure of the
the three-dimensional problem of elasticity theory with  shells;

account of their structure leads to systems of linear alge- — describe the three-dimensional stress state in multi-
braic equations (SLAE) of the finite element method of layer shells;

high order (more 10°). Application for such discrete shell — form multigrid discrete shell models, the dimension

models of calculation of ANSYS, NASTRAN etc. [3] is  of which is much smaller than the dimensions of the base
difficult. In addition, the solution obtained for the systems  models;

of high-order FEM equations contains a computational — generate the numerical solution with fast conver-

error, which is difficult to determine the exact value. gence to accurate, which allows us to construct solutions
In this regard, there is a need to develop such variants ~ with a small error.

of FEM, in which the composite cylindrical shell is con- Calculations show that application of the FEM for

sidered in a three-dimensional formulation, but which multigrid discrete models requires 10°-10" time less
lead to SLAE of a low order in compliance with the per- computer memory than the base models need. The im-
missible level of SSS error values. In the works [18-20]  plementation of the proposed method on single-processor
calculations of composite cylindrical panels and shells computers requires a small amount of time. To analyze
with the help of multigrid finite element (MFE) are car-  the convergence of approximate solutions constructed for
ried out, that was constructed using power polynomials. the initial problem, we use the well-known numerical

In this paper, we propose an efficient numerical method [2]. The implementation of this method is per-
method of calculating linearly elastic multilayer cylindrical ~ formed by constructing a sequence of approximate solu-
shells using a multilayer curvilinear Lagrangian MFE. tions for a similar test problem using MFE, which are
Constructing 7 net finite element (FE), n>2, n of enclosed used in solving the original problem. An example of cal-
grid is used. Small grids are made by basic splitting of MFE,  culating a 4-layer shell of complex shape using 4-layer
the other n—1 (larger) grids are used to reduce its dimension. Lagrangian shell three-grid FE is given. The results of the
The aim of this work is to develop Lagrangian curved calculations show the hlgh efﬁciency of the application
multilayer shell-type MFE. A procedure for constructing ~ of the proposed three-grid FE.
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1. Homogeneous curvilinear single-grid FE. The
procedure for constructing curvilinear homogeneous sin-
gle-grid FE, which form a basic discrete model of the
shell, is briefly considered as the example of FE V, of the

1st order, located in the local Cartesian coordinate system
O, x,y,z; (fig. 1). For FE V, designations are given:

hy xh; xh{ — characteristic sizes, z,0;y, — a symmetry
plane, c¢d — an axis of a shell, R ( R;)—radius of curva-
ture of the bottom (top) surface, A — thickness, /) —
length, 2] =o,R, o, — an opening angle. The shape of
the FE V, is a straight prism with height h§ Deformation

of the three-

dimensional problem of the theory of elasticity [1], shown
in coordinate system O,x,),z;. Using a first order poly-

of FE V, is described by the equations

nomial (in the coordinate system O,x,y,z,), for FE V,

we define the stiffness matrix [K IJ and the nodal force

e

vector Pe1 with formulas [1; 2]

[K!1= [[B,Y DB, 14V,
. (1)
! = [INJFav+[[N,] q.ds,

A Se

where [B,], [D,] are the matrix of differentiation and

e e

modules of elasticity of the FE V,; F

e

and surface forces vectors FE V, ; [N, ] is the matrix of shape
functions; V,, S, are the area and the surface of the FE V, .

, q, are the volume

Fig. 1. Single-grid FE V,

Puc. 1. OnHocetounsiit KO V,

Note that the continuity of displacements is violated
on the curvilinear boundaries of the FE V, (fig. 1). How-

ever, as it’s known [21], the implementation of continu-
ous displacements at the boundaries of curvilinear FE is
not a necessary condition for convergence of numerical
solutions to the exact one. Calculations show that when
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the characteristic sizes of curved homogeneous FE V,

decrease, the numerical solutions converge to the exact
ones. Procedures for the construction of homogeneous
curvilinear single-grid FE of 2nd and 3rd order, which are
geometrically similar to the form of FE V, (fig. 1), are
analogous to the procedure in § 1.

2. Multilayer curvilinear Lagrangian two-grid FE

The procedure of constructing multilayer curvilinear
two-grid FE (TGFE) with the use of Lagrange polynomi-
als is considered with the example of a three-layer TGFE
V, of the 3rd order with its thickness equal to 4 that is
used in the calculation of 3-layer shells with the thickness
h. In the calculation of m-layer shell m-layer Lagrangian
TGFE of m-order in thickness are used. TGFE is located

in a local Cartesian coordinate system O,x,y,z, (fig. 2),
its dimensions are A; x h;l x h, h — thickness, h;l — length.

Suppose that the bonds between the components of the
inhomogeneous structure of TGFE are ideal. Basic parti-
tioning of R, TGFE, which consists of a homogeneous
curvilinear FE V, of the Ist order (fig. 1), takes into

account in TGFE inhomogeneous structure, a complex type
of loading and fastening, and generates a small curvilinear
grid h,, e=1, ..M, M is the total number of FE V.

