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This paper is devoted to the construction of a new class of models under incomplete information. We are talking
about multidimensional inertia-free objects for the case when the components of the output vector are stochastically
dependent, and the character of this dependence is unknown a priori. The study of a multidimensional object inevitably
leads to a system of implicit dependencies of the output variables of the object from the input variables, but in this case
this dependence extends to some components of the output vector. The key issue in this situation is the definition of the
nature of this dependence for which the presence of a priori information is necessary to some extent. Taking into
account that the main purpose of the model of such objects is the prediction of output variables with known input, it is
necessary to solve a system of nonlinear implicit equations whose form is unknown at the initial stage of the identifica-
tion problem, but only that one or another output component depends on other variables which determine the state
of the object.

Thus, a rather nontrivial situation arises for the solution of a system of implicit nonlinear equations under condi-
tions when there are no usual equations. Consequently, the model of the object (and this is a main identification task)
cannot be constructed in the same way as is accepted in the existing theory of identification as a result of a lack of
a priori information. If it was possible to parametrize the system of nonlinear equations, then at a known input it would
be necessary to solve this system, since in this case it is known, once the parameterization step is overcome. The main
content of this article is the solution of the identification problem, in the presence of T-processes, and while the pa-
rametrization stage can not be overcome without additional a priori information about the process under investigation.

In this connection, the scheme for solving a system of non-linear equations (which are unknown) can be represented
in the form of some successive algorithmic chain. First, a vector of discrepancies is formed on the basis of the available
training sample including observations of all components of the input and output variables. And after that, the evalua-
tion of the output of the object with known values of the input variables is based on the Nadaraya-Watson estimates.
Thus, for given values of the input variables of the T-process, we can carry out a procedure of estimating the forecast
of the output variables.

Numerous computational experiments on the study of the proposed T-models have shown their rather high effi-
ciency. The article presents the results of computational experiments illustrating the effectiveness of the proposed tech-
nology of forecasting the values of output variables on the known input.
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Paccmompeno nocmpoenue nogozo kiacca mooenell 8 YCiosusix HenoaHou ungopmayuu. Peus uoem o mHozomepnvix
Oe3bIHePYUOHHBIX 00bEKMax Osl CyYds, Ko2e0ad KOMHOHEHMbL GeKIMOpa GbIX0008 CHOXACTNUYECKU 3A6UCUMbL, NpUUeM
Xapaxmep 9mou 3a8UcCUMOCmU anpuopu HeuzeecmeH. Hcciedosanue MHOZOMEPHO20 00bEKMA HEU30EHCHO NPUBOOUM
K cucmeme HesIBHbIX 306UCUMOCTNEU GbIXOOHBIX NEPEMEHHbIX 00beKma Om BXOOHbIX, HO 8 OAHHOM Ciydae NnooobHas
3a6UCUMOCTb PACNPOCMPAHACMCS U HA HEKOMOpble KOMHOHEHMbL 8eKMOpa 6blx0008. Kniouesvim 6onpocom 6 0anHOU
cumyayuu sA61s1emcs onpeoeneHue Xapakmepa 3mou 3a6UCUMOCmU, OIS 4e2o U HeobX00uMo Harudue ¢ mou uiu UHou
cmeneHu anpuopHou uxgopmayuu. Yuumeigas, umo OCHOBHbIM HA3HAYEHUeM Mooenu No00OHO20 podd 0ObeKmos
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ABNAEMCA NPOSHO3 BLIXOOHLIX NEPEMEHHbIX NPU UBECHIHBIX BXOOHbLIX, HeOOX00UMO peuams CUCMEeMY HeNUHElHbIX
HEABHbIX YPAGHEHUl, 6UO0 KOMOPLIX HA HAYANLHOU CMaouu NOCMAHOBKU 3a0a4u UOEHMUDUKAYUU Heu38ecmeH,
a U3BeCMHO UL, YMO MA ULU UHASL KOMNOHEHMA 8bIX00A 3A8UCUN O OPY2UX NEPEMEHHbIX, ONPedensIOuUX COCosi-
Hue 0bveKkma.

