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Taking up about half of the development time, testing remains the most common method of software quality control 

and its disadvantage can lead to financial losses. With a systematic approach, the test suite is considered to be complete 

if it provides a certain amount of code coverage. At the moment there are a large number of systematic test generators 

aimed at finding standard errors. Such tools generate a huge number of difficult-to-read tests that require human veri-

fication which is very expensive. The method presented in this paper allows improving the readability of tests that are 

automatically generated using symbolic execution, providing a qualitative reduction in the cost of verification. Experi-

mental studies of the test generator, including this method as the final phase of the work, were conducted on 12 string 

functions from the Linux repository. The assessment of the readability of the lines contained in the optimized tests is 

comparable to the case of using words of a natural language, which has a positive effect on the process of verification 

of test results by humans. 
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Занимая около половины времени разработки, тестирование остается наиболее распространенным мето-

дом контроля качества программного обеспечения (ПО). Его недостаток может приводить к финансовым 

потерям. При систематическом подходе тестовый набор считается полным, если он обеспечивает опреде-

ленное покрытие кода. На данный момент существует большое количество систематических генераторов 

тестов, направленных на поиск стандартных ошибок. Подобные инструменты порождают огромное количе-

ство трудночитаемых тестов, обладающих высокой ценой проверки человеком. Представленный в данной 

работе метод позволяет улучшить читаемость тестов, автоматически сгенерированных при помощи сим-

вольных вычислений, и обеспечивает качественное снижение данной цены. Экспериментальные исследования 

генератора тестов, включающего данный метод в качестве заключительной фазы работы, были проведены 

на 12-строковых функциях из репозитория Linux. Оценка степени читаемости строк, содержащихся в опти-

мизированных тестах, сопоставима со случаем использования слов натурального языка, что положительно 

сказывается на процессе верификации результатов тестирования человеком. 

 

Ключевые слова: динамические символьные вычисления, модель естественного языка, проблема проверки 

тестов человеком.  

 

Introduction. On the one hand, modern software  

systems tend to be highly complicated and expensive in 

development. On the other hand, software development 

itself is a time-consuming and error-prone process. It is 

very important to find serious errors before they cause 

any damage. Thus, in order to help developers in finding 

errors some bug searching methods have been developed. 

Software testing is one of the most popular bug searching 

methods. However, it is a time-consuming task that takes 

about a half of the development time. In order to reduce 
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the time expenditures associated with testing several test 

automation techniques have been proposed.  

One of the most popular approaches to the test auto-

mation is a code-based test generation [1; 2]. Some sys-

tematic code-based test generation techniques have been 

developed for the last few decades. Two of them are: 

Search-Based Software Testing (SBST) and Dynamic 

Symbolic Execution (DSE). Any systematic test genera-

tion method relies on some sort of a code coverage  

metric. Only test data with appropriate code coverage is 

considered to be adequate. In order to provide required 

code coverage a coverage criterion needs to be defined. 

The popular coverage criteria are: instruction-coverage 

and branch-coverage. Both DSE and SBST are aimed to 

provide systematic code coverage for a target program. 

In order to generate test cases with SBST-based tool 

the goal of testing needs to be defined in terms of fitness 

(objective) function [3]. It is convenient to use a branch 

coverage criterion as a goal of testing when using SBST. 

SBST-based tools launch target programs on some ran-

dom input data. The program alternates the input data in 

an iterative way optimizing the value of the fitness func-

tion. Only when the fitness function is optimized the goal 

of testing is achieved. Final input data represents the de-

sired test case. 

DSE-based [4–6] tools maintain symbolic state in ad-

dition to the concrete (usual) state of the target program. 

During the execution of a target program it collects con-

straints on the program variables. This constraint system 

is called a path constraint or a PC. A PC represents  

an equivalence class of input data that leads the target 

program through the corresponding path. The execution 

of the target program forks on each decision point  

(for example conditional operator if-else) providing 

branch coverage. When the execution of the target pro-

gram is completed, appropriate test input data can be ob-

tained by solving the PC. 

In general, code-based test generators tend to produce 

lots of almost unreadable test data. It is hard to verify 

such unreadable test data manually. This problem is 

called the Human Oracle Cost Problem [7]. Afshan et al. 

[8] proposed a method of improving readability of test 

cases produced by SBST-based tools. They used a charac-

ter-level bigram model of a natural language to drive the 

search process toward more readable results. In order to 

do this, they added readability estimation of the target test 

data into the fitness function. 

