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EFFICIENT METHOD OF CALCULATING LAYERED CONICAL SHELLS
WITH LAGRANGE MULTIGRID ELEMENTS USE
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The increased requirements for strength calculations of space-rocket and aviation technology designs cause the
need for the development and improvement of approximate solutions for elasticity theory tasks with small error algo-
rithms.

The article considers the numerical method of calculating elastic layered conical shells (LCS) of various thickness
under static loading which are widely used in space-rocket technology. The suggested method uses three-dimensional
curvilinear Lagrange multigrid finite elements (MGFE). A system of nested grids is used for MGFE constructing. The
fine grid is generated by the basic partition that takes into account MGFE heterogeneous structure. The basic partition
dimensionality is reduced with the help of large grids which leads to the system of linear algebraic equations of the
small dimension finite elements method. Three-dimensional elasticity theory equations use allows to apply MGFE for
calculating LCS of any thickness. Displacements in MGFE are approximated by Lagrange polynomials which, in con-
trast to power polynomials, gives the opportunity to design big size three-dimensional thin shell elements. Lagrange
polynomials nodes coincide in shell thickness with the nodes of MGFE large grids which lie on the shared borders of
multi-module layers.

The efficiency of the presented method is that the suggested MGFE generate small dimension discrete models that
require 10°~10 times less electronic computing machine (ECM) memory than basic models. The suggested law of dis-
crete models grinding generates uniform and fast convergence of numerical solutions which allows to make solutions
with the specified (small) error.

Examples of LCS calculating (whole ones as well as with holes) under axisymmetric and local loading are given.
Comparative analysis of solutions obtained with the help of MGFE, single-grid finite elements and the program com-
plex ANSYS has been conducted.

Keywords: elasticity, conical shell, composites, Lagrange polynomials, multigrid finite elements.

3®PEKTUBHBIA METO/ PACYETA CJIOUCTBIX KOHUUYECKHUX OBOJIOYEK
C IPUMEHEHUEM JIATPAHKEBBIX MHOI'OCETOYHBIX 2JIEMEHTOB
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THogviuwennvie mpebosanus K HPOYHOCHHbLIM PACHEMaAM KOHCMPYKYUL PAKEMHO-KOCMUYECKOU U ABUAYUOHHOU
MEXHUKU BbI3bIBAIOM HE0OX00UMOCHb PA3PAOOMKU U COBEPUIECHCTNBOBAHUS AICOPUNMOB NPUOTUNCEHHBIX peleHUll 3a-
0au meopuu ynpy2ocmu ¢ Maiot nozpeunocmaylio.

Paccmampusaemes yucrennvlii Mmemoo paciema ynpyeux cioucmslx xouuyeckux obonouex (CKO) paznuunoul
MOIWUHBL NPU CMAMUYECKOM HASPYHCEHUU, KOMOPble WUPOKO NPUMEHSIOMCS 8 DAKEMHO-KOCMUYECKOU MeXHUKe.
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Cubupcrkuii scypnan nayku u mexnonoauu. Tom 19, Ne 3

B npeonazaemom memoode ucCnonb3ylOmcs mpexmephvle KpPUBOIUHEUHbIe JIA2PAHIICesble MHO20CEMOYHble KOHEYHble
anemenmol (MuKD). [Ipu nocmpoenuu MuKD ucnons3yemcs cucmema 610d4ceHuvix cemok. Menkas cemxa nopodcoena
06a306biM pazbueHuem, Komopoe yuumsvieaem HeooHopooHylo cmpykmypy MuK3. C nomowpio KpynHuix cemox noHu-
JHCACTCSL PA3MEPHOCMb DA306020 PA3OUEHUs, YO NPUBOOUM K CUCIEMe TUHEUHbIX d2eOpauieckux ypasHeHul Memo-
0a KOHEYHbIX INEeMEHMO8 MAnol pasmepHocmu. Hcnonvsosanue ypasnenuti mpexmephou meopuu ynpy2ocmu no360si-
em npumenamo MuKD ons pacuema CKO nmobot monwunvl. Ilepemewenus 6 MuK3 annpoxcumupyromes noiuHomamu
Jlacpandica, umo 6 omauuue om CmMeneHHvix NOIUHOMOE 0aem 603MONCHOCHIL NPOEKMUPOBAMb MpexmMepHble MOHKUe
060104euHble INeMeHmbl DOTLULUX PA3MePOs. V3avl nonunomos Jlazpansica no moawune 060104KU COGNAOAIOM C Y31d-
Mu KpynHvix cemox MuKD, komopbie nedcam Ha 06uux epanuyax pasHoMoOyIbHbIX COes.