Taxum 0bpazom, 803HUKAEM O0B0TbHO HEMPUBUATLHAS CUMYAYUS. PEUEHUs CUCIEMbl HEABHbIX HETUHEUHbIX YPas-
HeHUll 6 YCNIoBUAX, K020 COOCIMEEHHO camux ypasHeHul 6 0OviuHOM cmuiciie Hem. CredosamensHo, MoOenb 00veKma
(a sma ocnosnasa 3adava uoenmugurayuu) He moxcem ObimMb NOCMPOEHA MAK, KAK MO NPUHAMO 8 CYuecmeyloujel
meopuu uOeHMuPUKayuu 8 pe3yavmame HedOCMAmKa anpuopHoll ungopmayuu. Eciu 6vi modxcrno bvino napamempuso-
8amuv cucmemy HeIUHEHbIX YPASHEHUl, MO NPU U36eCMHOM 6X00e C1e008an0 Dbl pewums My CUCMeMy, NOCKOIbKY
OHa 8 OAHHOM CIyuae U3gecmua, pas sman napamempusayuu npeoooner. OCHOBHbLIM COOepICaHUueM Hacmosuell cma-
mbU AGNAEMCA peuleHue 3a0a4u uoeHmugurayuyu npu Haauduy T-npoyeccos u npu mom, ymo 3mMan napamempusayuu
He Modicem Obimb npeodoier be3 0ONOIHUMENbHOU ANPUOPHOU UHGOpMAayUU 00 ucciedyeMom npoyecce.

B smoii cea3u cxema peuwtenus cucmemvl HeIUHEUHbIX YPASHEHUL (KOMopbie Heu3secmubvl) mModxcem Ovimb npeo-
cmaenena 6 8ude HeKOmopoll Nocied08amenvHoll aneopummudeckol yenouky. CHauana HA OCHOBAHUU UMeOWelcs
obyuaroueli 8b100pKU, BKIOUAIOWEN HAOTIO0EHUs 8CeX KOMNOHEHM 8XOOHbIX U B8bIXOOHLIX NepeMeHHbIX, hopmupyemcs
6eKMOp HeBA30K. A yoce nocie dmoz20 OYeHka 6biX00d 00bLEKMAa NpU U36ECTNHLIX 3HAYEHUAX BXOOHbIX NEPEeMEHHbIX
cmpoumca Ha ocHosanuu oyenok Haoapas—Bamcona. Taxum o6pazom, npu 3a0aHHbIX 3HAYEHUAX 8XOOHLIX NepeMeH-
Huix T-npoyecca mbl MOdHCEM OCYUWECMEUms POYeoypy OYEHUBAHUS NPOSHO3A BbIXOOHBIX NEPEMEHHBIX.

Muozouucnennvie goruuciIumenvHyle IKCNEPUMEHMbL NO UCCIE008aHUI0 npednazaemuix T-wodeneii nokazanu 0oc-
MAmoyHoO 8bICOKYIO Ux dp@exmusrnocms. IIpueoodames pe3yrbmamol GLINUCIUMENLHBIX IKCHEPUMEHINOS, ULNI0CHPU-
pyIowux 3QpexmusHocnms npeonazaemMoll mexHoI02UY NPOSHO3A 3HAYEHUT BLIXOOHBIX NEPEMEHHbIX N0 U36ECHHbIM
6XOOHbIM.

Kniouegvie cnosa: ouckpemmno-nenpepulénwiii npoyecc, uoenmugpuxayus, T-modenu, T-npoyeccoi.

Introduction. In' numerous rpultidimensional real =1 . The main feature of this task of modeling is that
processes output variables are available to measure not