A character-level bigram model of a natural language 

is defined in terms of ordered pairs of characters, i. e. 

bigrams. Let (ci, ci–1) be a bigram, then P (ci | ci–1) is a 

probability of co-occurrence of ci and ci–1, in the language 

corpus, where the language corpus is a large collection of 

written texts. Let also ( )1

n
P c  be a probability of belong-

ing the whole string 
1

nc of length n to the language corpus. 

The bigram model estimates probability ( )1

n
P c  as shown 

in the equation below: 

( ) ( )1 1

1

ˆ
n

n

i i

i=

P c P c | c −≈∏  

In order to compare strings of different length P̂  has 

to be normalized always. Readability estimation N is de-

fined as a normalized value of P̂  as shown in equation 

below: 

( ) ( )
1/

1 1
ˆ

n
n nN c = P c . 

 

This work proposes a new method for improving 

readability of test data generated by DSE-based tools. In 

contrast to the work of Afshan et al. [8] we do not rely on 

any kind of fitness function. The improvement process is 

performed by changing a PC after the execution of the 

target progrem. To the best of our knowledge this is the 

first readability optimization method in context of the 

DSE. 

Methods. The workflow of the proposed system in-

cludes two main stages. At the first stage, the system pro-

duces a path constraint PC, which is an abstract represen-

tation of a program state. At the second stage, the system 

optimizes readability of the PC constraining it with the 

help of a character-level bigram model. As mentioned 

above, every PC represents an equivalence class of some 

test inputs and is associated with a single program path. 

Some of those inputs might be more “readable” than the 

others. Informally speaking, the goal of the algorithm is to 

find “the most readable” input within the set of all possi-

ble inputs corresponding to the given PC.  

Example. Let us first provide an example of the read-

ability optimization process. Let us say we have a strlen 

as a target function. It takes a null-terminated string  

S = {‘a1’, a2, a3, ‘\0’} as an input, where eash ai is a sym-

bolic value and ‘\0’ is a “concrete” terminator. The initial 

state of the program is represented in figure, a. The  

optimizer concretizes S transforming it into the string 

“yes\0”. Firstly, the algorithm tries to make each ai print-

able as shown in figure, b. Secondly, it attempts to make 

all of the a-s alphabetic as shown in figure, c. Finally,  

it attempts to rearrange as in an appropriate order using 

the bigram model. Results are shown in figure, d. 

Memory graph. The optimizer operates on a memory 

graph M [9] which is an internal representation of the test 

data. Each node of M belongs to one of the following 

types: scalar (concrete or symbolic) value (a); concrete 

pointer to another node (b); array of nodes of a concrete 

length (c). Actually, every string S within M is repre-

sented as an array of scalar nodes. 

Formal definition. A pseudocode of the algorithm is 

represented in Algorithm 1. The goal of the optimizer is 

to maximize the value of readability estimation S (N) for 

every string S within M. Thus, the optimizer considers 

only strings within M. It never violates the current PC and 

never changes concrete values that PC contains. The 

optimizer is only allowed to put constraints on symbolic 

values when it is safe. At the first step, it tries to make 

each symbolic value within S to be “alphabetic” or at least 

“printable”. After that, it uses a bigram model in order to 

make the whole string being more like a “real word”. 

During this process, every single string S within M is 

transformed in the following way. 
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a        b    c   d 
 

An example of a readability optimization algorithm work 

 

Пример работы алгоритма по оптимизации читаемости 

 

1. Narrowing. At this stage the optimizer tries to in-

crease the readability of every symbolic character ai 

within S: 

– Firstly, it tries to make each ai printable constraining 

it with (’’ ≤ ai ≤ ’
~
’); 

– If it is successful, it then tries to make it alphabetical 

applying additional constraint (’A’ ≤ ai ≤ ’Z’ ∨ ’a’ ≤  

≤  ai  ≤ ’z’). 

2. Concretization. At the beginning, the optimizer fo-

cuses on the first value a1 of the current string S. If it is 

possible, it tries to “assign” a random alphabetic value to 

the a1 constraining it with (a1 = some random alphabetic 

character). At the next step, the optimizer traverses 

through all the bigrams (ai, ai+1), where i = 1…n − 1, 

within string S. Let (ai , ai+1) be the current bigram, then:  

– Firstly, the optimizer takes a concrete value of ai. 

Note that if ai is symbolic the optimizer calls the SMT-

solver for its value. 