DppexmusnHocms U3N0ACEHHO20 MEMOOA 3AKTIOYAECI 8 MOM, Ymo npediazaemvie MuKD nopoaicoarom ouckpem-
Hble MoOenu Manoti pazmeprocmu, Ons komopwix mpebyemes 6 10°—107 pas menvie o6vema namamu IBM, uem ons
6a306vix modeneil. IIpednoscennslil 3aKOH UMeNbYeHUsT OUCKDEMHBIX MOOeael NOPoICOaem paHOMEPHYIO U ObICIPYIO
CXOOUMOCIb YUCTEHHBIX PeUleHUll, YUMo NO360em CIPOUMb peuleHust ¢ 3a0aHHOU (MAI0) NOSPEUWHOCbIO.

Ilpusedenvr npumepuvl pacuemos CKO (yenvhvix u ¢ omeepcmuamu) npu 0CecUMMEmpuyHoOM U 10KATbHOM HA2py-
JrceHusx. Buinonnen cpaenumenvuvii anaiuz pewieHuil, nOIyyenHvlx ¢ nomowjplo MuK3, oonocemounvix KoHeyHbix
271eMenmos u npoepammnozo komniexca ANSYS.

Knroueswvie cnosa: ynpyasocnib, KOHU4YeCcKas 060.710‘{Ka, KOMNno3umusvle mamepuansl, NOJIUHOMbL ﬂazpaHofca, MHO2O-

CcemoyvHble KOHeYHble dJIeMEeHmbl.

Introduction. The layered conical shells (LCS) are
widely applied in the space-rocket and aircraft technol-
ogy. Unlike cylindrical shells, LCS geometrical and stiff-
ness properties depend on axial coordinate that creates
great difficulties during analytical and numerical research
of the stress strained state (SSS) of such shells..

Since during shells numerical calculations there is no
unified approach suitable for the entire range of shell
constructions in use, further research in the field of shells
computing mechanics is being continued now. In recent
years new numerical methods for LCS calculation have
been developing and the existing methods have been
improving. The method of differential quadratures
developed for the solution of the linear and non-linear
equations in partial derivatives [1] is applied to the LCS
analysis with the equations of the three-dimensional
elastic theory use in conic coordinates [2]. In works [3-5]
the method of reference surfaces which is used for
calculation of multilayer shells and plates is offered for
homogeneous and layered shells in a spatial setting
calculation. Movements in shell thickness are
approximated by means of Lagrange polynomials, and
movements in reference surfaces are set by functions
which meet boundary conditions. For calculation of
layered conical and cylindrical shells the method of
discrete singular convolution is used [6]. At the same time
only thin shells which deformation submits to Kirkhgofa-
Lyava kinematic hypothesis are considered. The method
of finite element (MFE) is the most widespread numerical
method when calculating shells. The review of works on
calculation of composite shells by means of MFE is
provided in [7]. Various options of finite elements (FE)
are applied to LCS calculation. For example, in work [8] a
curvilinear 4-node FE with 20 degrees of freedom for the
bearing layers of a 3-layer shell is used, and a filler
interlayer is considered in the elastic theory three-
dimensional setting. In work [9] the layered conical
structures of a shell for bends with the use of
isoparametric FE and high order displacement
deformation models are analysed.

The increased requirements to modern shell construc-
tions cause the necessity of algorithms of approximate
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solutions tasks of the elastic theory with the given small
error development and improvement. It is difficult to ap-
ply the known approaches from the theory of materials
strength, or the two-dimensional elastic theory based on
the simplifying hypotheses that often leads to a bigger
error of the achieved results to obtain such solutions. In
this regard there is a need for the development of such FE
in which the deformation of a composite shell is consid-
ered in three-dimensional setting taking into account its
structure without simplifying kinematic and static hy-
potheses introduction. In works [10; 11] the computa-
tional method of composite circular cylindrical shells in a
three-dimensional setting with application of multigrid FE
(MGFE) in which movements are approximated by means
of Lagrange polynomials of various orders is offered.