only at different time periods but also after a long time.
This leads to the fact that dynamic processes have to be  vector functions F,; (u,x,0), j= Ln , where a is a vector
considered as non-inertial with delay. For example, while
grinding the products time constant is 5-10 minutes, and
control of output variable, for example fineness of grind-
ing, is measured once in two hours. In this case investi-
gated process can be presented as non-inertial with delay.
If output variables of the object are somehow stochasti-
cally dependent, then we call such processes 7-processes.
Similar processes require special view on the problem of F. (u x) =0, j= in (1)
identification different from existing ones. The main thing I ’ ’
is that identification of such processes should be carried
out differently from the existing theory of identification.
We should pay special attention to the fact that the term
“process” is considered below not as processes of prob-
abilistic nature, such as stationary, Gaussian, Markov,
martingales, etc. [1]. Below we will focus on T-processes
actually occurring or developing over time. In particular
technological process, industrial, economic, the process of
person’s recovery (disease) and many others.
Identification of multidimensional stochastical proc-
esses is a topical issue for many technological industrial
processes of discrete-continuous nature [2]. The main
feature of these processes is that vector of output vari-

ables x=(x,,x,, ..,x,), cons'lstmg of n compone?nt is Fj(u(t—r), x(1), a(t)):()’ j=Tn, ?)
such that the components of this vector are stochastically

dependant unknown in advance way. We denote vector  yhere F, () is unknown, 7 is delay in different channels
of input component — u = (u,u,, ...,u,, ). This formula-

class of dependency F(-) is unknown. Parametric class of

of parameters, does not allow to use methods of paramet-
ric identification [3; 4] because class of functions accurate
to parameters cannot be defined in advance and well
known methods of identifications are not suitable in this
case [3; 4]. In this way the task of identification can be
seen as solving of non-linear equations:

relatively component vector x =(x,x,, ...,x, ) at known

values of u. In this case it is expediently to use methods
of nonparametric statistics [5; 6].

T-processes. Nowadays the role of identification of
non-inertial systems with delay is increasing [7; 8]. This
is explained by the fact that measurement of some of the
most important output variables of dynamic objects
is carried out through long periods of time, that exceeds
a constant of time of the object [9; 10].

The main feature of identification of multidimensional
object is that investigating process is defined with the
help of the system of implicit stochastic equations:

of multidimensional system. Further t is omitted for sim-
tion of the problem leads to the fact that the mathematical  plicity.

description of the object is represented as some analogue In general investigated multidimensional system
of the implicit functions of the form F; (u,x) =0, implementing 7-processes can be presented in fig. 1.
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Fig. 1. Multidimensional objects

Puc. 1. MHOTOMEpHBIIT 00BEKT

In fig. 1 the following designations are accepted: u =
= (u. .

x=(x, ...

,um) — m-dimensional vector of input variables,

.X,)
Through various channels of investigated process depend-
ence of j component of vector u can be presented as de-

— n-dimensional vector of output variables.

pendence on components of vector u: x*/” = f; (u</ >),

j=Ln.

Every j channel depends on several components of

vector u, for example u=>~ = (u,u3,uq ), where u™ isa

compound vector. When building models of real techno-
logical and industrial processes (complexes) often vectors
x and u are used as compound vectors. Compound vector
is a vector composed from several components of the
<j>

vector, for example u*/> =(x,,Xs,%;,%) or another set

of components. In this case, the system of equations will
be F, ( <> <’>) 0, j=Ln.

T-models. The processes, which have output variables
that have unknown stochastic relationships, were called
T-processes, and their models were called 7-models. Ana-
lyzing the above information it is easy to see, that descrip-
tion of the process in fig. 1 can be accepted as a system of
implicit functions:

Fj<u<j>, <j>) 0, ]—ll’l

(€)

where u~/”,x*/> are compound vectors. The main fea-

ture of modeling of such a process under nonparametric

uncertainty is  the fact that functions (3)
F; (u<-i>,x<'j>)=0, j=1n are unknown. Obviously the

system of models can be presented as following:
Fy (w77 5,8, ) =0, j=1n, )
are temporary vectors (data received
X)) =
X ) >

j= I,_n are unknown. In the

where X, i,
by s time moment), in particular X =(x, ...
= (X1, X125 weos

but even in this case F ()

Xigs s X015 X005 ey Xogy voes X5 Xp2s oo

theory of identification such problems are not solved and
are not set. Usually parametric structure is chosen (3),
unfortunately it is difficult to fulfill because of lack
of apriori information. Long time is required to define
parametric structure, that is the model is represented as:

Fj (u<./>’x<./>’a) =0, j :1,_”,

)
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where o is a vector of parameters. Then follows the
evaluation of parameters according to the elements of

training sample u,,x;, i = 1,s and solution of the system

P2V
of nonlinear interrelated relations (5). Success in building
a model will depend on qualitative parametrization of the
system (5).