– Secondly, if ai+1 is a symbolic value the optimizer 

tries to obtain the “most probable” value val of ai+1 in 

terms of the bigram model. If it is successful, it than at-

tempts to apply the (ai+1 = val) constraint to ai+1. 

 

Algorithm 1 Improving readability  

  1: procedure Narrowing (Memory graph M) 

  2:     for all s ∈ M do 

  3:         if s is a string of length n then 

  4:             for all i ∈ {1, 2,..., n} do 

  5:                 printable → Probe ((’ ’ ≤ ai ≤ ’
~
’))  

  6:                 if printable = true then  

  7:                     Probe (((’A’ ≤ ai ≤ ’Z’) ∨ (’a’ ≤ ai ≤ ’z’))) 

  8:                 end if  

  9:             end for  

10:         end if  

11:     end for 

12: end procedure 

13: procedure Concretization (Memory graph M)  

14:     for all s ∈ M do 

15:         if s is a string of length n then 

16:             if a1 is symbolic then 

17:                 alpha ← random alphabetic character 

18:                 Probe ((a1 = alpha)) 

19:             end if 

20:             for all i ∈ {1, 2,..., n − 1} do 

21:                 fst ← Value (ai) 

22:                 if fst is alphabetic ∧ ai+1 is symbolic then 

23:                     snd ← Next (fst)  

24:                     Probe (( ai+1 = snd)) 

25:                 end if 

26:             end for 

27:         end if  

28:     end for 

29: end procedure  

30: function Value (Scalar node a of memory graph M) 

31:     if a contains concrete value then  

32:         return value of a  

33:     else if a contains symbolic value then 

34:         Ask external SMT-solver for value of a  

35:         return value returned by SMT-solver  

36:     end if 

37: end function 

38: function Probe (Constraint e) 

39:     Push a new scope into internal stack of SMT-solver  

40:     PC’ ← PC ∧ e 

41:     if PC’ is satisfiable then 

42:         PC ← PC’ 

43:         return true 

44:     else 

45:         Pop the scope from internal stack of SMT-solver 

46:         return false 

47:     end if 

48: end function 

49: function Next (ASCII symbol a) 

50:     b ← most probable symbol in bigram (a, b) 

51:     return b 

52: end function 
 

 

Conservativeness of the algorithm. Each optimized 

test case leads a target program through the same path as 

a corresponding non-optimized version. Before applying 

new constraints to the current PC, the optimizer tries ap-

plying it in a fresh new scope of an external SMT-solver. 

If it fails, the optimizer safely pops the scope out of the 

stack rolling the PC back to its previous version. Only in 

case when the new constraint does not violate the current 

PC, the optimizer is allowed to apply it. 

Results. In order to test the proposed system we have 

implemented a tool on top of the LLVM compiler infra-

structure [10] and CVC4 [11] SMT-solver. We have also 

used a bigram model based on very large language cor-

pora [12]. Note that before starting to work with the sys-

tem a user should write a simple driver in the C-language. 
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Experimental results 
 

Function Input Coverage None Basic Bigram 

strlen [6] 5:100% – 0.08 0.10 

strnlen [6]5 6:100% – 0.08 0.10 

strcmp [6][6] 15:100% – 0.04 0.05 

strncmp [6][6]5 16:100% – 0.04 0.05 

sysfs_streq [6][6] 39:100% – 0.05 0.07 

strcpy [6][6] 35:100% – 0.08 0.10 

strncpy [6][6]5 36:100% – 0.08 0.10 

strcat [10][5] 40:100% – 0.07 0.08 

strncat [10][5]4 41:100% – 0.07 0.08 

strstr [6][3] 19:90% – 0.12 0.14 

strnstr [6][3]2 4:80% – 0.09 0.10 

strpbrk [6][6] 10:80% – 0.03 0.03 

 

 

The system has been tested on 12 string-processing 

functions from the Linux [13] repository. Each function 

takes integer values and strings as an input. Experimental 

results are represented in table. The Input column displays 

an encoded format of the input data. Here notation  

“[n]” = {a1, a2,...,an−1,’\0’} represents a null-terminated 

string of symbolic values ai; k represents some concrete 

integer. For example, strnlen “[6] 5” means that strnlen 

takes a single symbolic string of size 6 and an integer 

literal “5”. The only exception is strpbrk function that 

takes concrete string “aeouy” as its second argument. 

Code coverage estimated with gcov tool is displayed  

in column Coverage in format x:y %, where x is a number 

of generated test cases and y is a percentage of covered 

instructions. Columns None, Basic and Bigram display 

average values of readability estimation N for test data 

generated during different experiments. 