In this work the numerical computational method of
LCS of various form and thickness at the arbitrary static
loading in which three-dimensional curvilinear shell type
Lagrange MGFE are used is described. The characteristic
feature of the MGFE constructing offered procedure is
that Lagrange polynomials nodes coincide in shell thick-
ness with MGFE large grids nodes lying on the common
borders of multi-module layers. The offered method pro-
vides the uniform and fast convergence of approximate
solutions that allows to make solutions with the specified
(small) error. The effectiveness of the offered MGFE is
that they generate discrete models which dimension is
several orders less than dimensions of basic models. Ex-
amples of calculations are given.

Construction of single-grid FE for conical shell
basic model. We will briefly consider the procedure of
constructing curvilinear homogeneous single-grid FE
(SGFE) construction which create a conic shell basic

discrete model on the example of FE V' of the 1st order

(fig. 1). The procedure of SGFE construction for cylindri-
cal shells at approximation of fields of movements by
degree polynomials is explicitly explained in work [12].
Let us consider that FE order is defined by order of a
degree polynomial or a Lagrange polynomial constructed
on its nodal grid, and the superscript in the symbol
corresponds to the nodal grids quantity in an element.
SGFE represents a part of the conical shell with the
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reference sizes A} (h))xh" x h" located in a local

Cartesian  coordinate  systemO,x,y,z,. In fig. 1

designations are introduced: z,0,y, a plane of
symmetry, cd — a longitudinal axis of a conical shell, a—

— thickness, h;,l)f length
(height), h%)=aR, (i=12), R,R,-
bottom face at FE end faces, — shell conicity angle,

FE V" corner angle, A"

radiuses of a shell

nodes in the drawing are noted by points. Movements,
deformations and tension in SGFE V" satisfy to the
equations of the three-dimensional elasticity theory,
recorded in the local Cartesian coordinate system O,x,y,z, .

Taking into account that FE reference sizes are small
for minor basic splits, we use 1st order polynomials
M 0 M

b

for approximation of movements functions u ,W
of element V'
u v W =a +ax +ay, +a,z +agxy, +
+aeZ X, + Ay, Y, + A%, Y1 2, (1)

The total potential energy of FE 7" in a matrix form
is the following [13]

H(l) (6(1)) :%J'(ﬁ(l))T (B(l))TDB(l)ﬁ(l)dV _
4
()]

~[@y N Y FVay — [ (N

Vv

)'qVds,  (2)

where B, D — matrixes of deformations and elastic
modules V" ; F, q" — vectors of volume and surface

forces; 8", N — a vector of nodal unknowns and a

matrix of form functions; ¥, § — FE V" area and sur-
face; T — transposition.

From oI (8") /88" =0 condition we find formulas

for calculation of a stiffness matrix K®and a nodal

forces vector P in the local coordinate frame O,x,y,z,

K"=[ B8") DB aV,

v

P(l) _ I(N(l))TF(l)dV—J(N(l))Tq(l)dS ) (3)
14 K

Let us note that the continuity of movements on FE

curvilinear borders V" (fig. 1) is broken. However, as it
is well-known [14], realization of continuity of
movements on borders of curvilinear FE is not a
necessary condition for convergence of numerical solu-
tions to precise and is checked in each case. The carried
out numerical experiments show that at curvilinear

homogeneous FE V' reference sizes decrease numerical
solutions converge to precise.

In (3) we define integrals numerically. Let us present

area V by elementary curvilinear subareas vtovy,

. N n

i e. V=Un:1V , N — total number of subareas. For
V"area let us introduce designations: Az=h"/m,,
Ay =h}:,” /m,, Aoo=o/m,, Ao — corner angle of area

n.,
vty omy,

N =mm,m, .

m,, m,; — the given integral numbers;

The form of area V" is a part of the truncated conical

shell with thickness /4 (Az=h/cosp), height Ay and
corner angle Ao . Let us note that areas V" (irrespective
of their sizes) geometrically precisely represent FE
V® curvilinear area. Let x/', y/', z/ — area V" gravity
centre coordinates in the local coordinate system
Ox,y,z,. The volume AV, of area V" is defined by the

approximate formula AV, =AzAyAaR,, where R, —

distance from a cone axis to an area V" gravity centre.
Matrix B, which elements are calculated for values

of coordinates x;, y', z', let us designate

B (x!,y/,2') . We approximately find a stiffness matrix

K" by virtue to (3) on a formula

N
K"=% (BYG 0,20 DBV (x, ), 2)AV, . (4)

n=1

]

h'Y

Fig. 1. Homogeneous FE V" (¥") (a), the cross section of the FE plane z0,y, (b)

Puc. 1. Omnopomusiit KD 7V (V1) (a), cevenne KD mnockoctsio z,0,y, (6)
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The vector of nodal forces P of element ¥ is also
defined numerically.

