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The estimation of adequate service life of aircraft instruments is a factor of great importance in aircraft operation
process. Changing the instrument service interval affects both reliability (shorter intervals make it easier to locate
malfunctions of components and assemblies as early as possible) and economic performance (inducing increase of
operating costs). So, the increasing the service interval without potentially reducing reliability is an economically im-
portant task.

To determine the optimal time to maintenance for aviation components and assemblies, it is necessary to determine
the span of their service life with the highest degree of precision. The problem of calculating such estimates is compli-
cated by the fact that the data on component failures are scattered and incomplete, which makes it difficult to assess
their statistical characteristics accurately.

The purpose of this article is to find an effective method of statistical characteristics assessment for small samples
as the first stage of modeling of the aircraft components and assemblies reliability. It is induced by specific operational
factors of aviation components exchange at small airlines operating Soviet-time aircraft. The article examines two
methods of resampling, bootstrap and jackknife.

There is also an assessment of mean time to failure expectation for fuel gauges, of the variance and root-mean-
square deviation in the article.

The bootstrap method is offered as applicable for statistical characteristics assessment of mean time to failure ex-
pectation for aircraft components and assemblies taken for analysis in small samples (pressure gauges were chosen as
an example of such analysis). The assessments and calculations can be used by airlines to state the nonfailure service
time of a variety of components and assemblies.

Keywords: reliability, statistics, bootstrap, aviation, aircraft components.

BOOTSTRAP-METOJ JJISI OHEHKHA CTATUCTHYECKUX XAPAKTEPUCTHK
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Buibop adexeammnoeo cpoxa cuyscobl a8UAYUOHHBIX NPUOOPOS — BANHCHAA YACb NPOYECca IKCHAYAMAYUU 8030V UL-
HBIX CYy008. VI3MeHeHue CPOKA MeHcCep8UCHO20 UHMep8and 01 npubopos okazvleaem GIUAHUE KAK HA HAOEHCHOCMb
(max Kax ymeHvuleHue 3mMo20 UHMep8aid NPugooUm K B03MONCHOMY BbIAGNIEHUIO NPoOaeM ¢ V3IaMu U azpecamamu
Ha panHel cmaouu), max U HA IKOHOMUYeCKUe NOKA3AMenU, NO8bIuds IKCHIYAMAYUOHHbIe pAcX00bl. Yeenuuenue
MEACCEPBUCHO20 UHMEPBAIA De3 NOMEHYUATTLHOLO CHUICCHUSL HAOEHCHOCIU AGTAEMCSL BANCHOU IKOHOMUUECKOU 3a0aUell.

Jis ymounenus mexccepeucHo2o uHmMepeana asuayUuoHHbIX Y3108 U azpe2amos HeoOX00UMO KAK MOJNCHO ¢ 6oiee
8bICOKOU 00CTNOBEPHOCBIO 3HAMb OYEHKY CPOKA CLyHcObl mex Uy UHBIX V31068 U acpe2amos. 3a0aua GbluucieHus ma-
KUX OYEHOK OCNIOJNCHACTCS MeM, Ymo OaHHble N0 OMKA3AM MAKUX Y3108 U A2pe2amos HOCAM PA3pO3HEHHbIU XapaKmep
U HeBeIUKU No 00beMY, Ymo 3ampyoHsiem KOPPEKMHYIO OYEHKY UX CIMAMUCTIUYECKUX XAPAKIMEPUCTUK.
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Lenv dannoti cmamvu — n000OPaAMb OelCMEEHHbLIL MEMOO 01 OYEeHKU CIAMUCTIUYECKUX XAPAKMePUCMUK MAaibix
8bI00POK 8 Kauecmse nepeoco IMand MoOeIUpOBAHUs HAOEHCHOCU ABUAYUOHHBIX Y3108 U azpeeamos. Takoe yciosue
00yCN061eHO NPOU3BOOCNBEHHBIMU OCOOEHHOCMAMU OOMEHHBIX (POHOO08 ABUAYUOHHBIX A2pe2amo8 HeDOIbUIUX ABUd-
KOMNAHUI, IKCHIYamupylowux cO8emcKyl0 mexHuky. B cmamve svlibupaiomcs 06a memooa nepeouckpemusayuu —
bootstrap u jackknife, nposooumcs uccredosanue sMnUpUYECKUX OAHHBIX.