Experimental results. The results of test generation 

without optimization are displayed in column None. As 

the non-optimized data includes no alphabetic characters, 

the readability estimation is not defined in this case. The 

Basic method involves only the first, Narrowing phase of 

the optimization process. In this case, readability estima-

tion N ≈ 0.07 in average with standard deviation σ = 0.03. 

On the other hand, the Bigram method involves both, 

Narrowing and Concretization phases of the optimization. 

In case of Bigram N ≈ 0.08 in average and σ = 0.03. Thus, 

the Bigram method shows the best results in this experi-

mental study.  

Discussion. Let us discuss the experimental results  

in more details on the example of the strcpy function. 

Strcpy function takes two string arguments - buffer A and 

source B. It copies data from B to A modifying A. It then 

returns the pointer to the modified version of A repre-

sented as A’. Thus, the format of each generated test case 

is (A, B) => A’. In order to give meaning to the discus-

sion, let us suppose that the generated test cases have to 

be verified by a human. 

Each non-optimized output contains no printable char-

acters. Thus, we represent generated data as arrays  

of 8-bit integers. In this case, the real data generated  

with the help of CVC4 looks like: {1, 1, 1, 1, 1, 0},  

{1, 1, 1, 0, 0, 0} => {1, 1, 1, 0, 0, 0}. Making sense  

of this data might be confusing to anyone trying to evalu-

ate the quality of the implementation of the strcpy  

function. On the other hand, the so-colled Bigram method 

produces well-readable and less-confusing data: (“kesth”, 

“pre”) => “pre”. 

Configuring the optimizer. The optimizer can be con-

figured in many ways. If the first symbol of the string is 

not constrained, then external SMT-solver tends to return 

similar results for all strings. As a consequence, without 

randomization of the first symbol the results look like 

“athes”, “ath” => “ath” etc. Moreover, as the Bigram 

method uses the most probable values of the second char-

acters of each bigram sometimes it tends to produce  

cycles like “athesthes....” etc. In order to avoid such  

cycles, we use the same selection algorithm as the “rou-

lette wheel” method [14].  

In addition to the bigram-based improving readability 

optimization we have implemented a simple “optimizer” 

for numeric values. In fact, numeric values generated by 

SMT-solvers tend to vary in a very wide range. For ex-

ample, let us suppose we are testing some implementation 

of the quicksort algorithm. One of the generated test cases 

might look like: {22773760, 22773760, −2147483648, 

2147483584} 4 => {−2147483648, 22773760, 22773760, 

2147483584}. It is highly confusing to anyone who  

is trying to make a meaningful interpretation of such  

an unreadable test data. The optimizer incrementally tries 

to constraint each integer symbolic value within a mem-

ory graph M using Probe method from Algorithm 1.  

Let ai be a symbolic integer contained by M. At first,  

the optimizer tries to apply the constraint (−10 ≤ ai ≤ 10) 

to each ai. If it is not successful it then tries to apply 

(−100 ≤ ai ≤ 100) etc. The optimized version of the  

test case mentioned before looks like: {2, 2, −3, 5} 4 => 

{−3, 2, 2, 5}. 

Reliability. In fact, the readability estimation of strings 

of different length varies in a wide range. The value of 

“pure” readability estimation ( )P̂ S  tends to zero for very 

long strings. As a result, it is not reliable to compare the 

readability estimation of strings of different length. This 

negative effect is eliminated by normalization. We should 

further note that the goal of our research does not include 

the examination of the bigram model itself. However,  

in order to verify the readability estimation method used 

in the experimental study we tested it in isolation. We 

have tested this method using a list of Top-100 English 

words. The resulting readability estimation is 0, 10 which 

is compatible with the experimental results. Finally,  

the reliability of the experimental results achieved by any 
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code-based test generator depends on the provided code 

coverage. In the given experiments the instruction cover-

age is 95% in average and it is 100 % for 9 functions. In 

case of functions with non-100 % coverage the NULL-

returning branch is not covered. We can confidently say 

that the obtained results are reliable enough. 

Conclusions. This work introduces a new method of 

readability optimization in context of Dynamic Symbolic 

Execution based on a natural language model. This 

method has been successfully examined against 12 string-

processing functions from the Linux repository. The ex-

perimental results show that this algorithm significantly 

improves the readability of automatically-generated  

test data. The readability of the optimized test cases  

is compatible to the readability of human-written texts. 

Developers who manually verify generated test data 

would take advantage of using this method.  
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