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USE OF CONSERVATION LAWS TO SOLVE THE PROBLEM OF LOAD WAVE
IN AN ELASTOPLASTIC ROD
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The process of propagation of plastic deformations in a semi-infinite elastic plastic rod caused by dynamic loading
applied to the end of the rod, which is not decreasing in time, is considered. The equations are written in the
Lagrangian coordinate system. It is assumed that during deformation there is no lateral bulging of the rod and that the
influence of transverse deformations of the rod on the process of propagation of longitudinal waves is negligible. At the
initial moment, the rod is in a deformed and dormant state. Small deformations of the rod are considered. The density of
the rod during deformation does not change. The only non-zero component of the stress tensor will be the component
along the ox axis, non-zero components of the strain tensor will be the components along the Ox, Oy axes. As a result, a
system of two quasilinear first-order homogeneous equations is constructed. The equations are hyperbolic. They are
built for performance and ratio on them. Next, the equations are written in terms of Riemann invariants. For the
equations constructed, the conservation laws are found in the case when the current remaining depends only on the
functions sought. As a result, a system of linear equations with coefficients depending only on the required functions is
obtained.

The construction of conservation laws is reduced to the solution of the boundary value problem for the known
Euler—Poisson—Darboux equations. This problem is solved with the help of Riemann functions. The conservation laws
allowed us to find the coordinates of the points of intersection of characteristics, and thus to solve the problem. In
conclusion, the article considers the case when one of the characteristics crosses the line on which the initial conditions
are given. In this case, as is known, the Cauchy problem cannot be solved. This leads to a procedure which, with the
help of conservation laws, makes it possible to find out the solvability of the Cauchy problem. It is reduced to the
solution of a simple integral equation by the method of successive approximations.
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O BOJIHE HATPY3KU B YIIPYT' O-INTACTUYECKOM CTEPKHE
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Paccmompen npoyecc pacnpocmpanenus niacmuieckux oeopmayuii 8 noay6eckOHeuHOM YNpPy20-niaCmu4eckom
cmepoicHe, 8bI36AHHbIX NPUTONCEHHOU K KOHYY CIMEPICHSL OUHAMUYECKOU HA2PY3KOl, He Yobisalowell 60 gpemeHu. Ypas-
HeHUsl 3anUCanbl 6 1azpandicesoll cucmeme koopounam. Ilpeononazaemes, ymo 6 npoyecce oepopmayuu He nPoOUCXo-
oum OOK0B020 BbINYYUBAHUS CIEPICHA U UIMO GIUSAHUE NONEPEUHBIX 0eDOPMAYULL CINEPICHS HA NPOYecC pacnpocmpa-
HeHUsl NPOOOTIbHLIX 80IH NPEHEOPENCUMO MAN0. B nauansuwiii momenm cmepoicenb Haxo0umcs 8 0e)opmMupo8anHom
cocmosiHuu 1 cocmosnuy nokos.. Paccmompenwt manvie degpopmayuu cmeporcus. Iliomnocms cmepaichs 6 npoyecce
oeghopmuposanus ne usmensemcs. EOuncmeennot omauuno om Hyus COCIMasisiowell meH3opa Hanpsiicenut oyoem
KOMNOHEHMA 600Jib OCU OX, OTMIUYHbIMU OM HYISL COCMAGIAIOWUMU MeH30pa deghopmayuti OyOym KOMHOHEHMbL 800.1b
oceil Ox, Oy. B pesyromame nocmpoena cucmema 08yX K8AZUNUHEUHLIX 0OHOPOOHLIX VPABHEHUU Nepe0co NOPAOKA.
Vpasuenus sensiomes eunepbonuveckumu. s HUX NOCMPOEHbl XAPAKMEPUCMUKYU U COOMHOUweHus Ha Hux. [lanee
VDAGHEHUs 3aNUCAHbL 8 MEPMUHAX UHBapuanmos Pumana. Jis nocmpoennvlx ypagruenull Haudenvl 3aKOHbl COXPAHEHUs!
6 cayuae, K020a COXPAHSIOWUUCS TMOK 3A6UCUM MOIbKO OM UCKOMbIX (yHKyull. B pesyromame nonyuena cucmema
JIUHEUHbIX YPAGHEHUTI ¢ KOIDPUYUEHMAaAMU, 3a8UCAUUMU MOTLKO OM UCKOMbIX (yHryutl. Tlocmpoenue 3aKkoHo8 coxpa-
HeHUsl CBe0eHO K peueHulo Kpaegol 3a0auu 07s uzeecmmuvlx ypasuenuil Junepa—Ilyaccona—lapoy. Oma 3a0aua peutena
¢ nomowwio Gynxyutl Pumana. 3axonsl coxpanenuss no360aulU HAUmu KOOPOUHAMbL MOYEK nepecedeHuss XapaxKme-
PUCMUK, a4 3HAYUM, U peuums NOCMAGLeHHYIo 3adauy. B 3axniouenue paccmompen ciyuail, koeda 00Ha u3 Xapaxmepu-
CmMuK nepecexaem JUHUIO, HA KOMOPOU 3a0aHbl HAYANbHLIE YCa08us. B smom ciyyae, kax uzsecmmo, 3adaua Kowu
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pewena bvimb He modicem. Dmo npueodum K npouedype, Komopast ¢ NOMOUWblo 3dKOHO6 COXPAHEHUs N0360Jislem 6blsic-
HUmMb 60npoc o paspeuumocmu 3a0auu Kowu. Ona ceooumcs x PEUEHUIO HECNOINHCHO2O0 UHMESPANTbHO2O YPABHEHUS