On the grid #, we define the large curvilinear grid
H, c h,, TGFE, the nodes of this grid are marked with

dots, 64 nodes in fig. 2. Note that the nodes of the large
grid H, lie on the common boundaries of different-

modular layers TGFE (fig. 2), in general they have differ-
ent thickness. Suppose the axis O,y, (fig. 1) is parallel to

the axis O,y, (fig. 2). Thus we can use a formula of relation

FE V,,

which correspond to the local Cartesian coordinate sys-
tems Oyx,y,z, and O,x,y,z,

between the nodal displacement vectors &) &

e’

8. =[T.

e e

10

e’

where [7,] is a square matrix of rotations [2], e

Fig. 2. Three-Layer TGFE V,

Puc. 2. Tpexcnoiinsrit IBKD V,
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We consider the construction of Lagrange polynomi-
als in the local curvilinear coordinate system O,Eng on
a large grid H, (fig. 2). Suppose that the node P(i, j, k)
of grid H, (dimensions n, xn, xn; ) has coordinates &,
n,, &, infig.2 i=j=3, k=4.Note that y, =n for
small opening angles a,, TGFE we can see that x, =&,
~( . We have

n=& n=n 5=C (3)
The base function Ny, for a node P(i,j,k) in the
Cartesian coordinate system O,x,y,z, using Lagrange
polynomials L;(x,), L;(»,), L;(z;) [2] is written in the
form of

N (%2, 2,27) = Li(x3)L; (v2) L4 (2,),

m ")

X _x2,n b2 _yZ,n
Li(xZ): H > L,(J’z): H > (4)
n=1,n#i x2,i ~Xon n=1,n#j y2,j ~Von
B z,—z
2 T2y,
Li(z,) = H —_—,
n=lnzk 22,k ~ Z2,n

where x,;, y,;,z,; are the coordinates of the node
P(i, j,k) in the coordinate system O,x,,z, .

For a point with a coordinate & lying on the cylindri-
cal surface of the radius R, we have E=aR, o is the
angle for the coordinate &, fig. 3. Considering (3) the
ratio of the form &=oaR, & =o,R in (4), we obtain
Ny (0,0 = Li(@)L; (L, (C), where Li(a), L;(n),
L, (€) are the Lagrange polynomials, having the form

n

Ll-(OL) = H

n=l,n#i

ny

n’L()_Hnnn

n n= lnatjn/ My

a—-a

®)

n3

L(©)= H

n=lnzk Sk — n

It is convenient to use Lagrange polynomials (5) in
calculations. Displacement functions u,, w, TGFE,

constructed on the grid H, using Lagrange polynomlals (%),

are presented in the form of
] o 0]
ty =2 Nyt va =2 Nydg s W =2 Nyag' s (6)
p=1 p=1 p=1
where qg, g5, gy, Ny are displacements and shape
function of the f node of grid H,,
present case n, = 64 (fig. 2).

Using (1), (2), the stiffness matrix [K,] and the nodal
forces vector P, of FE V, in the coordinate system O,x,y,z, ,
we present [K,]= [T] [K 17,1, P, =[T,] P1 [1]. The
functional of the full potential energy II, of the basic
partition of the R, TGFE V/, can be written in the form of

o5l 40

ny =mn,ny, in the

(N
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Using small partitions R,, the functional (7) has

a high dimension and generates a multinodal FE with a
large number of nodal unknowns, which is not effective
for practice. To reduce the dimension of the functional (7),
we use the following procedure. Using (6), the vector
of nodal displacements 8, FE V, is shown through the

vector of nodal displacements 6, of large grid H#, TGFE V,

o, =[4;19,, ®)

where [A4; ] is a rectangular matrix e =1,...,M
Substituting (8) in (7) and following the principle of

the minimum of total potential energy for TGFE V,

oll,(®,)/0d, =0 we obtain a ratio [K, 16, =F, corre-

sponding to the equilibrium state of TGFE V,, where

M M
(K= 1A K4, F,=>[41P,.

e=1 e=1

)

The matrix [K,] is called the stiffness matrix, F, is
nodal forces vector of TGFE V. Note that the functions
w, are used only to reduce the dimension of the

u v

a?’ a?’

functional (7), the large grid H, determines the dimen-
sion of the TGFE V,, which is less than the dimension of
the base partition R, .

Note 1. By virtue of (8) the dimension of the vector 8,
(i. e. the dimension of the TGFE V) does not depend on
the M which is the total number of FE V, constituting
the TGFE V. Consequently, it is possible to use arbitrar-
R, , which allows to take into

a

ily small base partitions
account the heterogeneous and micro-homogeneous struc-
ture of the TGFE V.