The differences of the offered curvilinear SGFE ')
construction procedure from isoparametric FE construc-
tion [13] are as follows. Isoparametric FE use is proved
by the necessity of FE stiffness matrix calculation
simplification. Curvilinear coordinates are transformed to
rectilinear (Cartesian) coordinates, and curvilinear FE is
transformed in rectilinear (two — three-dimensional) by
the equivalent transformations. Herewith stiffness matrix
numerical calculation assumes the known quadrature
formulas use [14]. Transformation of curvilinear
coordinates demands calculation of a straight line and an
inverse Jacobi matrix in each calculated point at a
numerical integration.

The offered option of SGFE stiffness matrix
calculation (3), (4) is simpler and has the following
advantages:

— curvilinear FE 7" is projected in the local three-
dimensional Cartesian coordinate system and therefore
there is no need to define a straight line and an inverse
Jacobi matrix [13; 14] that is required when using
isoparametric FE;

— when constructing approximating displacement

functions u" , v, W FE V" we use the known degree

polynomials of the 1st, 2nd and 3rd orders [13] which are
recorded in local Cartesian coordinate systems which do
not contain FE rigid displacement. In case of local curvi-
linear coordinate frames at constructing curvilinear shell
FE application there is a need to construct such approxi-
mating functions of movements in which FE rigid dis-
placements are excluded that is connected with particular
difficulties [15];

— the numerical integration is performed according to

the simplest formula when in each partial area V" the
value of function is chosen constant and equal to the value
of function in a gravity centre of this area. At decrease of

the partial areas sizes the value of a FE V" stiffness ma-
trix in a limit converges to precise value.
Procedures of the 2nd, 3rd order SGFE construction

which geometrically are similar to the FE V" form
(fig. 1) are similar to the above described.

Further we will consider the construction of MGFE
with ideal connections between the heterogeneous
structure  components in case of movements
approximation by Lagrange polynomials on the example
of three-grid FE (TGFE) V. Such element consists
of M two-grid FE (TGFE) V*, (m =1,...,M ), each one
is composed from N SGFE
VO (n=1,.,N).

Construction of two-grid FE for a conical shell. Let
us consider the procedure of multilayer TGFE for a coni-
cal shell construction on the example of tree-layer TGFE

homogeneous

V® of the 3rd order in its thickness which is used when
calculating a 3-layer conical shell in thickness /# with the

reference sizes hiﬁ)(hi?z))xh_iz)xh located in the local

Cartesian coordinate system O,x,y,z, (fig. 2). In case
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of calculating a k-layer conical shell it is necessary to use
k- layer Lagrange TGFE of a k-order in thickness.

Fig. 2. Three-Layer TGFEV® (V)

Puc. 2. Tpexcrnoitnpiit KD V2 (V9

SGFE nodes V"', n=1,..., N, make a fine curvilinear

grid on which TGFE large grid is constructed. Let us note
that large grid nodes on shell thickness lie on the common
borders of TGFE multi-layers which generally have vari-
ous thicknesses. Lagrange polynomials construction in the
local curvilinear coordinate frame O,&ng on TGFE large
grid for cylindrical shells is considered in [10; 11] and can
be applied to LCS calculation. The basic function N, for

node P(i, j,k) (fig. 2) in curvilinear coordinates a,mn,{
iS Nq'jk ((X,, T]aC) = Li (G’)LJ (n)Lk (C) b Where Li ((X,) ’ Lj (n) ’
L, () — Lagrange polynomials:

ny

- a—a, n—-nm,
L= ] ot Lm=]] o
- n=lLnzj 'l —

L©= ] 25 . )

n=ln#k ok _C.!n

2)

Using designations u>,v?® ,w® N® for move-

ments and form functions of TGFE i node in the coordi-

nate frame O,x,y,z, , movements functions u‘”,v*,w®
can be given as [13]
) _ N )@ 0 _S yo o
u :ZNi u; , v =ZN,. v,
i=1 i=1
n()
@) _ @0
w _ZN;' Wi s Ty =iy . (6)
i=1

