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Taking up about half of the development time, testing remains the most common method of software quality control
and its disadvantage can lead to financial losses. With a systematic approach, the test suite is considered to be complete
if it provides a certain amount of code coverage. At the moment there are a large number of systematic test generators
aimed at finding standard errors. Such tools generate a huge number of difficult-to-read tests that require human veri-
fication which is very expensive. The method presented in this paper allows improving the readability of tests that are
automatically generated using symbolic execution, providing a qualitative reduction in the cost of verification. Experi-
mental studies of the test generator, including this method as the final phase of the work, were conducted on 12 string
functions from the Linux repository. The assessment of the readability of the lines contained in the optimized tests is
comparable to the case of using words of a natural language, which has a positive effect on the process of verification
of test results by humans.
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3anumas oxkono norosuHvL 8pemeH pazpadbomKy, mecmuposanue ocmaemcsi Haubouee pacnpoCmpaneHHbiM Memo-
00M KOHMPOIA Kauecmea npoepammuozo obecneuenus (I10). Ezo nedocmamox modicem npusooums K QUHAHCOBLIM
nomepsm. Ilpu cucmemamuyeckom nooxoode mecmosbviii HabOp cUUMaemcs NOJIHbIM, eclu OH obecnedusaem onpeoe-
JienHoe nokpelmue kooa. Ha oamnwiii momenm cywecmeyem 601buioe KOIUYECMBO CUCMEMAMULECKUX 2eHepamOopOos
Mecmos, HANPAGIeHHbIX HA NOUCK CIAHOAPMHBIX OuUOOK. T10006HbIe UHCIMPYMEHMbL HOPOICOAIOT OZPOMHOE KOAUYe-
CM60 MPYOHOUUMAEMBIX MeCmo8, 00a0aIWUX BbICOKOU YeHOU npogepku uenosekom. llpeocmasnennuiii 6 0aHHOU
pabome Memoo NO360Jsem YAYHUUMb YUMAEMOCMb MECTNO8, A8MOMAMUYECKU C2eHePUPOBAHHBIX NPU NOMOWU CUM-
BOIbHBIX GLIYUCTEHUL, U 0Decneyusaem KaueCmeeHHoe CHUdICeHUe OaHHOU YeHbl. DKCHepUMeHmMaIbHble UCCIe008AHUS
2eHepamopa mecmos, 8KI0UAIOWe20 OAHHbIN MEeMOoO 8 Kauyecmeae 3aKIioYumenvHol @aszvl pabomul, ObLIU NPOBEOeHbl
Ha 12-cmpoxosvix ¢ynkyusx uz penosumopust Linux. Oyenka cmenenu Yyumaemocmu CmpoxK, CoOepiuCamuxcst 8 onmu-
MUBUPOBAHHBIX MECMax, CONOCMABUMA CO CYHAeM UCHONb308AHUSL CO8 HAMYPAIbHO20 A3bIKA, YMO NOAOAICUMETLHO
CKA3bI8ACMCSL HA NpoYyecce 8epUGQUKayUY pe3yibmamos mecmupo8anHus 4ei08eKoM.

Krouesvie cnosa: ounamuyeckue cumgonbHvle 6blUUCTIeHUA, MOOelb ecmecmeeHH020 A3blKA, np06ﬂeMa npoeepku
mecmoe 4ej106€KOM.

Introduction. On the one hand, modern software any damage. Thus, in order to help developers in finding
systems tend to be highly complicated and expensive in  errors some bug searching methods have been developed.
development. On the other hand, software development Software testing is one of the most popular bug searching
itself is a time-consuming and error-prone process. It is  methods. However, it is a time-consuming task that takes
very important to find serious errors before they cause about a half of the development time. In order to reduce
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the time expenditures associated with testing several test
automation techniques have been proposed.

One of the most popular approaches to the test auto-
mation is a code-based test generation [1; 2]. Some sys-
tematic code-based test generation techniques have been
developed for the last few decades. Two of them are:
Search-Based Software Testing (SBST) and Dynamic
Symbolic Execution (DSE). Any systematic test genera-
tion method relies on some sort of a code coverage
metric. Only test data with appropriate code coverage is
considered to be adequate. In order to provide required
code coverage a coverage criterion needs to be defined.
The popular coverage criteria are: instruction-coverage
and branch-coverage. Both DSE and SBST are aimed to
provide systematic code coverage for a target program.