Note 2. In formula (9), matrices [K,], P,, [4]] are
constructed taking into account the curvilinear form of the
base FE V, (see formula (1)), which represent the region
TGFE V, geometrically accurately. Consequently, the
[K,], F

a a

matrices are also determined taking into
account the curvilinear form of the TGFE V.

Note 3. The determination of the stresses in TGFE V,
can be shown as follows. Let the vector 8, be found.

With the help of the formulas (8), (2) we find vectors 6,

8. nodal displacements of FE V, (e=1, .., M) respec-

tively, in coordinate systems O,x,y,z, and Oxy,z .

Using vector 8, we count the tension in the FE ¥, with

algorithms of the finite element method [1; 2].

Note 4. Lagrange polynomials are used in Lagrangian
TGFE polynomials, determined by formulas (5), which
have the order of the polynomial multiple of the number
of layers in the thickness of the shell on the coordinate z
(i. e. £). The calculations show that the location of the

nodes of the large grid H, TGFE at the boundaries of

heterogeneous layers provides a homogenous and rapid
convergence of sequences of approximate solutions.
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The procedures of constructing composite Lagrangian
TGFE of n-order, geometrically similar to TGFE V, (fig. 2),
with the application of Lagrange polynomials of # -order,
are similar to the procedure of § 2.

Calculations show that by increasing the dimensions
of the basic partitions of TGFE (i. e., by increasing the
number M), the time spent on the construction of matrices
[K,] u F, and formulas (9) significantly increase.

In this case, it is advisable to apply 3-grid finite elements,
for the construction of which less time is required and
which generate the discrete shell model of lower dimen-
sion than TGFE.

3. Multilayer curvilinear Lagrangian three-grid FE.

The procedure of constructing curvilinear three-grid
FE (ThGFE) with the use of Lagrange polynomials is
considered by the example of a six-layer ThGFE V) of

the 6-th order with its thickness 4", that is used in the
calculation of 6-layer shells with thickness /4, where

h= hf . In the calculation of m-layer shell m-layer
Lagrangian ThGFE of m-order thickness are used. ThGFE
V, with the size i’ xh;’ x h? is located in the local Carte-

sian coordinate system O,;x;y;z; (fig. 3).

- 2
:"3:]?:‘.!I

Fig. 3. Six-Layer, ThGFE V¥,

Puc. 3. ectucnonnsni TpKO V),

The area of ThGFE consists of N curved 6-ply TGFE
V" with thickness h, n=1, ...,N that geometrically accu-

rately represent the area of ThGFE. TGFE ¥, make the
partition R,. The large grids H, TGFE form a small
grid #, ThGFE. On the grid 4, we define large grid of
H, c h, ThGFE. The nodes of the large grid H, marked
with points (112 nodes) lie on the common boundaries of
different-modular layers of ThGFE (fig. 3).

Suppose that the axis O,y, of ThGFE (fig. 2) is paral-

a
n

lel to the axis O,y, (fig. 3). Suppose that &/, qi are the

vectors of nodal displacements, [K]], [M,

. ] are the

stiffness matrices and F?,P“ are the vectors of nodal

n>=n

forces TGFE V' responsible for the coordinate systems

31

0,x%,y,z, and Os;x3)32;, n=1, ..,N respectively.
According to the FEM [1] we define the following for-
mula: 8, =[7,']q; , where [7,'] is the rotations matrix [2],
M= T KT ], Pe =TT Fy. Taking into
account these relations, the total potential energy of the
I1, ThGFE V,, i. e. the partition of R,, is presented
in the form of

ul 1 a r a a a T a
Hb=;(5(qn) [ ]a ~(a5) Pnj- (10)
Functions of the displacements u o Voo W, ThGFE

V, on the large grid H, , using Lagrange polynomials are
presented in the form of

L)
u
u, =D Nody » v, =

no no
2 Nody » Wy =2 Nygg (1)
p=l1 p=1 p=1

where gy, gy, gy, N, are displacements and shape
function of the B node of grid H,, ny =nn,ny, in this
case ny, =112 (fig. 3).

To reduce the dimension of the functional (10) we use
functions (11). Let’s denote: 8, is the vector of nodal
displacements of a large grid H, . Expressing the nodal
displacements of vector q, TGFE V' through the nodal
displacement of vector 9, of the grid A, ThGFE V,, we
can see the equality

a; =] 47 ]3,, (12)

where [Afl’] is a rectangular matrix, n=1, ..., N .
Using (12) in (10) and minimizing functional II, in
displacement of 9,, we obtain the ratio for the ThGFE

V, [K,18, =F, that corresponds to its equilibrium state,
where

N N
(K, 1= D (AT [MENADY, By =D (AT P . (13)

n=1

n=

The matrix [K,] will be called the stiffness matrix,
F, is the vector of nodal forces ThGFE V,. Note that the
large grid H, determines the dimension of the ThGFE V,
which is less than the partition dimension R, consisting
of the TGFE V.