MemoOOM NOCIe008AMENbHBIX NPUOTIUNCEHUIL.

Knrouesvie crosa: 3axonwl COXpAaHeHUsl, 60J1IHA HACPY3KU, ynpyeo—nnacmuuecxud CMEPIHCEHD, 3a0aua Kowu.

Doi: 10.31772/2587-6066-2018-19-2-227-232

Introduction. Conservation laws, in relation to the
differential equations, were published in Emma Neter's
article [1] more than 100 years ago. She established the
general principle connecting symmetry groups and con-
servation laws for the differential equations deduced from
the variation principle. For more than 70 years all results
in this field were based on this article. More general con-
cepts allowing to calculate conservation laws for any sys-
tems of the differential equations appeared in A.M. Vino-
gradov's works [2; 3]. For a rather long time conservation
laws occurred in literature as purely mathematical result,
far from applications. In the works [4—6] it was shown
how conservation laws can be used for the solution of
Cauchy and Riemann problems and also accurate solu-
tions of these tasks were made.

Later the method of conservation laws was applied to
solution of free-boundary problem: elastic plasticity tasks
[7-10]. For the first time, a special case of the task of the
wave distribution, which is solved by means of conserva-
tion laws, is constructed in work [11; 12]. In this work
more general case is considered and also condition under
which there is a solution of Cauchy problem is formu-
lated.

Derivations of the main equations

1. We will consider the process of plastic deformations
propagation in a semi-infinite elastic plastic rod caused by

dynamic loading time, p(¢) applied to the end of the rod,
which is not decreasing in (i. e. dp/dt>0).

We shall find a solution in the Langrangian coordinate
system: we will take a rod axis for the axisx, we will
choose the origin of coordinates x =0 on the left end of
the rod. Suppose that during deformation there is no lat-
eral bulging of the rod and that the influence of transverse
deformations of the rod on the process of propagation of
longitudinal waves is negligible. Let us consider small
deformations of the rod and assume that the rod density in
the course of deformation does not change. The only
component of tension tensor, other than zero, will be
o =0c other than zero components of a tensor of defor-

mations willbe ¢, =¢ and ¢ , =ve.

In this case, motion equation exclusive of massive ex-
ternal forces is as follows [13]:
ov 0Joc
P—=""> (1)
ot Ox
where 6 =0 _ — component of the stress tensor; v — par-
ticles velocity along the axis Ox, p — density.
Since density is constant, without generality loss we
further assume that p=1.
Accepting the defining relation of the deformation
plasticity theory (for the uniaxial stress) as follows
c =0(g). 2)
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Supposing c(¢) is a steadily increasing along & func-
tion (fig. 1) and for all ¢ derivative do/de is a steadily
decreasing function (i. e. d’c/d’e<0).
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Fig, 1. The process of propagation of plastic deformations
in a semi-infinite elastoplastic rod

Puc. 1. Iporuecc pacnpocTpaHeHHs IIIACTUYECKHUX AehOopManuii
B TOJIyOECKOHEYHOM YNPYTO-TIIACTUIECKOM CTEPHKHE

For tensions 6 <o, (o, is tensile yield) dependence

o(g), according to Hook’s law, is linear:
c=FEeg, 3)

where E is elasticity modulus (Young’s modulus).
Wherein the values of Young’s modulus E have been
sorted out as to under 6 =c, dependence (3) is continu-

ous.
From the equation of through flow in case of minor
deformations we obtain the following formula
de dv
== 4)
dt dx
Taking into account the dependence o =o(g) under
load and introducing notation

)00
a (G)_ags (5)

where do/de is the rate of change to the curve o(e);

a is a constant, 0<a<1; a’(c)=0c"" velocity of longi-
tudinal waves propagation in the rod, we have

de _de 0o 1 0o

dt do ot d(o) ot

(6)

Placing the relation (4) in (6), we obtain the system of
two equations of partial derivatives of the first order [13]:
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dv_do  »_ 1 &
dt dx’ & a’(o)ot’

(7

For two functions v(x,t),c(x,?).
In this equation a(e) is the velocity of longitudinal

waves propagation in the rod.