In order to generate test cases with SBST-based tool
the goal of testing needs to be defined in terms of fitness
(objective) function [3]. It is convenient to use a branch
coverage criterion as a goal of testing when using SBST.
SBST-based tools launch target programs on some ran-
dom input data. The program alternates the input data in
an iterative way optimizing the value of the fitness func-
tion. Only when the fitness function is optimized the goal
of testing is achieved. Final input data represents the de-
sired test case.

DSE-based [4-6] tools maintain symbolic state in ad-
dition to the concrete (usual) state of the target program.
During the execution of a target program it collects con-
straints on the program variables. This constraint system
is called a path constraint or a PC. A PC represents
an equivalence class of input data that leads the target
program through the corresponding path. The execution
of the target program forks on each decision point
(for example conditional operator if-else) providing
branch coverage. When the execution of the target pro-
gram is completed, appropriate test input data can be ob-
tained by solving the PC.

In general, code-based test generators tend to produce
lots of almost unreadable test data. It is hard to verify
such unreadable test data manually. This problem is
called the Human Oracle Cost Problem [7]. Afshan et al.
[8] proposed a method of improving readability of test
cases produced by SBST-based tools. They used a charac-
ter-level bigram model of a natural language to drive the
search process toward more readable results. In order to
do this, they added readability estimation of the target test
data into the fitness function.

A character-level bigram model of a natural language
is defined in terms of ordered pairs of characters, i. e.
bigrams. Let (c;, ¢; 1) be a bigram, then P (¢;| ¢;1) is a
probability of co-occurrence of ¢; and ¢; , in the language
corpus, where the language corpus is a large collection of

written texts. Let also P(cl" ) be a probability of belong-
ing the whole string ¢ of length » to the language corpus.
The bigram model estimates probability P(cl" ) as shown

in the equation below:

f’(c{’) ~ ﬁP(c,. |C‘H)
i=1
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In order to compare strings of different length P has
to be normalized always. Readability estimation N is de-

fined as a normalized value of P as shown in equation
below:

N(cl" ) = f’(cl”)w .

This work proposes a new method for improving
readability of test data generated by DSE-based tools. In
contrast to the work of Afshan et al. [8] we do not rely on
any kind of fitness function. The improvement process is
performed by changing a PC after the execution of the
target progrem. To the best of our knowledge this is the
first readability optimization method in context of the
DSE.

Methods. The workflow of the proposed system in-
cludes two main stages. At the first stage, the system pro-
duces a path constraint PC, which is an abstract represen-
tation of a program state. At the second stage, the system
optimizes readability of the PC constraining it with the
help of a character-level bigram model. As mentioned
above, every PC represents an equivalence class of some
test inputs and is associated with a single program path.
Some of those inputs might be more “readable” than the
others. Informally speaking, the goal of the algorithm is to
find “the most readable” input within the set of all possi-
ble inputs corresponding to the given PC.

Example. Let us first provide an example of the read-
ability optimization process. Let us say we have a strlen
as a target function. It takes a null-terminated string
S={‘al’, a2, a3, \0’} as an input, where eash a; is a sym-
bolic value and “\0’ is a “concrete” terminator. The initial
state of the program is represented in figure, a. The
optimizer concretizes S transforming it into the string
“yes\0”. Firstly, the algorithm tries to make each a; print-
able as shown in figure, b. Secondly, it attempts to make
all of the a-s alphabetic as shown in figure, c¢. Finally,
it attempts to rearrange a, in an appropriate order using
the bigram model. Results are shown in figure, d.

Memory graph. The optimizer operates on a memory
graph M [9] which is an internal representation of the test
data. Each node of M belongs to one of the following
types: scalar (concrete or symbolic) value (a); concrete
pointer to another node (b); array of nodes of a concrete
length (c). Actually, every string S within M is repre-
sented as an array of scalar nodes.

Formal definition. A pseudocode of the algorithm is
represented in Algorithm 1. The goal of the optimizer is
to maximize the value of readability estimation S (N) for
every string S within M. Thus, the optimizer considers
only strings within M. It never violates the current PC and
never changes concrete values that PC contains. The
optimizer is only allowed to put constraints on symbolic
values when it is safe. At the first step, it tries to make
each symbolic value within S to be “alphabetic” or at least
“printable”. After that, it uses a bigram model in order to
make the whole string being more like a “real word”.
During this process, every single string S within M is
transformed in the following way.
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1. Narrowing. At this stage the optimizer tries to in-
crease the readability of every symbolic character a;
within S:

— Firstly, it tries to make each g; printable constraining
itwith (" <@, <77);

— If it is successful, it then tries to make it alphabetical
applying additional constraint (A’ < @; <2’ v ’a’ <
< a; £°7)).