Note 5. By virtue of (12) the dimension of the vector
6, (i. e. the dimension of the ThGFE V,) does not
depend on the total number of TGFE ¥, components of
ThGFE. This means that the splitting of a ThGFE V), into
a TGFE V,' and, consequently, into single-grid FE V,

(see § 2) can be arbitrarily small, which allows to describe
with arbitrarily small error the three-dimensional stress
state in the ThGFE taking into account its inhomogeneous
structure.
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Note 6. Note that the number of layers of TGFE may
be less than the number of layers of the shell. For exam-
ple, constructing six-layered ThGFE you can use a three-
layered TGFE (fig. 2) or two-layered TGFE. As calcula-
tions show, this leads to a decrease in time costs with
a minor change in the error of the solution.

In the formula (13), matrices [M?], P?, [4°] are
constructed taking into account the curvilinear form of
TGFE V! (see § 2), which geometrically represent the
area accurately, ThGFE V. Consequently, the matrices
[K,], F, are also determined taking into account the cur-
vilinear form of the ThGFE V.

The procedure of determining stresses in the ThGFE
V, is similar to the procedure for determining stresses
in the TGFE.

Using ThGFE, according to the procedure similar
to § 3, we construct four-grid FE, and the £ grid of FE,
k >4. Note that the & grid generate a discrete FE shell
model of lower dimension than the k—1 FE grid. The
described method can be used to calculate multilayer
shells with layers of different thicknesses.

Small enough partitions of composite shells are
presented as homogeneous MFE, which are designed
according to the procedures similar to § 1-3.

4. The results of numerical experiments. Consider
the problem of deformation of a four-layered elastic cy-
lindrical shell ¥, of a complex shape with length 2L .
The shell, clamped from two ends, is located in the Carte-
sian coordinate system Oxyz. When y=0; 2L, dis-
placement u =v=w=0. The radius of the shell on the
median surface R=2.0 m, the thickness of the shell
h=0.03 m, length 2L =12.0 m, i. e V|, is a thin shell
with large geometric dimensions. The left symmetrical
part of the shell is shown in fig. 4. Point 4 lies at the in-
tersection of the planes Oyz and y =L on the top surface
of the shell. Shell layers are isotropic homogeneous bod-
ies. The upper and lower layers have #4/12 thickness,
the inner 2 layers have 54/12. The Young’s modules of
4 layers (starting from the bottom) are equal to: 10, 3, 5,
20 GPA, respectively. Poisson’s ratio is 0.3. There is
a uniformly distributed tensile radial load ¢ =0.05 MPa
(fig. 4) on the outer surface of the shell 3L/4<y<L

with the opening angle o = /2, which is symmetrical to
the planes Oyz and y =L . In the area of the shell clamps
there are cutouts symmetrical to the plane Oyz, the
opening angle of each cut is equal to the n/2 length
is L/4 (fig. 4). As the shape, loading and fastening of
the shell are symmetrical to the planes Oyz and y=1L,
we use 1/4 of the shell in the calculations.

The basic discrete model R’ of the shell consists of a

curved homogeneous single grid FE of the 1st order V",

geometrically similar to FE V, (fig. 1). The model grid
2

n

R? has a dimension of m xm_ xm’ , where
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mb =324n+1, m> =324n+1,

3 (14)
m, =12n+1, n=1, ..,10,

1

m) is the dimension of the circular coordinate; m’ — the
axis Oy, m,, —axis Oz . Characteristic sizes kg, , S, , kS,
FE V" are defined by the following formulas

he, =hgy /n, ki, =hy /n, 15)

he, =hi/n, n=1, ..,10,

where A, hy;, h are characteristic dimensions of FE
Ve1 of the Ist order corresponding to the discrete model
R, Wy =oR,, h{=L/324, hS{=h/12,
o, =n/324, R, is the radius of the lower cylindrical

surface FE V.

where

A

r

F

L/4

Fig. 4. Left symmetric part of the shell 7},

Puc. 4. JleBasg cuMMeTpHUYHAas 4acTh 000JI04KH V)

On base models R,? , n=1, ...,10 we construct multi-

grid discrete models R, of shell ¥}, consisting of La-

grangian shell ThGFE with sizes 81k;, x814;, x h where

yn

h=12nh;,. For all basic discrete models, ThGFE have
a fixed size coordinate z which is equal to the thickness
of the shell 4. ThGFE are constructed on the procedure

shown in § 3 and consist of Lagrangian TGFE with

. . e
dimensions 9/, x9h,,

xh, according to the procedure

shown in § 2.