Since the velocity of longitudinal waves propagation
generally is the tension function, then, equation system
(7) is the system of quasilinear equations with partial de-
rivatives of the first order of hyperbolic type. For it we
will determine characteristics and relations under charac-
teristics.

Characteristics of equation system (7) are determined
by integrating of differential equations’ characteristics:

dx =Fa(o)dt. ()

These equations generally cannot be integrated in
plain (x,t) before the problem has been solved since a is

the tension function o(x,?) .
Along characteristics dx =Fa(c)dt the following re-
lations are made

1

a(o)

dvF——do=0. ©)

These relations are called differential equations of
characteristics in hodograph plane (o,v). After integrat-

ing we obtain

v:i]z do,
0

o
a(o))

+C,, npu dx =Fa(c)dt.

(10)

We will now consider the simplest case of load waves
propagation in homogeneous half-infinite rod, which at
the initial moment was in nonperturbed state.

We will consider the equation solution (7) under the
given initial conditions (Cauchy conditions):

v(x,0) = v(x), (1)
and boundary condition
G(Os ZL) = _p(t)a (12)

where, to ensure the load process there must be p'(¢) >0 .

(p(t)>0), dx=7Fa(oc)dt.

Conditions (11)—(12) mean that at the initial moment
the rod is in the deformed and dormant state. Meeting the
initial conditions correlates with Cauchy problem solution
in the domain (fig. 2), limited by axis x and positive char-
acteristics ¢sQ.

2. For simplicity we will consider the following asser-
tions for function (2)

o=FEe, under c<o_,
(13)
1
o(e)=—¢e”, under 0 <a <1 dx=7Fa(o)dt.
o}
General case is considered similarly.
For the continuity of function o(¢) at point & we

suppose E = ls?"l.
a
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In this case the plane xOt splits into two domains:
elastic bounded by axes x and direct # P and plastic do-
main, placed above the line 7 P. It should be noted that
the equation of this line is as follows: x=gq,(t-t,),
where ¢, time point, when o achieves the yield stress o,

(fig. 2). In the plastic domain we have a linear problem
which can be easily solved applying traditional methods.
Hence, we will seek for the Cauchy problem solution for
equations (7) only in the plastic domain.

ts

Fig. 2. Characteristics of equations (14)

Puc. 2. Xapaxrepuctuku ypaBHeHui (14)

Problem definition. To find the value of function
v(x,t),c(x,t) at the point M (x,,,¢,) if the values of the
required function along ¢ P and ¢, are known. Here
points O(0,7,),P(x,,t,) are considered as intersection
points of the correspondent characteristics with the axis
Ot and the line ¢ P, drawn from the point M . Accord-
ing to (13) the equations (7)—(10) will be as follows

ﬂzﬂ, a_stzﬁ@’ B:a_—l. (14)
dt dx Ot Ox o

Characteristics of the present equation system accord-
ing to (8) are as follows
dx =3c"dt.
Relations on characteristics (9), after integration
will be

G—BH

2 —c,,
B+l P

VF

where C), C, are random constants.
We will introduce Riemann’s invariants under the

—p+1 —B+
formula §=v+ ,MN=v— , then the system
s —B+1 " —B+1 Y
(14) will be as follows
9% p%_y M pM_y, (15)
ot Ox ot ox
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Employment of conservation laws for equations
describing the wave load in the elastic plastic rod.
Conservation laws for the equation system (15) is founded
as follows [5]

0,A+0 B =0,
0 0
—AE,N)+—B(E,n) =
5 A& +=-BEm)
= GBa_AJ,_a_B %4_ _Gﬁa_A+a_B a_nz()
og 0& )ox on on)ox
From here we obtain the equation to determine A
and B
GBa—A+a—B=O, -6 —+—=0.
5 05 on on

Excluding from (16) function B we obtain the equa-
tion to determine function 4 :

8 0% A (GA aAj 1

504 OB 16)

B(-p+1)agon (a5 on)e-n
We will introduce in this equation the notation
8 =
—=0 .
B(-B+1)
Poisson—Darboux equation [14]:

74 o (GA GAJ_O

As a result we obtain the Euler—

deon &-mlde an
To determine function B we get a similar equation
52_B+L[6_B _6_3] _
agon &-m\ag an

amn

Applying (15) we will write the integral about closed
path t OMP

(18)

We will split this integral into four integrals taken
about closed paths ¢t P, PM, MQ, Ot .