2. Concretization. At the beginning, the optimizer fo-
cuses on the first value a; of the current string S. If it is
possible, it tries to “assign” a random alphabetic value to
the a; constraining it with (a; = some random alphabetic
character). At the next step, the optimizer traverses
through all the bigrams (a;, @;+1), where i = 1...n — 1,
within string S. Let (a; , ;1) be the current bigram, then:

— Firstly, the optimizer takes a concrete value of a;.
Note that if g; is symbolic the optimizer calls the SMT-
solver for its value.

— Secondly, if a;; is a symbolic value the optimizer
tries to obtain the “most probable” value val of a; in
terms of the bigram model. If it is successful, it than at-
tempts to apply the (a;+; = val) constraint to a;;;.

Algorithm 1 Improving readability
1: procedure Narrowing (Memory graph M)

2: foralls € Mdo
3: if 5 is a string of length »n then
4: foralli € {1,2,...,n} do
5: printable — Probe (< a;<°7))
6: if printable = true then
7: Probe (CA’ < ¢, <°Z’) v (a’ <a;<°2%)))
8: end if
9: end for
10: end if
11: end for

12: end procedure
13: procedure Concretization (Memory graph M)

14: foralls € Mdo

15: if s is a string of length » then

16: if a; is symbolic then

17: alpha < random alphabetic character
18: Probe ((a; = alpha))

19: end if

20: forallie {1,2,..n—1} do

21: fst < Value (a;)

22: if £t is alphabetic A ;. is symbolic then

o y'
o g
a e!
7
A"
\0 \0
a, a, da, \0 Vo't s W0
c d
23: snd < Next (fs?)
24: Probe (( a;+1 = snd))
25: end if
26: end for
27: end if
28:  end for

29: end procedure
30: function Value (Scalar node @ of memory graph M)

31: if a contains concrete value then

32: return value of a

33: else if a contains symbolic value then

34: Ask external SMT-solver for value of a
35: return value returned by SMT-solver
36: endif

37: end function
38: function Probe (Constraint e)

39:  Push a new scope into internal stack of SMT-solver
40: PC < PCne

41: if PC’ is satisfiable then

42: PC« PC’

43: return true

44:  else

45: Pop the scope from internal stack of SMT-solver
46: return false

47:  endif

48: end function

49: function Next (ASCII symbol a)

50: b < most probable symbol in bigram (a, b)
51: returnb

52: end function

Conservativeness of the algorithm. Each optimized
test case leads a target program through the same path as
a corresponding non-optimized version. Before applying
new constraints to the current PC, the optimizer tries ap-
plying it in a fresh new scope of an external SMT-solver.
If it fails, the optimizer safely pops the scope out of the
stack rolling the PC back to its previous version. Only in
case when the new constraint does not violate the current
PC, the optimizer is allowed to apply it.

Results. In order to test the proposed system we have
implemented a tool on top of the LLVM compiler infra-
structure [10] and CVC4 [11] SMT-solver. We have also
used a bigram model based on very large language cor-
pora [12]. Note that before starting to work with the sys-
tem a user should write a simple driver in the C-language.
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Experimental results

Function Input Coverage None Basic Bigram
strlen [6] 5:100% - 0.08 0.10
strnlen [6]5 6:100% - 0.08 0.10
stremp [6][6] 15:100% - 0.04 0.05
strncmp [6][6]5 16:100% - 0.04 0.05
sysfs streq [6][6] 39:100% — 0.05 0.07
strepy [6][6] 35:100% - 0.08 0.10
strnepy [6][6]5 36:100% - 0.08 0.10
strcat [10][5] 40:100% - 0.07 0.08
strncat [10][5]4 41:100% - 0.07 0.08
strstr [6][3] 19:90% - 0.12 0.14
strnstr [6][3]2 4:80% - 0.09 0.10
strpbrk [6][6] 10:80% - 0.03 0.03

The system has been tested on 12 string-processing
functions from the Linux [13] repository. Each function
takes integer values and strings as an input. Experimental
results are represented in table. The Input column displays
an encoded format of the input data. Here notation
“In]” = {a,, as,....,a,-1,’\0’} represents a null-terminated
string of symbolic values a;; k represents some concrete
integer. For example, strnlen “[6] 5” means that strnlen
takes a single symbolic string of size 6 and an integer
literal “5”. The only exception is strpbrk function that
takes concrete string “aeouy” as its second argument.
Code coverage estimated with gcov tool is displayed
in column Coverage in format x:y %, where x is a number
of generated test cases and y is a percentage of covered
instructions. Columns None, Basic and Bigram display
average values of readability estimation N for test data
generated during different experiments.