The ThGFE uses Lagrange polynomials defined by
the formulas (5), which have the third order of the poly-
nomial by coordinates x, y, and the forth order by coordi-
nate z , which corresponds to the number of layers in the
thickness of the shell. As shown by numerical calcula-
tions, if the nodes of large grids /, and H, of two-grid

and three-grid FE lie on the common boundaries of multi-

modulus layers, discrete models R, provide even and fast

convergence of a sequence of finite element solutions.
The results of the calculations for discrete models R,

are given in tab. 1, where we see: w,, G, are maximum
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radial displacement and equivalent stress for the model
R,, n=6, ..,10. We can find the stress ¢, with the 4th

n
strength theory. As you know, using the maximum
equivalent stress the factors of safety of structures are
determined. We find the values §_, (%), 3,,,(%) with the

w,n(
formulas
6(5,n(%) =100 % - | Op =0y | /Gn’

8, (%) =100 % -|w, —w, ; |/w,, n=2,..,10.
(%) (tab. 1)

shows rapid convergence of the equivalent stresses o,

The nature of changes in values §_ (%), &

w,n( o,n

and displacements w, . Since the values for the model
Ry, are small, §,,,=0.00116179, &, =0.00719947 it can
be considered from the point of view of engineering prac-
tice that the displacement of w;, =30.289362 mm and
6,0 =31.371908 MPa are made with low error, i. ., Wy,

o), are little different from the exact (see § 5).

The dimension of the underlying discrete model Rloo
is 3722110998 (more than 3.7 billion), the width of the
tape of the system equations (SE) FEM is 1176610 (over
1.1 million). Multigrid model R, has 203090 nodal
unknowns, the width of the tape SE FEM is equal
to 5445. Application of the FEM for the multigrid model
R, requires 3960366 (approximately 3.96 million) less
times than the amount of computer memory of the base
model R, .

5. The study of the convergence of approximate
solutions. To study the convergence of approximate solu-

(test) problem with known exact solution #, is solved.

Suppose that ||uy;—u, || —0 when & — 0, where u,

is the solution of the test problem, constructed with the
help of a family of new MFE, 7 is the characteristic size
of MFE. Then we consider that the solutions constructed
with the help of a family of new MFE and for the initial
problem converge in the limit (2 — 0) to the exact one.
We consider the deformation of a 4-layer cylindrical
shell V] as a test problem, which is located in the Carte-

sian coordinate system Oxyz , to have the same geometric
dimensions, fastening conditions and elastic modules
as the shell ¥, in § 4. However, the shell /] has no cut-
outs. When 3L/4<y<5L/4 the radial tensile uniform
load of p=0.1 MPa acts on the outer surface of the
shell 7}, i. e. axisymmetric three-dimensional stress state
is realized in the shell V] [1].

As you know [1], the sequence of approximate solu-
tions of the axisymmetric problem, constructed by MFE
with the use of standard FE, which are homogeneous
rings with a rectangular cross-section, in the limit (when
h, — 0 &, is the characteristic size of the standard FE)

converge to the exact solution. Calculations are carried
out for discrete models Q,, n=1, ...,14, shell V;. The

results of calculations are given in tab. 2 for models Q,
0

n

where, n=7, ...,14, w,?, o, are the deflection and

equivalent voltage at the point A (fig. 4), dimensions
of models O, are given in the plane Oyz. The parameters

of 83,»,, (%), Sg,n (%) are determined by the formulas

tions constructed using the new MFE, we use the follow- 0 0_ .0 0
. . . ’ o 3., (%) =100 % - - /
ing numerical method, the brief essence of which is W’”( 0) o[ Wy =Wy [/ (16)
shown below. With the kind of new MFE that are used in 8 (%)=100 % -|c" —c" /), n=2, ..,14.
the solution of the original problem (see § 4), the similar ’
Table 1
Displacements w, and equivalent stresses o, for models R,
R, Rs R, Ry Ry Ry
w, 30.032632 30.136577 30.205840 30.254172 30.289362
5W,n (%) 0.550568 0.344913 0.229303 0.159753 0.116179
c, 30.074687 30.544130 30.881125 31.146047 31.371908
1) ,n (%) 2.374768 1.536934 1.091265 0.850580 0.719947
Table 2
Displacements w,? and equivalent stresses 02 for models O,
N Dimensions of models WS 10°, 53,),, (%) Gg , MPa 82,n (%)
7 2269 %43 2.24419205 0.0001359 21.9642981 0.0006719
8 2593x49 2.24419400 0.0000868 21.9641839 0.0005199
9 2917 %55 2.24419529 0.0000574 21.9640928 0.0004147
10 3241x61 2.24419632 0.0000458 21.9640199 0.0003319
11 3565 %67 2.24419706 0.0000329 21,.9639594 0.0002754
12 3889x73 2.24419754 0.0000213 21.9639074 0.0002367

33
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End of table 2
N Dimensions of models wl10°, M 85, (%) o), MPa 89 (%)
13 4213x79 2.24419797 0.0000147 21.9638637 0.0001989
14 4537 %85 2.24419832 0.0000155 21.9638261 0.0001711