We will record the functional of the total potential
energy T for basic TGFE V' split as follows
H(Z) — i(l (8(1))TK(1) 6(1) _ (8(1))T P(l)) (7)
n=1
where K" — stiffness matrix, P, 8 — vectors of
nodal forces and movements of SGFE V"’ which corre-

spond to the coordinate frame O,x,y,z, .
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The use of small splits generates TGFE with a large
number of nodal unknowns. For decrease in TGFE
dimension the following procedure is used. By means of
functions (6) we present the vector of nodal movements

8" of SGFE V", n=1,...,N through the vector of nodal

movements 8% of TGFEV® . As a result, we receive
equality

80 = AP5 ®)

where A'” — a rectangular matrix, n=1,..., N .
Substituting (8) in (7) and, following the principle of
the total potential energy minimum, i. e.
o®%) /08 =0, for TGFE V® we get the ratio
K?8® =P defining its an equilibrium state where
N N

K=Y (AP K AP PP =3 AP PN, ()

n=1 n=1

K® - stiffness matrix, P® — vector of nodal forces
TGFE V.
Procedures of constructing composite Lagrange TGFE

of p — order construction, geometrically similar to TGFE

y® (fig. 2), with application of Lagrange polynoms
of p-order, are similar to the considered procedure.

The calculations show that at increase in dimensions
of TGFE basic splits time expenditure on construction of
matrixes K® and P according to formulas (9)
significantly increases. In this case it is expedient to apply
ThrGFE which constraction requires less time expenditure
and which generate shells discrete models of smaller
dimension, than TGFE.

Construction of three-grid FE for a conical shell.
We will consider the procedure of multilayer ThrGFE for
a conical shell construction we will consider on the

example of 3-layer ThrGFE V' of the 3rd order in its
thickness with the reference sizes hfl)(hfz))th)xh,

disposed in the local Cartesian coordinate system
O,x,y,z,. ThrGFE has the form similar to TGFE shown
in fig. 2. For ThrGFE the order of Lagrange polynomials
on coordinates x,,y, can be arbitrary, different from the
polynomials order on these coordinates in TGFE. ThrGFE
has the 3rd order in its thickness / (coordinate z,) which
is used when calculating 3-layer conical shells. In case of
a m-layer conical shell calculation it is necessary to use a
m-layer Lagrange ThrGFE of m order in thickness.

The ThrGFE area consists of M TGFE V?,
m=1,...,M which geometrically precisely represent the
ThrGFE area. The TGFE nodes, included in ThrGFE,
generate a curvilinear grid on which a ThrGFE large grid
is being constructed. Let us note that ThrGFE large grid
nodes, as well as in case of TGFE lie on the common
borders of multi-layers which generally have various
thickness. The total potential energy II® of ThrGFE

V@ is represented by
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o =3 ey K 62 - 62 ),

m=1

(10)

K(Z)

m 2

where 8'” — a nodal movements vector; p® -
a stiffness matrix and a nodal forces vector TGFE V”,
which correspond to the coordinate frame O;x,y;z;,
m=1,...,.M .

Movements functions u®,v® w® ThrGFE V©®,

constructed on a large grid by means of Lagrange
polynomials, we will present as

20 20
3) _ 3),,(3) (3) _ (3),,3)
u—EN,.ul., v-EN,vl.,
i=1 i=1

Do
3 3 3
WP =3 NI,

i=1

where u® D NO 4@ O WO NO

i i

(11

— move-
ments and an i node form function of a ThrGFE large
grid in the coordinate frame O,x,y,z;; p;,p,,Ps
ThrGFE Lagrange polynomials orders on coordinates
X3,V3,235 Py = P1P2Ps3-

For decrease in number of ThrGFE nodal unknowns
the vector of FE ¥” nodal movements 8" by means of

(11) we present through the FE 7 vector of nodal

movements 8 . As a result, we obtain equality

B AL (12

where AS) — a rectangular matrix, m=1,...M .
Substituting (12) in (10) and, minimizing a functional
1® on movements 8, for ThrGFE V® we receive

a matrix ratio K®8® =P® which corresponds to its
equilibrium state, where

KO = A0V KD AY PV =Y OV P, (13)

m=1 m=1

where K@, P® — a stiffness matrix and a nodal forces
vector of ThrGFE V' .