Further we will consider the problem of building
T-models under nonparametric uncertainty, when the sys-
tem (5) is unknown up to the parameters.

Let the input of the object receive the input variables
values, which, of course, are measured. Availability of

X, U;

training sample x,,u,, i=1,s is necessary. In this case
evaluation of vector components of output variables x
at known values of u, as noted above, leads to the need to
solve the system of equations (4). If dependence of output
component from vector components of input variables
is unknown, then it is natural to use the methods of non-
parametric evaluation [5; 11].

At a given value of the vector of input variables
u=u', it is necessary to solve the system (4) with respect
to the vector of output variables x. General scheme of
solution of such a system:

1. First a discrepancy is calculated by the formula:

), j=Ln

=F, , X,

& J

(u<j>’x<j> (l)

(6)

where we take F (u<] 7 x (i),)?s,zis) as nonparametric

evaluation of regression of Nadaraya—Watson [10]:

(“<j>’x./ (’)) =

CSlt
<n> : ’ (7)
S u, —u,[i
S|
i=1 k=1 suk

where j=1,n, ,<m> is dimension of a compound vec-

<

tor u,, <m> m , further this designation is also used

w, —uy [d]

csuk

for other variables. Bell-shaped functions @

and parameter of fuzziness c, satisfy several conditions

of convergence and have the following features:
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D(+) < oo; c;! J‘ qD(C;I (u—u; ))du =1

Q(u)

(c;l (u—u,-)) =8(u—u;), lim_,, c

lim

. 1 _
lim, c © =0,

§—>0 SCS =0.
2. Next step is conditional expected value:
xj=M{x|u<f>,s=o}, j=ln. (8)

We take nonparametric evaluation of regression

<m>

(0]
Il
8k2 [l]

‘D(C

S€

S

2,1l
i=1

of Nadaraya—Watson as an estimate (8) [10]:
Hq{ukl —uy, [i]J &y, [7]
k=1 Cou se

X.
Uy — Uy [Z]
CSI/I

J
where bell-shaped functions CD() are taken as triangular

, j=Ln, (9)

s <n>

2]

i=1 k=1

<m>

[1

ky=1

core:

d

b b
J_ CSM CSM
|u —u [i]|
kU
[ R |

5 = 1.

|uk] —uy, [i]| |uk] —uy, [i]| o
uy, —uy [1]

csu

|

Carrying out this procedure we obtain the value of
output variables x under input influences on the object
u=u', this is the main purpose of a required model,
which further can be used in different management sys-
tems [8], including organizational one [12].

Computational experiment. For computational
experiment a simple object with five input variables

u = (uy,uy,u5,u,,us ) taking random values in the interval

CS u

0,|8“[ﬂ|21.

&, []

CSS

CSS

u [0, 3] and with three output variables x = (x;,x,,x;)

where x; €[-2; 11], x, €[-1; 8], x ;e[-1; 8] was cho-
sen. We will develop a sample of input and output vari-
ables based on a system of equations:

X, —2u; +1.5\Ju, —u52 —0.3x; =0;
Xy —1.5u, — 0.3 Jus —0.6-0.3x, = 0;
Xy =21y +0.9\Juy —4us —6.6+0.5x, —0.6x, =0

(10)

As a result we get a sample of measurements i, X,

where i ,X; are temporary vectors. It should be noted

that the process described by the system (10) is only nec-
essary to obtain training samples, there is no other infor-
mation about the process under investigation. Dealing
with a real object, a training sample is formed as a result
of measurements which are carried out with available
control measures. In the case of stochastic dependence
between output variables, the process is naturally
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described, for example, by the following system of
equations:

A

F, (xl,x3,u1,u2,u5)=0;

(11)

Foo (%2, uy,u5) = 0;
F, (xl,xz,x3,u2,u3,u5)=0.

The system of equations (11) is a dependence, unlike
the system (10), known from the available a priori
information.

