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For the first time the definition of the Cayley graph was given by the famous English mathematician Arthur Cayley
in the XIX century to represent algebraic group defined by a fixed set of generating elements. Now the Cayley graphs
are widely used both in mathematics and in applications. In particular, these graphs are used to represent computer
networks, including the modeling of topologies of multiprocessor computer systems (MCS) — supercomputers. This is
due to the fact that Cayley graphs possess many attractive properties such as regularity, vertex transitive, small diame-
ter and degree at a sufficiently large number of vertices in the graph. For example, such a basic network topology as
the “ring”, “hypercube” and “torus” are the Cayley graphs. One of the widely used topologies of MCS is a k-
dimensional hypercube. This graph is given by a k-generated Burnside group of exponent 2. This group has a simple
structure and is equal to the direct product of k copies of the cyclic group of order 2. Now the Cayley graphs of groups
of exponent 3, 4, and 5 have already been studied. In this paper we research the Cayley graphs of some finite two-
generated Burnside groups of exponent 7. The computation of the diameter of the Cayley graph of a large finite group
is a solvable but very difficult problem. In the general case the problem of determining the minimal word in a group is
NP-hard (nondeterministic polynomial). Thus, in the worst case, the number of elementary operations that must be per-
formed to solve this problem is an exponential function of the number of generating elements. Therefore, to effectively
solve problems on Cayley graphs having a large number of vertices, it is necessary to use MCS.
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Bnepsvie onpedenenue epaga Konu 6vi10 0ano uzeecmuvim anerutickum mamemamuxom Apmypom Konu 6 XIX eexe
01 npedcmaeienus areedbpauieckol epynnbl, 3a0aHHOU QUKCUPOBAHHBIM MHONCECMBOM NOPOHCOAIOUUX DNIEMEHNOB.
B nacmoswee epems epagher Konu nawnu wupoxoe npumenenue Kaxk 8 mamemamure, mak u 8 NPUKIAOHBIX 3A0AUAX.
B uacmnocmu, ykazannvie epagvl uchons3yromes 0as npedcmasienus KOMIbIOMEPHbIX cemetl, 8 MOM qucie 0isl Mooe-
JUPOBAHUS MONONOUTE MHOZONPOYECCOPHLIX gbluuciumenvuvix cucmem (MBC) — cynepxomnsiomepos. Imo c813aHO
¢ mem, umo epaghvl Kanu umerom mMHo20 npugieKamenbHbix C8OUCMS, U3 KOMOPbIX BbLOEIUM UX PE2YISPHOCTIb, 6EPULUH-
HYI0 MPAH3UMUEHOCHb, MAAble OUAMEmp U CMeneHb npu 00CMAmoyHO OOIbUWOM Koauuecmee eepulul 6 epagpe. Ha-
npumep, maxue 6a308ble MONOLO2UU CEMU, KAK KOIbYO, 2Unepkyo u mop, asusomcs epagamu Konu. O0noil uz wupoxo
npumensiemoix mononozuit MBC segnsemcs k-mepuwiii eunepxy6. Jannwiii epagh 3a0aemcs k-noposicoennoi bepucaiioo-
601l epynnou nepuoda 2. dma epynna umeem npocmylo CMpyKmypy u paeHa npsamMomy npousgeoeHuio k sk3emniapos
yuxauueckou epynnvl nopsioxa 2. Panee asmopamu yoce 6viiu uzyuenst epaghvr Konu epynn nepuooa 3, 4 u 5. Ilposede-
HblL UCCE008AHUsL NO ONPEOeNeHUI0 CMPYKmMypul 2pagos Kanu Hekomopulx KOHeUHbIX 08YNOPOANCOEHHBIX OEPHCAUO06bIX
epynn nepuoda 7. Beiuucnenue ouamempa epagha Konu 60161101 KOHeUHOU 2pYNNbl A6ASEMCs XOMsL U paA3PeuuMo, Ho
8ECHLMA CLOAHCHOU NPOOIEMOU. DMO CEA3AHO ¢ MeM, YUMo 8 00wem ciyyae 3a0a4a no OnpedeeHuIo MUHUMALIbHO20 CO-
6a 6 epynne sgnsemcsi NP-mpyownou (nondeterministic polynomial). Takum obpazom, 6 Hauxyouiem ciyuae KOauiecmeo
NEMEHMAPHBIX ONepayull, Komopbie HeobX00UMO 8bINOIHUMb OISl peuleHUsl YKA3aHHoU 3a0aqu, npedcmasisiem cooou
IKCROHEHYUATILHYIO (PYHKYUIO OM KOIUYECMEA NOpodicoalowux diemenmos. Ilosmomy 0ns s¢pghexmuenozo pewienus
3a0au Ha epagax Konu, umerowux 6oavuioe Koauvecmso sepuiun, Heobxooumo npumensmo MBC.