B pabome oyenusaemcs mamemamuueckoe odxcudanue Hapabomxu Ha OMKA3 MAHOMEMPOS, A MAKICe OUCNEPCUsL
u cpedneksadpamuuroe omrionenue. IIpoussederno cpasrerue memooos bootstrap u jackknife.

Tloxazana nedocmamoynas adexkeamuocmv Mmemooa jackknife, npodemoncmpuposanvi npeumywecmsea memooa
bootstrap. Ilokazana 603MONCHOCHb UCNOTL30BAHUSL MemOOa bootstrap 05t OYeHKU CIMamucmu4ecKux XapaKmepucmux
HapabomKku Ha OMKA3 AGUAYUOHHBIX Y3108 U A2pe2amos 6 Cyyae Mai020 pasmepa GbloopoK O/ aHAIU3A HA NpUMepe

Manomempos.

P€3yﬂbmambl pa6ombl mozym OblMb UCNOTIL30BAHDL aABUAYUOHHBIMU KOMNAHUSAMU ons OYEHKU Hapa60m1<u Ha omkas

PA3NIUYHbIX Y3106 U dcpecamos.

Knroueswvie crosa: Ha()e.)fCHOC'mb, asuayus, asuayuorras mexnuka, bOOtSi’Clp, cmamucmuka.

Introduction. The development of methods and
means to reduce the number of aircraft and helicopter
system failures, as well as flight safety improvement, has
always been a priority task. This is connected with eco-
nomic factors, for example, to some reduction of aircraft
maintenance cost, and accordingly, with the increase of
air transportation economic efficiency [1], and to psycho-
logical factors as well [2].

For increasing the technical reliability of certain
aircraft components, one must use an effective
reliability assessment of the components already
in operation.

The failure of aircraft components and assemblies is a
stochastic process. To adequately model such processes,
one must know their statistical characteristics.

Unfortunately, the collection, accumulation and stor-
age of information on the status and failures of aircraft in
general and of their specific components is not systematic
at the moment [3]. There is an acute lack of information
concerning end-to-end documentation on instruments and
spare parts. It often happens that there are no entries in the
logs about previous failures or repairs of various parts and
components, and there are errors in inaccurate filling of
the forms of these components. Due to all these factors, it
is difficult to collect and process the statistical informa-
tion on aircraft failures and defects; that makes it hard to
assess the components reliability.

Under the circumstances, the methods aimed at statis-
tical analysis of small samples are of particular impor-
tance.

Statistical methods of small sample analysis. Statis-
tics doesn’t have any clear definition of small samples.
Typically, the sample is called small if its volume does
not exceed 30 units [4]. The “criterion of smallness*
of the sample was outlined by D. V. Gaskarov and
V. 1. Shapovalov in the article “Small sample®, which
states that the sample should be considered small when in
processing by means of methods based on data grouping,
the specified accuracy and reliability cannot be attained
[5; 6].

The development of new statistical methods focused
on the processing of a limited number of observations
started out when the use of traditional methods of mathe-
matical statistics proved inapplicable — they aren’t suit-
able for processing samples of such volume. For assess-
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ment of small samples parameters special methods
which extend the characteristics of the sample over
the whole sample population were proposed. They are the
methods of direct recounting or the methods of correction
factors [7], as well as the method of rectangular contribu-
tions, as described in [8] and examined in [9]. The
essence of this method is in assuming that the random
variable is of fluctuating character. It is assumed that x ;
is not the only possible, but just the most probable value
within a certain interval, so when the empirical density
of x; is building, it is just a certain finite density function
called “contribution®, but not a real function. The physical
meaning of this construction is the assumption that
the probability density is nonzero not only at the point
of the variant value, but also in its closest vicinity.
The method of reducing the uncertainty, the method
of successive medians [10] and some other methods
were also used, as described in the thesis abstract by
E. B. Gorbunova [11]

Evaluating parameters, in most cases the general
assumption is that the analysed value is distributed
normally. In assessing the reliability of technical systems,
some specific quantities are often regarded as having
the exponential distribution. But this assumption
often serves the purpose of simplification of the further
calculations.

By applying such an approach, the interval estimation
of statistical characteristics become more important then
oint ones.

In the XX century (in the 60-ies), the statistical meth-
ods focused on similar tasks appeared, namely, the jack-
knife method (meaning a knife which can de folded), and
the bootstrap method [12]. These methods are of resam-
pling and randomization groups, that is, they allow to
obtain both point and interval estimates of the original
population characteristics, forming new samples based on
the already available small sample.