Table 3
Displacements w” and stresses c” for models R,

n wl10°, m &% (%) c?, MPa 87 (%)
7 2.24416383 0.0001038 21.9641016 0.0060703
8 2.24416590 0.0000922 21.9649716 0.0039608
9 2.24416869 0.0001243 21.9655875 0.0028039
10 2.24417150 0.0002810 21.9660517 0.0021132
11 2.24417898 0.0003333 21.9664194 0.0016739
12 2.24418121 0.0000993 21.9667143 0.0013424
13 2.24418263 0.0000632 21.9669569 0.0011043
14 2.24418427 0.0000730 21.9671598 0.0009236

0

w,n

The nature of the values change of & (%), 62,,, (%)

shows the rapid convergence of stresses 02 and displace-
ments w to the exact solution w,, o, of the axisymmet-
ric problem [1]. As the sizes, 8&14 =0.000000155
Sg’, 4+ =0.000001711 are sufficiently small, the displace-
ment of w, =2.24419832-10° m and the equivalent

stress o\, = =21.9638261 MPa can be considered as the

. . . .0 0
exact solution, i. e. we believe wy, =wy, , 6, =GC},.

We consider the solution of this axisymmetric MFE
problem with the use of FE, which were used in solving
the problem in § 4. We construct approximate solutions of
the axisymmetric problem using the laws of grinding (14),
(15) of basic partitions. The results of calculations are

given in the tab. 3, where, w?”

n o

o’ is the deflection and
equivalent stress at the point A for a multigrid discrete
R 2 85’,n %) >

model R,

n=7,..,14. The parameters
87 ,(%) are determined by formulas similar to formulas
(16). The nature of the change in values 3, (%),

87 ,(%) demonstrates the rapid convergence of stresses

o and displacements w” to the limit values w/,
ol . The errors for displacement wf, and stress
P

ol 8, (%) =100 % | wiy —wh | /wy, 8,(%) =100 % x

x| 0?4 -oly |/ 0?4 , respectively, are equal to 0.00062828 %
0.0151749 %. In tab. 2, 3 values w),, o',, wh, c’,, are

marked in bold. From the point of view of engineering
practice, because of the smallness of the values &,,(%),

8,(%) , we can assume that w)' =w,, o} =o,. Then we
can conclude that the proposed ThGFE generate solutions

o?

no

w? that in the limit (at #n — o ) tend (from the point
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of view of engineering practice) to the exact solution of
the axisymmetric problem.
The shell ¥V, considered in § 4 differs from the shell

V, considered in § 5 by the presence of cutouts and the

method of applying the load, with full coincidence of the
dimensions, boundary conditions and physical character-
istics of the shells. In addition, when constructing
sequences of approximate solutions for the initial and test
problems, the same family of proposed ThGFE is used.
Therefore, it can be assumed that the proposed shell
ThGFE, which provide uniform convergence of approxi-
mate solutions for the test problem (for the shell V), gen-

erate solutions w,, o, that in the limit (at n — o0 ) will

converge (from the point of view of engineering practice)
to the exact values of displacement and equivalent stress
for the original problem (for the shell V), see § 4.

Conclusion. In this work we propose a numerical
method of calculation of multilayered linear elastic cylin-
drical thin and medium-thickness shells with the use of
curvilinear Lagrangian shell type MFE. Application of the
MFE for multigrid discrete shell models requires much
less computer memory than the base models, which
allows to construct solutions with a small error and
can explore SSS of shells of large geometric dimensions.
The above calculations show the high efficiency of the
proposed curvilinear Lagrangian shell MFE in the analy-
sis of three-dimensional SSS multilayer shells.

References

1. Zenkevich O. Metod konechnykh elementov v tekh-
nike [The finite element method in engineering science].
Moscow, Mir Publ., 1975, 541 p.

2. Norri D., Zh. de Friz. Vvedenie v metod konechnykh
elementov [An Introduction to Finite Element Analysis].
Moscow, Mir Publ., 1981, 304 p.

3. Golovanov A. I, Tyuleneva O. L., Shigabutdinov A. F.
Metod konechnykh elementov v statike i dinamike tonkos-
tennykh konstruktsiy [Finite Element Method in statics



Mamemamuxka, mexanuxa, ungopmamuxa

and dynamics of thin-wall constructions]. Moscow, Fiz-
matlit Publ., 2006, 392 p.

4. Klochkov Yu. V., Nikolayev A. P., Shubovich A. A.
Analiz  napryazhenno-deformirovan- nogo sostoyaniya
obolochek vrashcheniya v geometricheski nelineynoy
postanovke pri razlichnykh variantakh interpolyatsii
peremeshcheniy [Analysis of stress-strain state of rotation
shells in geometrically non-linear setting with various
variants of movement interpolation]. Volgograd, Volgo-
gradsky GAU Publ., 2013, 152 p.

5. Kiselev A. P. [Calculation of thin shells for strength
to resist three-dimensional setting, without simplifying
hypotheses]. Izv. vuzov, ser. Stroitel’stvo. 2008, No. 1,
P. 18-23 (In Russ.).