Knroueswvie crosa: zpaqb RSJZM, MHO20NpOYeCcCopHas 6blHUCIUMENbHASA CUCmemda.
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Introduction. The definition of the Cayley graph
was given by the famous English mathematician Arthur
Cayley in the XIX century to represent algebraic group
defined by a fixed set of generating elements.

During the last decades the Cayley graph theory has
been developing as a separate big branch of the graph
theory. The Cayley graphs are used both in mathematics
and outside it. In particular, the Cayley graphs were used
in information technology after the pioneering work of
1986 by S. Akers and B. Krishnamurti [1] who first pro-
posed the use of these graphs to represent computer net-
works, including for topology modeling (i.e. methods
of connecting processors to each other) multiprocessor
computer systems (MCS) — supercomputersSince then,
this direction is actively developing [2—11]. This is due to
the fact that the Cayley graphs have many attractive prop-
erties, of which we distinguish their regularity, vertex
transitivity, small diameter and degree with a sufficiently
large number of vertices in the graph. Note that such basic
network topologies as “ring”, “hypercube” and “torus” are
the Cayley graphs.

Let’s recall the definitions of the main terms used in
the work.

Let X be a generating set of the group G, i. e.

G=<X>. The Cayley graph F=Cay(G,X)=(V,E)

is a named orgraph with the following properties:

a) a set of vertices V(G) correspond to the elements
of G group,

b) a set of edges E(I') consist of all ordered pairs
(g, xg),wherege G u xe X .

Hence,
I'=Cay(G,X)=(V.E),

where V=G and E = {(g,xg)|geG,xeX} .

A number of vertices |V |is equal to the order of G.

The Cayley graph is directed, and its degree s, i.e. the
number of edges, going out of each vertice, is equal to the
number of generating elements of the group: s=| X|.

We call the ball K of radius s of a group G the set of
all its elements, which can be presented as a group of
words with length s in the alphabet X. For each nonnega-
tive integer s, one can define the growth function of the
group F(s), which is equal to the number of elements of
the group G with respect to X, that can be represented as
an irreducible group words with the length s. Thus,

FO) =K, =1, F(s)=| K[| K|, seN.

As a rule, the growth function of a finite group is rep-
resented in the form of a table which contains non-zero
values of F{(s).

Also, we note that, along with computing the growth
function of a group, we define some characteristics of the
corresponding Cayley graph, for instance, the diameter
and the average diameter [12]. Let F(s,)>0, but

F(s,+1)=0, then s, will be the diameter of the Cayley
graph of the group G in the generating alphabet X, which
we will denote Dx(G). Accordingly, the average diameter
D, (G) is equal to the average length of minimal (irre-
ducible) group words.

Unfortunately, although the computation of the
growth function of a large finite group is solvable, it is a
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rather complicated problem. This is due to the fact that,
in general, the task of the determination of the minimal
word of a group element, as shown by S. Iven and O. Gol-
dreich [13], is NP-hard (nondeterministic polynomial).
Thus, in the worst case, the number of elementary opera-
tions that must be performed to solve this problem is an
exponential function of |X|. Ih the case of large number of
vertices in the Cayley graphs we need use MCS.