About closed paths ¢ P and Ot integrals can be cal-

gSAdx — Bdt =0.

culated after determining 4, B inclusive initial and

boundary conditions (11), (12).

We will determine 4 and B so that along the charac-
teristics PM and MQ integrals transform to zero. We
have

[ 4dxc—Bdt= [ (~c*4-B)dt.
PM PM
We will calculate the obtained integral in parts
M
[ (-o"4-B)dt=t(-c"4 —B)‘ ~ [ d(-c"4-B),
0
PM M

Similarly along MQ we obtain
[ Adx—Bdr=1(c*4-B)" - [ 1d(c*4-B).
MO M MO

Finally obtain
d(cBAJrB)‘ =0, d(cBA—B)‘ = 0.

&=&( =const n="m(=const
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From the first relation we have
g1 p b B s
Bo EG A+oc 41+Bn=—EAc +24,=0

along £=§.
o2
(&-m)(-B+1)
equation for A along §=§,

p
—B+1

Since © we obtain differential

A+4,(&-n)=0.

By its integrating we obtain

B R
2([3—1)ln(n &)=InA4+InC,,

or

i
A=Cin—& 26D , B=-c"4-1, along £=¢,.  (19)

Similarly along n=m, we have
(L os) yioPu B =
Bo EG +0"4, - B, =
=Bo’" %AGB +20"4. =0.
Therefore along m=n,

B
A=C,|n, —E6D , B=c"4. (20)

Matching conditions (19) and (20) at the point £=¢,
n=n, gives C, =C,.

Thus, for the final problem solution we have to solve
the equation (17) with the restricted conditions (19) and
(20).

To solve this problem Riemann function is used. It
looks as follows:

W(‘ioano;‘i’n)z
:[ao_no) (gO_nOJ F((D,OJ;U)’ (2D

E.ao_n &_no

(E-m)(& M)
(‘t-_vo _n)(‘i—no)’
polynomial of the second raw.
Suppose N is a random point from the ¢ PMQ do-
main (fig. 3). We will connect the point N with MP
characteristics NK —§,,, and with QM characteristics

where 1-¢= F is hypergeometric

NL —m,. As aresult the value of function A at the point
N will equal

A(N)= A(M)W(M)+KJ;4 w(—ﬁmi]dm

Lt
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where function w is determined by the formula (21).
+ formula will define the function B values in point N

(_

Bo

(€-m)

+B§Jd§+

Fig. 3. The solution of the Cauchy problem

Puc. 3. Pemenne 3agaun Kommn

Now from (18), taking into account the obtained rela-
tions we have

gS Adx— Bdt =
t‘SPMQ

=  Adx—Bdt+ § Adx—Bdt+1,~1,=0.

t‘SQ PtS
Hence, we have

t,—t, = ¢ Bdt —§ Adx—Bdt .

t,0 Pt

Similar calculations help to find coordinates of x,,

%, =%, = § Bdt — Adx— B .
1,0 P,

Later, according to values v,c at points Q0 and P
knowing the relations along characteristics PM
and OM , we will find values v(x,,,t,) and o(x,,.z, ).

In conclusion, we will consider the question of
Cauchy problem solvability which always arise when
solving the systems of non-linear differential equations.
As it is known, Cauchy problem is solvable if each char-
acteristics crosses the lines Qf, #,P only once [15]. Ap-
parently, this question can as well be solved knowing the
conservation laws. Suppose that characteristics QM cross
the line P at the point M (fig. 4). Then we get the con-
servation law

q‘> Adx— Bdt = 0. (22)

1sMQ

Suppose as before

_B
A=Cn-& 260 , B=—-c"4-1, along £=¢,. (23)
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Then, from (22) we obtain identical to the above

t,—t, = ¢ Bdt —§ Adx—Bdt .

t,0 Pt

24

If the equation is (24) solvable, we can find the inter-
section point of the characteristic and the initial curve. In
this case the Cauchy problem is unsolvable. Equation (24)
can be easily solved applying the method of successive
approximations.

ts

Fig. 4. Finding the intersection point of the characteristic
and the curve on which the initial conditions are given

Puc. 4. HaxoxeHne TOUKU IepeceueHns: XapaKTepUCTUKU
U KPUBOM, Ha KOTOPOH 3aJaHbl HAYaJIbHBIC YCIOBUS

Conclusion. Knowledge of conservation laws allowed
to find coordinates of characteristics’ points of intersec-
tion, and therefore to solve the problem discussed in the
article. The case when one of characteristics crosses the
line where initial conditions are set is considered. In this
case, as we know, Cauchy problem cannot be solved. It
leads to the procedure which, by means of conservation
laws, allows to settle the issue of Cauchy problem solv-
ability.
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