These methods had limited application at the time of
their development because of their relatively high compu-
tational complexity and lack of suitable computer equip-
ment. They were given a new life at the end of the 20™
century, when computer technologies became widely ac-
cessible [13]. The advantages of these methods include
relatively high efficiency, while the drawback is the ab-
sence of strong theoretical justification.
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Calculation and processing of the received data was
performed using special PC programs: Python, Pandas,
Numpy and JupyterNotebook

Python is a high-level general-purpose programming
language designed to improve developer’s performance
and code readability. It is widely used in research calcula-
tions.

Pandas is a Python library for data manipulation and
analysis, used, for example, in cases of multivariate tem-
poral series and cross-sectional data sets that are com-
monly found in statistics and outcomes of experiments.

NumPy is an extension of the Python language that
provides additional support for large multidimensional
arrays and matrices, together with a large library of high-
level mathematical functions allowing operations with
these arrays.

JupyterNotebook is a command shell for interactive
computing. This software can be run not only by using
Python, but other programming languages, as Julia, R,
Haskell and Ruby. It is often used for data processing,
statistical modeling and computer-aided learning. [14; 15]

Source data for the analysis. The data selected for
the analysis were the failures of components installed in
the An-24RV aircraft of “KrasAvia” airline. The available
information on the aircraft components and assemblies
was:

— product name;

— product code;

— factory code number;

— date of manufacture;

— date of repair;

— operation time since initial installation (hours);

— operation time since the latest repair (hours).

As far as the reliability of the newly-released aircraft
is concerned, its non- failure operation time becomes the
matter of primary importance, mainly, the non-failure
time since the aircraft was first put in operation.

The available data contained information on various
components and assemblies of aircraft. The selected data
were those on the failures of the aircraft MA-250M pres-
sure gauge (mainly because the amount of data on this
instrument failures was well known).

The available data contained information about 3 in-
stances of the instrument replacement (see table).

Operation time since initial installation

Ne Operation time since initial

installation (hours)

3707

10520

3707

10520

21993

3707

10520

3707

10520

=[O0 AN |~ |WIN|—

21993

Coincidence of the operating time for different pres-
sure gauges depends on the events of their replacement
during the aircraft scheduled maintenance.
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Application of traditional and resampling methods
for estimating aviation systems’ failure rate parame-
ters. Table (above) indicates that there may be not enough
data to make adequate statistical analysis. This statement
can be verified experimentally by constructing statistical
characteristics based on the available data.

Histogram of the original sample and estimates ob-
tained by traditional method (fig. 1).

Mathematical expectation of mean time to failure
is 10 089.40 hours.

Root-mean-square deviation is 6686.35 hours.

The given distribution is not normal. According to the
estimation, 47.5 % of the gauges are installed in aircraft
already being out of order or fail for the first time within
10.000 hours of operation.

The use the of resampling methods solves the prob-
lem.

We take for consideration the jackknife-method — this
is one of resampling methods (linear approximation of
statistical bootstrap); it is used to estimate the statistical
inference error. The method works as follows: the average
sample value is calculated for each element without re-
gard for this element, and then — the average of all thus
obtained values. For a sample from N elements the esti-
mate is obtained by calculating the mean value of the re-
maining N—1 elements.

For assessment of this method there was developed a

function generating sub-samples. Its code is given below:
# build the array of samples to analyze
manoml=list (manometers.iloc[:,2].tolist ()
importnumpyasnp
means=/[]
stds=[]

foriinrange (len (manoml)) :
a=form jack sample (manoml, i)
means.append (np.mean(a))
stds.append (np.std(a))

hist,bins=np.histogram(means,bins=10)
hist s,bins_s=np.histogram(stds,bins=10)

print (np.mean (means))
print (np.std (means))
print (np.mean (stds))
print (np.mean (manom) )
print (np.std (manom) )
print (means)

print (stds)

For the available sample, the same way as in the for-
mer example, statistical characteristics were developed

using the following code:

# build the array of samples to analyze
manom=list (manometers.iloc([:,2].tolist ()
importnumpyasnp

n=10000

means=/[]

stds=[]

foriinrange (n) :

a=form sample (manom)
means.append (np.mean (a
stds.append (np.std(a))

))

hist,bins=np.histogram(means,bins=10)
print (np.mean (means))
print (np.std (means))
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print (np.mean (stds))
print (np.mean (manom))
print (np.std (manom) )

# means

%matplotlib inline
importmatplotlib.pyplotasplt
width=0.7* (bins[1]-bins[0])
center=(bins[:-1]+bins[1:])/2

plt.bar (center,hist,align="center',width=width)
plt.show ()

The resulting distributional histogram is presented
(fig. 2).