6. Kiselev A. P., Gureeva N. A., Kiseleva R. Z. [Cal-
culating multilayer rotation shells and plates using
volume finite elements]. Izv. vuzov, ser. Stroitel’stvo.
2010, No. 1, P. 106-112 (In Russ.).

7. Bate K., Wilson E. Chislennye metody analiza i me-
tod konechnykh elementov [Numerical methods in finite
element analysis]. Moscow, Stroyizdat Publ., 1982, 448 p.

8. Bolotin V. V., Novichkov Yu. N. Mekhanika
mnogosloynykh konstruktsiy [Mechanics of multilayer
structures]. Moscow, Mashinostroenie Publ., 1980, 375 p.

9. Golushko S. K., Nemirovskiy Yu. V. Pryamye i
obratnye zadachi mekhaniki uprugikh kompozitnykh
plastin i obolochek vrashcheniya [Direct and inverse
problems of mechanics of elastic composite plates and
shells of revolution]. Moscow, Fizmatlit Publ., 2008, 432 p.

10. Ahmed A., Kapuria S. A four-node facet shell
element for laminated shells based on the third order
zigzag theory. Composite Structures. 2016, Vol. 158,
P. 112-127.

11. Carrera E., Pagani A. Valvano S. Shell elements
with through-the-thickness variable kinematics for the
analysis of laminated composite and sandwich structure.
Composites Part B: Engineering. 2017, Vol. 111, P. 294-314.

12. Yasin M. Y., Kapuria S. An efficient layerwise
finite element for shallow composite and sandwich
shells. Composite Structures. 2013, Vol. 98, P. 202-214.

13. Cinefra M., Carrera E. Shell finite elements with
different through-the-thickness kinematics for the linear
analysis of cylindrical multilayered structures. Int. J.
Num. Meth. Eng. 2013, Vol. 93, No. 2, P. 160-182.

14. Rah K., Van Paepegem W., Habraken A. M., De-
grieck J. A partial hybrid stress solid-shell element for the
analysis of laminated composites. Comp. Meth. Appl.
Mech. Eng. 2011, Vol. 200, No. 49-52, P. 3526-3539.

15. Kara N., Kumbasar N. Three-dimensional finite
element for thick shells of general shape. Int. J. for Physi-
cal and Engineering Sciences. 2001, Vol. 52, P. 1-7.

16. Sze K. Y. Three-dimensional continuum finite
element models for plate / shell analysis. Prog. Struct.
Eng. Mater. 2002, Vol. 4, P. 400—407.

17. Caliri M. F., Ferreira A. J. M., Tita V. A review on
plate and shell theories for laminated and sandwich struc-
tures highlighting the Finite Element Method. Composite
Structures. 2016, Vol. 156, P. 63-77.

18. Matveev A. D., Grishanov A. N. [Multi-grid mod-
eling of three-dimensional composite cylindric panels
and shells]. Materialy X mezhdunarodnoi konferentsii

35

“Setochnye metody dlya kraevykh zadach I prilozheniya” —
Materials of Xth International conference “Grid methods
for boundary tasks and applications”. Kazan, 2014,
P. 459-467 (In Russ.).

19. Matveev A. D., Grishanov A. N. [Two-grid mod-
eling of cylindric shells and panels with variable thick-
ness). Vestnik KrasGAU. 2014, No. 4, P. 90-96 (In Russ.).

20. Matveev A. D., Grishanov A. N. [Multigrid curvi-
linear elements in three-dimensional analysis of cylindri-
cal composite panels with cavities and holes]. Uchenye
zapiski Kazanskogo universiteta. 2014, Tom 156, Seriya:
Fiziko-matematicheskie nauki. 2014, Vol. 156, Book 4,
P. 47-59 (In Russ.).

21. Kabanov V. V., Zheleznov L. P. [To the calcula-
tion of a cylindrical shell by the finite element method].
Prikladnaya mekhanika. 1985, Vol. 21, No. 9, P. 3540
(In Russ.).

Bbu6auorpadguyeckue ccblIKM

1. 3enkeBnd O. MeTox KOHEYHBIX JJIEMEHTOB B TEX-
Huke. M. : Mup, 1975. 544 c.

2. Hoppu ., e ®pu3 XK. Beenenue B MeTO KOHEU-
HBIX 251eMeHTOB. M. : Mup, 1981. 304 c.

3. TomoanoB A. U., Tronenera O. U., [lurabyrau-
HOB A. @. MeToa KOHEYHBIX 3JIEMEHTOB B CTAaTUKE U IU-
HaMUKE TOHKOCTEHHBIX KOHCTpyKUuH. M. : ®uzMaTiur,
2006. 392 c.

4. Knoukos 0. B., Huxonaes A. I1., lllyboBuu A. A.
AHanu3 HanpspKeHHO-IIe(OPMUPOBAHHOTO COCTOSIHHSI 000-
JIOUEK BpalICHHs B I'€OMETPUYECKH HEMHEHHOH mocra-
HOBKE TIpH Pa3iNyYHBIX BapHUaHTaxX HMHTEPIIOJSIIUU Tepe-
MemeHui. Bonrorpan : Bonrorpaackuii I'AY, 2013. 152 c.

