Сибирский журнал науки и технологий. 2018. Т. 19, № 2. С. 365–372

ПЛАЗМОТРОН ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ ИЗ ТУГОПЛАВКИХ ДИСПЕРСНЫХ МАТЕРИАЛОВ

А. Е. Михеев, А. В. Гирн, Д. В. Раводина, И. О. Якубович

Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева Российская Федерация, 660037, Красноярск, просп. им. газ. «Красноярский рабочий», 31 E-mail: michla@mail.ru

Одним из наиболее производительных, технологичных и эффективных способов получения защитных покрытий на элементах аэрокосмической техники от воздействия значительных динамических нагрузок, агрессивных сред, высоких температур, нейтронных потоков и т. п. является плазменное напыление. Основным элементом, обеспечивающим необходимые характеристики напыляемым частицам, является плазмотрон. В мире разработано большое количество плазмотронов различных конструкций, каждая из которых имеет как свои преимущества, так и недостатки. В основном напыляемый материал подается в плазменную струю радиально через канал, находящийся на срезе сопла, что отрицательно сказывается на качестве покрытия и коэффициенте использования материала, так как происходит неравномерный прогрев напыляемых тугоплавких дисперсных материалов (оксидов, карбидов, нитридов и т. д.). Для обеспечения нагрева напыляемого материала повышают мощность плазмотрона, что уменьшает ресурс его работы. Существует схема подачи транспортирующего газа с порошком спутно плазменному потоку, позволяющая обеспечить более эффективный и равномерный прогрев напыляемого материала, а также предусматривающая дополнительную стабилизацию дугового разряда, но в промышленном масштабе такие плазмотроны не выпускаются, так как технологически сложны в изготовлении. Был разработан и изготовлен плазмотрон по такой схеме. Проведены сравнительные экспериментальные исследования по напылению тугоплавких материалов импортным плазмотроном F4 (Switzerland) и разработанным ПМ-1. Для сравнительного анализа плазмотронов в качестве материала образцов выбрали сталь 45, материал для напыления – оксид Al₂O₃, который используется в основном в качестве теплозащитного покрытия. Напыление Al₂O₃ на сталь производили через подслой кермета (40 % Al₂O₃ +60 % NiCr по объёму) для сглаживания коэффициентов термического расширения. Выявили, что покрытия, нанесенные модернизированным плазмотроном ПМ-1, имеют более высокую прочность сцепления и большую толщину (примерно на 20 %), а пористость ниже на 13 %, чем у покрытий, полученных плазмотроном F4 (Switzerland).

Ключевые слова: плазменное напыление, плазмотрон, тугоплавкие материалы, прочность сцепления, толщина покрытия, пористость.

Siberian Journal of Science and Technology. 2018, Vol. 19, No. 2, P. 365–372

PLASMOTRON FOR COATINGS APPLICATION FROM FUEL-DISPERSED MATERIALS

A. E. Mikheev, A. V. Girn, D. V. Ravodina, I. O. Yakubovich

Reshetnev Siberian State University of Science and Technology 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation E-mail: michla@mail.ru

One of the most productive, technological and effective methods of obtaining protective coatings on aerospace devices from the impact of significant dynamic loads, corrosive media, high temperatures, neutron fluxes, and the like is plasma spraying. The main element that provides the necessary characteristics for the particles to be sprayed is a plasma torch. The world has developed a large number of plasma torches of various designs, each of them has its own advantages and disadvantages. In general, the sputtered material is fed into the plasma jet radially through the channel located on the nozzle cut, which adversely affects the quality of the coating and the utilization of the material, since uneven heating of the sputtered refractory dispersed materials (oxides, carbides, nitrides, etc.) occurs. To ensure heating of the sprayed material, the power of the plasma torch is increased, which reduces the service life of the plasma torch. There is a scheme for supplying a transport gas with a powder in a plasma flow, allowing more efficient and uniform heating of the deposited material, and also providing for additional stabilization of the arc discharge, but on an industrial scale such plasmatrons are not produced, since they are technologically difficult to produce. A plasma torch was developed and manufactured in this way. Comparative experimental studies on the deposition of refractory material.