Mathematical expectation of mean time to failure with
the use of the jackknife method equaled 10 090 hours.

Root-mean-square deviation was 6298 hours.
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Fig. 1. Histogram of data obtained through traditional calculation
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Fig. 2. Histogram obtained through the jackknife calculation
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Fig. 3. Distribution of mean time to failure

Puc. 3. Pacnpenenenue cpesHero BpeMeHu HapaOOTKU Ha OTKa3

As we see, this method is ineffective for analyzing
such small-sized samples.

Here is the statistical characteristics assessment ob-
tained through the bootstrap method.

Bootstrap method:

Let the sample be (zj, z, ...) it is required to estimate
0 parameter. Doing this requires selecting N pseudosam-
ples to be developed from the elements of the original
sample with replacement. For each pseudosample
(z*l, z5, ...) n=1,2, .., N pseudostatistics 0", is calcu-
lated. Pseudostatistics 07}, 05, ..., 07, are ranged from
minimal to maximal. Quantiles q*M, q*l,m assume values
9*[Nx1], 6*,, va-x2)+1)- Confidence interval is calculated on
this basis.

10000 pseudosamples were developed for the avail-

able data. The code is given below:
# form the sample from the source data
importrandom

defform sample (source sample) :
sample len=len (source_sample)

res_sample=[source_sample[random.randint (0, sampl
e len-1)]foriinrange (sample len) ]

returnres_sample

# build the array of samples to analyze
manom=1list (manometers.iloc([:,2].tolist())
importnumpyasnp

n=10000

means=[]

stds=[]

foriinrange (n) :

a=form sample (manom)
means.append (np.mean (a
stds.append (np.std(a))

))

hist,bins=np.histogram(means,bins=10)
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print (np
print (np

( .mean (mean

(
print (np

(

(

.std(means
.mean (stds
.mean (mano
.std (manom)

s))
)
)
print (np m
print (np

)
)
)
))
)

Smatplotlib inline
importmatplotlib.pyplotasplt

width=0.7* (bins[1]-bins[0])
center=(bins[:-1]+bins[1:])/2
plt.bar (center,hist,align="center',width=width)
plt.show ()

The resulting mean operation time equaled

10 106 hours. Root-mean-square deviation for the given
value equaled 2122 hours (values are rounded to inte-
gers).

Provided the given random value is of normal distri-
bution, it could be confirmed that the mean time to failure
is from 5862 to 14 350 hours at the 95 % credible level.
The distribution of this value is shown in fig. 3.

It can be confirmed that mathematical expectation of
mean time to failure is close to 10000 hours (more precise
value cannot be obtained, because bootstrap belongs to
probabilistic methods).

Conclusion. The article examines the methods of sta-
tistical analysis based mainly on computer calculations.
The advantages of these methods comparing to the classi-
cal ones are that there is no need to adopt a hypothesis
about the form of the distribution law of the selected ran-
dom variable. Also, there is the possibility of numerical
analysis for statistical parameters assessment for small
data samples.

The traditional calculation of mathematical expecta-
tion of mean time to failure gives the value of
10 089 hours, which is very close to the value obtained
through the bootstrap method. However, the value
of standard deviation calculated for the original sample
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is 6686 (rounded to integers); that is quite far from the
value obtained through the bootstrap method.

The bootstrap method outcome looks more plausible,
although it requires further verification.

The use of traditional assessments obviously provides
less accuracy: according to this estimate, 47.5 % of the
pressure gauges are installed in aircraft already being out
of order or fail for the first time within 10000 hours of
operation.

Therefore, the bootstrap evaluation method allows to
obtain more adequate estimates.

Among the disadvantages of this method is
its stochastic nature (in particular, this method
doesn’t provide point estimate of the mean time to
failure — it slightly varies from modeling to modeling),
and also the lack of strict demonstrations of its correct-
ness.

It should be noted that further studies are needed to
confirm the applicability of this method for statistical
characteristics assessments concerning reliability of air-
craft components and assemblies.

Currently, a software product that will make wider
application of the methods analyzed in this article possi-
ble is being developed; that can help to solve specific
problems airlines often come across.

Acknowledgements. The authors express their grati-
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