One of the widely used topologies of MCS is the
k-dimensional hypercube. This graph is determined by the
k-generated Burnside group of exponent 2. This group has
a simple structure and is equal to the direct product of &
copies of a cyclic group of order 2. Generalization of a
hypercube is the n-dimensional torus which is generated
by direct product of n cyclic subgroups wich may have
different orders. In the articles [14—16] Cayley graphs of
Burnside group of exponent 3, 4 and 5 are studied.

In this paper will research the Cayley graphs of some
finite two-generated Burnside groups of exponent 7. We
will use the algorithm from [16] to study the graphs.
Since the orders of given groups are rather big we will
apply MCS.

Cayley graphs study algorithm. Suppose
B, = (al, a2> is a finite two-generated Burnside groups of

exponent 7 where a; and a, — generating elements and
| B, |= 7% . Using the computer algebra system GAP, it is
easy to obtain pc-presentation (power commutator presen-
tation) of this group [17]. In this case:

VgeB, = g=a"ay...a;*, x,€Z,.

Suppose a"...a;* and g'...q;* are two random ele-

ments of B, written in commutator form. Then their

productis equal to @' ...a* -a" ...a}* =a;* ...a.

The basis for finding coefficients is a collection proc-
ess (see [17, 18]) which is realized in computer algebra
systems of GAP and MAGMA. Besides, there is an alter-
native method for product computation of group elements

offered by F. Hall ([19]). Hall showed that z, represents
polynomial functions (in our case over the field Z,) de-
pending on variables x,...,x;,,,...,», which are now
accepted to be called Hall's polynomials. According
to [19]:

Z, =X 4V, + DX X Vi s Vi)

In the work [20] were calculated Hall’s polynomials
of B, groups which allow to make product of group’s ele-
ments much quicker than via collection. On their basis we
shall calculate the important special cases of polynomials

necessary for further computation of Cayley graphs of B4
group and its factors.

i) N4 — Nt Vi4.
1) a -a'a?...a) =al""ay ...a)}%
2) a'-alal...al =a"%a .. .a))

1 Cdpdyeendy 1 Yyl

3) a,-a’'ay...al" =ala?...a , where:

n 2

21 =M
Z, =y, +1,
3=t Y5

z, =3y, + v, 4y,
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Zs=Ys T Vs

Z =5y, + Y, +3y] +63;,

z; =y, +3yp, +4y12y2,

Zg = Yy T30y, 4003,

Zy :5y1+y9+6y12 +5y13+5y14,

Zio =29+ Vio + 50,0, 4V, 300y, #3070y +
+ 63y AN+ )

Zy, =5V + 30, -|-4y12y3 -|-3y12 +6y13,

212 = Vo F 20003 H 60,0, + 505+ v, + 6y,
Ziy = Vi3 30, +4y12y2 + VY2V

24 = Vg + 50,02 3005 63,325

-1 n, »n Yn — 71 22 z, .
4) a, -al'a*...a)" =a'ay’ ...a;", where:

=N
z,=y,+6,
Z, =6y, + 5,

z, =4y, +y, +3y12,

Zs =) + Vs 63y,

Zg :2y1+y6+4y12+y13,

z, =3y, +y, +4yy, +3y12y2 +4y12,

2 =6, +yy + 50,0, +30,;,

Z, =2y1+y9+y12+2y13+2y14,

Z1o =3V + Vo T 2010, +3V,05 —i—4ylzy2 +
+ AYTys+ 9y 30+,

Zy =20+ AV, +3y12y3 +5y13,

2y =YtV TSV ANy, 6y s+
+ 2005 2000, WYy

Zyy =3y + Y H4AY Y, F ), +4y12y2 -|-3y12 +6),Y,)5,

Zu =N TV A+ ylyg +y1y§'
Further the basic algorithm for computation of the
Cayley graph of a finite group is provided [16].
Algorithm A-I
a

group G= (X , o) where

X ={x,x,,...,x, } is the generating set of G.