Remark 1. The dimension of a vector 8% (i. e.

dimension of ThrGFE V) does not depend on TGFE
V”EZ) total number included in ThrGFE. Therefore,

ThrGFE splitting into TGFE V\” and SGFE V" can be
arbitrarily small that allows to consider a complex hetero-

geneous structure and a form of ThrGFE V'®

Remark 2. The quantity of TGFE layers can be less
than the number of shell layers. For example, when con-
structing a 6-layer ThrGFE it is possible to use 3-layer
TGFE (fig. 2) or 2-layer TGFE. As the calculations show,
it leads to decrease in time expenditure with an insignifi-
cant change of solution error.

The calculations show that the arrangement of
ThrGFE large grid nodes on borders of multi-layers pro-
vides the uniform and fast convergence of approximate
solutions.
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Using ThrGFE, according to the procedure similar
to p. 3, we construct 4-grid FE, and k -grid FE, k>4.
Let us note that k -grid FE generate discrete models of
conical shells of smaller dimension, than (k—1) -grid FE.
The proposed method can be used for calculation of
multilayer conical shells with layers of various thickness.

Results of numerical experiments

Example 1. Let us consider a 4-layer elastic console
conical shell under the influence of external pressure g
in the Cartesian coordinate system Oxyz, y -axial
coordinate, A — thickness, L — shell length. At y=0 a

shell is rigidly restrained. At shell end faces the radiuses
of a median surface are equal to Rat y=0and r at

y=L, B
homogeneous bodies. Top and bottom layers have
thickness %/6, two internal layers —/4/3. Young’s
modules of 4 layers (starting with internal) are
respectively equal: 10E; 3E; SE; 20E, E— an elastic
module, v— Poisson’s ratio. The reference points B and
C on the external surface of the shell lie on the crossing
of the plane Oyz and transverse sections y= L/2; L. In

— cone angle. Shell layers are isotropic

calculations 1/4 part of the shell is used. Basic discrete
models of the R’ shell consist of the Ist order

homogeneous SGFE V" with the reference sizes

h(l) (h(l) )Xh(,l) ><h(l)

xn, 1 \""xn,2 zn

@O _ M @O _ M @O _ 50
B =h® i, KO =D 0, b =k /n,

xn,j x1,j yn

n=1,..5, j=12, (14)

j=1 corresponds to V" size on the circumferential

coordinate at a larger FE end face, j=2-— at a smaller
end face V" . The fine grid dimension of model R’ for
1/4 shell part is determined according to formulas

m\ =324n+1, m> =324n+1,

mi =12n+1,n=1,...,5,

(15)
where m — a grid dimension in the shell tangential direc-
tion, mf — in axial, mz — in radial.

On basic models R°

discrete models of the R, shell which consist of Lagrange
ThrGFE size 81h§_21(h§_22)x81h;}3 xhs. ThrGFE consist
O (H) X9 x .
Lagrange polynomials are used in ThrGFE, which
are defined by formulas (5) which in local coordinates
have the third order in the tangential and axial direction
and the fourth order — in radial that corresponds to quan-
tity of layers in the shell. In discrete models R, TGFE and
ThrGFE large grids nodes lie on the common borders of

heterogeneous layers in shell thickness.
The results of calculations for discrete models R, at

n=1,...,5, we project multigrid

of Lagrange TGFE with sizes

the following values of parameters are given in tab. 1:
L=hy; R=hy; r=0,6h; h=0,06h; ¢g=-0,5,;
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hy=1 m; E=1 h Pa; ¢q,=1 MPa; v=0,3; p=21,8".

Designations are introduced in tab. I:

w,=w,/(gmnE"), c,=06,/q,, tne w,, o, — the di-

mensionless normal movements and the equivalent
stresses (for the model R, reference points B and C'). We

determine stresses c: according to the 4th theory of

strenght. We get values 6_,(%), 6,,,(%) by the formu-

las
5., (%)=100% x|c, —c,_, |/c,,

o.n
%

5, (%)=100% x|w —w

w,n n

Lwn, n=2,..,5. (16)

The nature of sizesd, ,(%),0,,(%) change shows

fast convergence of stress o, and movements w, . As for
model R, the 5, (%), =0,0049,
8, 5(%)c =0,0232 5,(%), =0,0272,

855(%) =0,007 are small, from the point of view of

values

and values

engineering practice it is possible to consider that
movements  (w;), =-0,82302, (w,).=-0,3879 and

stresses (o;), =17,49340, (o,).=11,6266 in the coni-

cal shell reference points B and C are calculated with a
small error (less than 0,3 %).