Having got a sample of observation, we can proceed
to a studied problem, which is finding the forecast values
of output variables x at known input u. First, discrepan-
cies are calculated (7) using the technique described ear-
lier. We introduce discrepancies as a system:

(1) = A (x] xduf g );
N (l) = ﬁ} (xf,xé,xé,ué,ué,ué

(12)

N_ Ao
82(1)—F2(x1,x2,u4,u5

where €;,J= 1,3 are discrepancies, whose corresponding

components of an output vector cannot can’t be derived
from the parametric equations.

The forecast for the system (11) is carried out
according to the formula (9) for each output component of
the object.

First, we present the results of a computational ex-
periment without interference. In this case, values of input
variables of the newly generated input variables (not
included in the training sample) go to the input of the
object. A configurable parameter will be a parameter
of fuzziness c,, which in this case, we take equal 0.4 (the

value was determined as a result of numerous experiments
to reduce the quadratic error between model and object
output [13; 14]) the parameter of fuzziness will be taken
the same when calculating in the formulas (7) and (9),
sample size is s =500. Let’s give graphs for object out-
puts by components x;, x, and x;.

In fig. 2, 3 and 4 the output values of the variables are
marked with a “point”, and the output value of the model
are marked with a “cross”. The figures demonstrate the
comparison of the true values of the test sample of the
output vector components and their forecasted values ob-
tained by using the algorithm (6)—(9).

We will conduct the results of another computational
experiment, in this case, interference & is imposed on

values of the vector x components of the object output.
The conditions of the experiment: sample size is s =500,
interference acting on the output vector components of an
object is £=5 % , parameter of fuzziness is ¢, =0.4
(fig. 5-7).

The conducted computational experiments confirmed
the effectiveness of the proposed 7-models, which are
presented not as generally accepted in the theory of model
identification, but as some method of forecasting the
output variables of the object at the known input u =u".
It should be noted that in this case we do not have
a model in the sense generally accepted in the theory of
identification [15].
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Fig. 2. Forecast of the output variable x; with no interference. Error 6 =0.71
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Fig. 3. Forecast of the output variable x, with no interference. Error 6 =0.71
Puc. 3. [Iporuo3 BEIXOAHO# IEPEMEHHOIT X, Tpu 0TCYTCTBHH momex. Ommbka &= 0,71
M ObjCCt
Model —————
Output value 2 S b
e
. X * s i 2™ £ 0% . *
= = . ¥ . X &
1y * L .
3 + e
0 10 » -
Fig. 4. Forecast of the output variable x; with no interference. Error & =0.71
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Fig. 5. Forecast of the output variable x; with interference 5 %. Error & =0.77

Puc. 5. [Iporuo3 BEIXOIHOM IIEpeMEHHOH x| ¢ omexoi 5 %. Ommobka 6 =10,77
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Fig. 6. Forecast of the output variable x, with interference 5 %. Error 6 =0.77

Puc. 6. TIporHo3 BEIXOJHOM NEepeMEHHOI X, ¢ momexoi 5 %. Omnodka §=0,77
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Fig. 7. Forecast of the output variable x5 with interference 5 %. Error & =0.77

Puc. 7. IIporuo3 BeIXOIHOM EpEMEHHOMH X3 ¢ omexoi 5 %. Ommbka 6=0,77

Conclusion. The problem of identification of non-
inertial multidimensional objects with delay in unknown
stochastic relations of the output vector components is
considered. Here a number of features arise, which mean
that the identification problem is considered under condi-
tions of nonparametric uncertainty and, as a consequence,
cannot be represented up to a set of parameters. On the
basis of available a priori hypotheses the system of equa-
tions describing the process with the help of compound
vectors x and u is formulated. Nevertheless functions

F(-) remain unknown. The article describes the method

of calculating the output variables of the object at the
known input, which allows them to be used in computer
systems for various purposes. Above some particular re-
sults of computational studies are given.

The conducted computational experiments showed
a sufficiently high efficiency of 7-modeling. At the same
time, not only the issues related to the introduction of
interference of different levels, different sizes of training
samples, but also objects of different dimensions were
studied.
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