5. Kucenes A. II. Pacuer ToHKknX 000/I0YeK Ha MPOU-
HOCTb B TPEXMEPHOW ITOCTAaHOBKE 0€3 YIPOIIAIONINX TH-
niotes // 13B. By30B. Ctpourensctso. 2008. Ne 1. C. 18-23.

6. Kucenes A. II., I'ypeeBa H. A., Kucenesa P. 3.
Pacder MHOTOCITOWHBIX 000JOYEK BpAIICHUS W IUIACTHH
C HCIIOJIb30BAHUEM OOBEMHBIX KOHEYHBIX 3JIEMEHTOB //
U3B. By30B. CtpourensctBo. 2010. Ne 1. C. 106-112.

7. bare K., Buncon E. UucieHnsle MeTOOBI aHAIM3a
YU METOJI KOHEUYHBIX ayeMeHToB. M. : Crpoiinznar, 1982.
448 c.

8. bonorun B. B., HoBuukos 0. H. Mexannka MHO-
TrOCIOMHBIX KOHCTpyKIuil. M. : MammuHoctpoenue, 1980.
375 c.

9.Tomymko C. K., Hemuposckuii 0. B. Ilpsmsie
u oOpaTHble 3aaull MEXaHHKH YINPYTHX KOMIO3HUTHBIX
IUTACTHH U 00ojoYek BpameHus. M. : @mmariut, 2008.
432 c.

10. Ahmed A., Kapuria S. A four-node facet shell
element for laminated shells based on the third order
zigzag theory // Composite Structures. 2016. Vol. 158.
P. 112-127.

11. Carrera E., Pagani A. Valvano S. Shell elements
with through-the-thickness variable kinematics for the
analysis of laminated composite and sandwich structure //
Composites. Part B: Engineering. 2017. Vol. 111. P. 294-314.

12. Yasin M. Y., Kapuria S. An efficient layerwise
finite element for shallow composite and sandwich shells //
Composite Structures. 2013. Vol. 98. P. 202-214.



Cubupckuil scypHan Hayku u mexvoaoaui. Tom 19, Ne ]

13. Cinefra M., Carrera E. Shell finite elements with
different through-the-thickness kinematics for the linear
analysis of cylindrical multilayered structures // Int.
J. Num. Meth. Eng. 2013. Vol. 93, No. 2. P. 160-182.

14. A partial hybrid stress solid-shell element for the
analysis of laminated composites / K. Rah [et al.] //
Comp. Meth. Appl. Mech. Eng. 2011. Vol. 200, No. 49-52.
P. 3526-35309.

15. Kara N., Kumbasar N. Three-dimensional finite
element for thick shells of general shape // Int. J. for
Physical and Engineering Sciences. 2001. Vol. 52. P. 1-7.

16. Sze K. Y. Three-dimensional continuum finite
element models for plate / shell analysis // Prog. Struct.
Eng. Mater. 2002. Vol. 4. P. 400—407.

17. Caliri M. F., Ferreira A. J. M., Tita V. A review on
plate and shell theories for laminated and sandwich struc-
tures highlighting the Finite Element Method // Compos-
ite Structures. 2016. Vol. 156. P. 63-77.

18. MatBees A. [I., I'pummanoB A. H. MHorocerouHoe
MOJICJIMPOBAHUE TPEXMEPHBIX KOMIIO3UTHBIX LHJIMHAPH-
Yyeckux mnaHeneil u obonouek // CeTodyHble METOABI IS

KpaeBbIX 33/1a4 M MPHJIOKEHHs : Marepuansl X Mexmy-
Hap. koH(}. Kazans, 2014. C. 459-467.

19. MatBee A. ., I'pumanoB A. H. [IByxcerounoe
MOJIETIMPOBaHNE IWIMHAPHIECKNX 000J0YEK M TNaHeIeH
nepeMeHHO# TonmuHE // BectHuk Kpacl'AY. 2014. Ne 4.
C. 90-96.

20. MatBeeB A. J1., I'pumanoB A. H. MHOrocerounsie
KPUBOJIMHEHHBIE JJIEMEHTHI B TPEXMEPHOM aHaIH3e
UWIMHIPUYECKUX KOMIIO3UTHBIX MaHeNed ¢ IOJIOCTSIMU
n orBepctusiMu // Ydenwle 3amucku KazaHckoro yH-Ta.
Cep. «®uz.-marem. Haykuy». 2014. T. 156, ku. 4. C. 47-59.

21. Kabano B. B., Xenesmor JI. II. K pacuery
LMITMHIPUYECKON 000IOUYKH METOJIOM KOHEYHBIX 3JIEMEH-
ToB // IlpukianHas mexannka. 1985. T. XXI, Ne 9. C. 3540.

© Matveev A. D., Grishanov A. N., 2018



	1.4