The comparison of the results received by means of
ThrGFE (grid1621x1621x61), by means of SGFE
(grid163x163x13) received in the ANSYS program
complex (PC) and by means of FE for a two-dimensional
task of the elasticity theory [13] is given in tab. 2. We will
consider the numerical results received by means of two-
dimensional axisymmetric task statement [13] the most
precise within MFE. The smallest error (less than 0,04 %)
for the field of movements in the reference points B and
C is also provided by ThrGFE. For the equivalent stresses
the error is less than 1,2 % for calculation in PC ANSYS,
and less than 0,4 % when using ThrGFE. SGFE define
movements with an error less than 0,2 % and the stress
with an error about 4 % on the free end of a conical shell.
The grid size for SGFE exhausts the memory capacity
used by electronic computing machine (ECM) that limits
the possibility of constructing sequence of solutions by
means of SGFE.

The basic discrete model R{ dimension (for 1/4 part of

a shell) is 480364020 (approximately 0,48x10° of nodal
unknowns), MFE SLAE film width — 296710. The R,
multigrid model has 54300 nodal unknowns, MFE SLAE
film width is 2775. Realization of MFE for R, multigrid
model reduces the order solved by MFE SLAE in
8,8x10° times and demands in 0,96x10° times less

ECM memory capacity than for the basic model R!in

which only SGFE are used. The quantity of ThrGFE (400
ThrGFE) used for calculation in discrete model R is
14,6 times less than the quantity of FE in PC ANSYS
(5850 FE). Thus, ThrGFE use when calculating SSS

allows to save significantly ECM resources in comparison
with PC ANSYS and when using SGFE.
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Example 2. Let us consider a conical shell with geo-
metrical sizes and physical properties from example 1 in
which two identical cutouts are located symmetrically
relatively the planes Oyzand Oxy , with the length /and

a cone angle a=n/4, 4/— the length of a frustum of
a cone on the generatrix (fig. 3).

Fig. 3. Shell design scheme

Puc. 3. Pacuernast cxema 000JI09KH

Standard pressure of the distributed load g =-0,5¢,,
q, =1 MPa is enclosed on the area of the shell upper face
0,5L<y<0,75L and a cone angle of a loading area
y=mn/2 symmetrically concerning the plane Oyz. In

calculations we use a half of a shell.

In calculation the same basic discrete models and
Lagrange TGFE and ThrGFE as in example 1 are used.
The results of calculations for discrete models R,

(n=1,..,7) are given in tab. 3. The nature of values
change 3, ,(%), 6,,(%) shows fast convergence of the

equivalent tension &, and normal deflections w, .
As  for R, model  deflections

3,,7(%), =0,025, o, ,(%).=0,030 and values of stre-

ses 9 ,(%), =0,1098, 3 _,(%), =0,0178 are small, it is

values

possible to consider that movements (w;) 5 =—1,07661,
(wy)e =—1,13964 (c3), =10,01830,

(G;) 5 =0,61903 in the reference points B and C of
LCS are calculated with a small error (about 0,03 %

and  stresses

and 0,11 % respectively) that is considered to be an
acceptable result from the point of view of engineering
practice.

Comparison of these results with the results of task
calculation is carried our in PC ANSYS. The

dimensionless values of the equivalent stresses o’ and
normal movements w” in points B and C received in PC

ANSYS are ¢ =9,952, o¥=0,638 andw) =-1,091.
The relative accuracies of a deviation of movements and
stresses values in points B and C received in R, discrete
model when using ThrGFE from the results received in
PC ANSYS are less than 1,2 % for movements and less
than 3 % for stresses.

In fig. 4 distributions on an external surface of a coni-
cal shell of the dimensionless normal movements

(w :w; ) in sections y=L/2; L and the equivalent
stresses (G = G:) in sections y=0;L/2; L depending

on the parameter s" =5/ P, s— distance from an axis Oz
to a point on an external surface of a shell, P — perimeter
of a shell cross section half are shown.

Calculation of SSS is carried out by means of ThGFE
for R, model (solid line) and by means of PC ANSYS
(dashed line). In all chosen sections of the composite shell
construction it is possible to observe the coincidence of
SSS, accepted in engineering calculations, received by
means of ThGFE and PC ANSYS.