Experimental results. The results of test generation
without optimization are displayed in column None. As
the non-optimized data includes no alphabetic characters,
the readability estimation is not defined in this case. The
Basic method involves only the first, Narrowing phase of
the optimization process. In this case, readability estima-
tion N = 0.07 in average with standard deviation ¢ = 0.03.
On the other hand, the Bigram method involves both,
Narrowing and Concretization phases of the optimization.
In case of Bigram N = 0.08 in average and ¢ = 0.03. Thus,
the Bigram method shows the best results in this experi-
mental study.

Discussion. Let us discuss the experimental results
in more details on the example of the strcpy function.
Strcpy function takes two string arguments - buffer 4 and
source B. It copies data from B to 4 modifying 4. It then
returns the pointer to the modified version of A repre-
sented as 4’. Thus, the format of each generated test case
is (4, B) => A’. In order to give meaning to the discus-
sion, let us suppose that the generated test cases have to
be verified by a human.

Each non-optimized output contains no printable char-
acters. Thus, we represent generated data as arrays
of 8-bit integers. In this case, the real data generated
with the help of CVC4 looks like: {1, 1, 1, 1, 1, 0},
{1, 1, 1, 0, 0, 0} => {1, 1, 1, 0, 0, 0}. Making sense
of this data might be confusing to anyone trying to evalu-
ate the quality of the implementation of the strcpy
function. On the other hand, the so-colled Bigram method
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produces well-readable and less-confusing data: (“kesth”,
“pre”) => “pre”.

Configuring the optimizer. The optimizer can be con-
figured in many ways. If the first symbol of the string is
not constrained, then external SMT-solver tends to return
similar results for all strings. As a consequence, without
randomization of the first symbol the results look like
“athes”, “ath” => “ath” etc. Moreover, as the Bigram
method uses the most probable values of the second char-
acters of each bigram sometimes it tends to produce
cycles like “athesthes....” etc. In order to avoid such
cycles, we use the same selection algorithm as the “rou-
lette wheel” method [14].

In addition to the bigram-based improving readability
optimization we have implemented a simple “optimizer”
for numeric values. In fact, numeric values generated by
SMT-solvers tend to vary in a very wide range. For ex-
ample, let us suppose we are testing some implementation
of the quicksort algorithm. One of the generated test cases
might look like: {22773760, 22773760, —2147483648,
2147483584} 4 => {—2147483648, 22773760, 22773760,
2147483584}. It is highly confusing to anyone who
is trying to make a meaningful interpretation of such
an unreadable test data. The optimizer incrementally tries
to constraint each integer symbolic value within a mem-
ory graph M using Probe method from Algorithm 1.
Let a; be a symbolic integer contained by M. At first,
the optimizer tries to apply the constraint (—10 < a; < 10)
to each a;. If it is not successful it then tries to apply
(-100 < a; < 100) etc. The optimized version of the
test case mentioned before looks like: {2, 2, =3, 5} 4 =
{-3,2,2,5}.

Reliability. In fact, the readability estimation of strings
of different length varies in a wide range. The value of

“pure” readability estimation f’(S ) tends to zero for very

long strings. As a result, it is not reliable to compare the
readability estimation of strings of different length. This
negative effect is eliminated by normalization. We should
further note that the goal of our research does not include
the examination of the bigram model itself. However,
in order to verify the readability estimation method used
in the experimental study we tested it in isolation. We
have tested this method using a list of Top-100 English
words. The resulting readability estimation is 0, 10 which
is compatible with the experimental results. Finally,
the reliability of the experimental results achieved by any
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code-based test generator depends on the provided code
coverage. In the given experiments the instruction cover-
age is 95% in average and it is 100 % for 9 functions. In
case of functions with non-100 % coverage the NULL-
returning branch is not covered. We can confidently say
that the obtained results are reliable enough.

Conclusions. This work introduces a new method of
readability optimization in context of Dynamic Symbolic
Execution based on a natural language model. This
method has been successfully examined against 12 string-
processing functions from the Linux repository. The ex-
perimental results show that this algorithm significantly
improves the readability of automatically-generated
test data. The readability of the optimized test cases
is compatible to the readability of human-written texts.
Developers who manually verify generated test data
would take advantage of using this method.
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