Input: finite

Output: the diameter D, (G), the average diameter
D, (G) of the Cayley graphT =Cay(G,X), and also
growth function F(s) of the
0 <s<D,(G):

s=0, K,={e}, F(0)=1, P=K,;

2. 5=s5+1;

3. K, =K_,;
4. VxeXuVpeP:

4.1. g=xop;

42.if geK , K =K u{g};
5. P=K -K_,;
6. F(s)= Pl

group G where
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7. if F(s)>0, transition to 2; otherwise s,=s-1,
transition to §;

8. Dy(G) =s,, Dy (G)=

9. Exit.

In [16] is proved the correctness of algorithm A—I and
also shown that T(G|)e®(G[) under |X|<«|G|,
where 7'(|G|) is computational complexity of the algo-

rithm A-I and ©® is simultaneously upper and lower
complexity asymptotical estimate.
To lower the complexity a method for enumeration of

elements is required. Suppose g"...q;* — random ele-

ment from B;. We shall define bijective mapping ¢ as
follows:

(&) = (XX - X))s5
0 (X ...x), ) =a"ay ...

Here ¢(g) is an integer nonnegative number written

Xk —
a’ =g.

in the sevenfold form, which we shall take as an ordinal
number g. It is clear that ¢(g) runs over values from 0

to (7 -1).

We modify AT algorithm as follows. We shall add a
Boolean vector of V of size 7* to step 1, all elements of
which originally are equal to 0. For convenience the in-
dexing of elements of V" begins with 0. As K, ={e} and

¢(e) =0 therefore V, =1.

Let’s replace the step 4.2 of the algorithm A-I as fol-
lows:

4.2.if V., =0, 7,

o

=11 K =K Uig}.
As the complexity of the procedure of the group

element transfer to a number and back is equal to ©(1),

according to [16] complexity of the modified algorithm
A-I will be equal to (] G) .

Also, we shall note that in the step 4.1 all elements g
are calculated independently of each other, therefore this
section of the algorithm can be easily parallelized. In this
case at first all products g are calculated simultaneously,
then for every element do step 4.2 consequentially. Note
that in step 4.1 products of group elements are calculated
using Holl’s polynomials as suggested above.

The study of graphs B,. The modified algorithm A-I
was implemented in C++. As a tool for parallelization, it
was used the library OpenMP. For the calculations, it was
used a computer with an 64-core processor and 512 Gb of
RAM, running the Linux operating system. The program
was compiled by the embedded compiler GCC. As the
result characteristics of the Cayley graph of B; were cal-

culated under £ <14 for minimal <a1, a2> and symmetri-

1 -1 .
cal <a1,a1 , 0y, 0, > generating sets. In the first case com-

putation time under k=14 takes aboutl8 hours, in the
second — 36 hours. Table presents diameters D and aver-
age diameters D for the Cayley graphs of By for the
specified generating sets. For illustration in fig. 1, 2
growth functions of the group B, are presented.
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Cayley graphs of group B, characteristics

By Bk:<al,a2> Bk:<a1,a1’1,a2,a2’1>
k D D D D
2 12 6 6 3
3 14 8 8 5
4 18 11 11 7
5 23 15 12 8
6 28 17 15 10
7 28 20 17 12
8 35 23 21 14
9 36 26 22 16
10 39 28 24 18
11 42 31 26 20
12 43 34 27 21
13 49 37 31 23
14 56 41 34 25
9E+10
BE+10
7E+10
6E+10
£ 5e+
g
5 4E110
3E+10
2E+10
1E+10
0
0 10 20 30 40 50 60
length
Fig. 1. The graph of the growth function of the group B, = <a1,a2>
Puc. 1. I'padux dpyHxuuu pocra rpynmst B, :<a1,a2>
25E+11
2E+11
o 15E+11
-
3
2
®1E1
5E+10
0
0 5 10 15 20 25 30 35 40

length

Fig. 2. The graph of the growth function of the group B,, = <a1,a1’1, az,a;1>

Puc. 2. I'paduk pyHkuuu pocra rpynmnsl B, = <a1,a1’1, az,a;1>
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Conclusion. As mentioned above the Cayley graphs
represent an effective model for the topology of multi-
processor computing systems design. Therefore, for the
creation of supercomputers with exaFLOPS performance
(10" floating point operations per second) knowledge
of characteristics of super-large-scale Cayley graphs
might be required. The results of this research can be used
for perspective topologies design of MCS.
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