Thr basic discrete model R} dimension (for 1/2 of the
shell) is 2460017130 (approximately 2,46x10° nodal

unknowns), the width of MFE SLAE film — 578601. The
multigrid model R, has 199800 nodal unknowns, the

width of MFE SLAE film is equal to 3840. Realization of
MFE for the multigrid model R, reduces the order of the

solved MFE SLAE by 12312 times and demands
1,855x10° times less than CEM memory capacity than
for the basic model R} in which SGFE are used. The

ThGFE quantity used for calculation in discrete model R,

(240 FE) is 35 times less than FE quantity used when cal-
culating in PC ANSYS (8436 FE).

Table 1
The sequence of solutions for a 4-layer conical shell
R (W,)s 8,,,(%); (c,)5 84,0 (%)
” () 8.n(W)c (0))c 8., (%)
R, —0.82538 17.41062 -
—0.39056 11.69263
R, —0.82341 0.2392 17.46738 0.3249
—0.38867 0.4863 11.64802 0.3830
R, -0.82313 0.0340 17.48087 0.0772
—0.38817 0.1288 11.63100 0.1463
R, —0.82306 0.0085 17.48864 0.0444
—0.38799 0.0464 11.62579 0.0448
R, —0.82302 0.0049 17.49340 0.0272
—0.38790 0.0232 11.62660 0.0070
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Table2
Comparison of calculations results received in different variants of solution
The methogl w:; Wi 02 G*C
of task solutuion — —k _-c
8,,(%), 8,,(%), 8,(%0) 5 8¢ (%)c
ThrGFE —0.82302 —0.38790 17.49340 11.62660
0.0255 0.0387 0.3787 0.0119
SGFE -0.82153 —0.38751 17.38464 12.04767
0.1556 0.0619 0.2454 3.6093
PC ANSYS —-0.82329 —0.38871 17.447 11.760
0.0583 0.2476 0.1125 1.1354
[13] —0.82281 —0.38775 17.42740 11.62798
Table 3
The sequence of solutions for a 4-layer conical shell with cutouts
R, R, R, R, R, R, R R,
(w:)B —-1.07084 —1.07250 —-1.07441 —1.07539 —-1.07597 —-1.07634 -1.07661
8‘4,,,,(%)3 - 0.155 0.178 0.091 0.054 0.034 0.025
(w:)c —-1.12031 —1.13299 —1.13632 —1.13782 —1.13865 -1.13918 -1.13954
Swm (%), - 1.119 0.293 0.132 0.073 0.047 0.030
(GZ)B 9.65343 9.82601 9.92132 9.96536 9.99092 10.00730 10.01830
SM(%)B - 1.756 0.607 0.442 0.256 0.164 0.110
(GZ)C 0.69330 0.63057 0.62157 0.61965 0.61926 0.61914 0.61903
86,,1 (%) - 9.948 1.448 0.310 0.063 0.019 0.018
i i 12
w* y=L & Ra o*
0,5 ﬁ" = t‘@
9 \ =
0 IA/ \\"‘--..___ \ \4/\\
/\(:Uz k 6 \
05 r ¥=o / \\E
3
. ?'/ b4 \béh;;z
= y=L b
-1,5 0
0 0,25 0,5 0,75 5% 1 0 0,25 05 0,75 5% 1
a b

Fig. 4. Distribution of deflections w" (a) and stresses " (b) on the upper surface of the shell in cross sections:
y=L;L/2;0. ThrGFE — solid line, ANSYS— dashed line

* “ * v
Puc. 4. Pactipenenenue mporu6oB w (@) ¥ HanpsDkeHUH G (6) IO BepXHEH MOBEPXHOCTU 000IOUKU
B motiepevHbIX ceueHusx: y = L; L/ 2;0; TpKD — crutomrnas muaust, [TK ANSY'S — mrpuxoBast miuHAS

Thus, ThrFE use when calculating SSS allows to save
significantly CEM resources in comparison with PC
ANSYS and SGFE that considerably expands MFE
possibilities in multigrid simulation option.

Conclusion. In this work the numerical computational
method of elastic layered conical shells of various form
and thickness at arbitrary static loading is offered. In this
method Lagrange MGFE, at construction of which
Lagrange approximations are applied, are used. Lagrange

polynomials allow to design large size three-dimensional
MGFE. Realization of MFE for conical shells multigrid
discrete models demands several orders less ECM mem-
ory than when using SGFE, and allows to make calcula-
tion of SSS with the given small error for movements and
stresses. The given examples show high efficiency of the
proposed method of conical shells calculation using
MGFE which provide small error of solutions and save
ECM resources.
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