als by the imported plasma torch F4 (Switzerland) and the developed PM-1 have been carried out. For the comparative analysis of plasmatrons, the material of the samples was chosen as steel 45, a material for deposition of the oxide Al_2O_3 , which is used mainly as a heat-shielding coating. Sputtering Al_2O_3 on steel was produced through a cermet sublayer (40 % $Al_2O_3 + 60$ % NiCr by volume) to smooth the coefficients of thermal expansion. It was found that the coatings applied by the modernized plasmatron PM-1 have a higher bond strength and a greater thickness (about 20 %), and porosity is lower by 13 % than that of plasmatron-coated coatings F4 (Switzerland).

Keywords: plasma spraying, plasma torch, refractory materials, adhesion strength, coating thickness, porosity.

Doi: 10.31772/2587-6066-2018-19-2-365-372

Введение. С интенсивным развитием аэрокосмической техники и ужесточением условий ее эксплуатации повышаются требования по ее надежности, долговечности и безопасности эксплуатации. Элементы конструкций летательных аппаратов, работающих в экстремальных условиях (воздействие значительных динамических нагрузок, агрессивных сред, высоких температур и т. п.), невозможно использовать без применения специальных защитных покрытий. Одним из наиболее производительных, технологичных и эффективных способов получения таких покрытий является плазменное напыление [1-11]. Применение плазменных технологий, активно внедряющихся в последнее время в промышленность, даёт возможность решить многие проблемы производства с минимальными затратами. Объём использования плазменных покрытий в мире постоянно возрастает. Для получения стабильных покрытий высокого качества большое внимание уделяется средствам механизации процесса, которых недостаточно, так как в первую очередь необходимо добиться высоких значений и стабилизации термических и динамических показателей напыляемых частиц. Основным элементом, обеспечивающим необходимые характеристики напыляемым частицам, является плазмотрон. В мире разработано большое количество плазмотронов различных конструкций, каждая из которых имеет как свои преимущества, так и недостатки. У большинства плазмотронов, в том числе и импортных, например у плазмотрона F4 (Switzerland), напыляемый материал подается в плазменную струю радиально через канал, находящийся на срезе сопла, что отрицательно сказывается на качестве покрытия [12]. Часть материала отбрасывается плазменной струей, что приводит к уменьшению коэффициента использования материала (КИМ), неравномерному прогреву напыляемых тугоплавких дисперсных материалов (оксидов, карбидов, нитридов и т. д.), что отражается на качестве получаемых покрытий. Для обеспечения нагрева напыляемого материала повышают мощность плазмотрона, что уменьшает ресурс его работы.

Существует схема подачи транспортирующего газа с порошком спутно плазменному потоку, позволяющая обеспечить более эффективный и равномерный прогрев напыляемого материала, а также предусматривающая дополнительную стабилизацию дугового разряда [12–15]. Но в промышленном масштабе такие плазмотроны не выпускаются, так как технологически сложны в изготовлении. В данной работе представлены результаты сравнения характеристик покрытий, нанесенных плазмотроном F4 (Switzerland) и разработанным и изготовленным по спутной схеме подачи напыляемого материала. По этой схеме газопорошковая смесь подводится к верхней части плазмотрона и закручивается посредством специальных выполненных пазов, далее, проходя по каналам плазмотрона, газопорошковая смесь попадает в высокотемпературную прикатодную область, что способствует ее равномерному нагреву до высоких температур.

часть. Экспериментальная Электродуговой плазмотрон содержит соосно и последовательно установленные охлаждаемые катодный узел с катодом, изолятор, анодный узел с соплом-анодом, систему ввода плазмообразующего газа и систему ввода обрабатываемого материала, обеспечивающие фокусирование последних в прикатодной области. Прикатодная область переходит в цилиндрическую полость соплаанода. В плазмотроне конусообразный обтекатель снабжен шестью специальными каналами. выполненными под углом 60⁰ к направлению движения газопорошковой смеси, выравнивающими плотность газопорошковой смеси и создающими вихревой поток по сечению канала.

Конический кожух, образующий каналы с коническими выходными участками для подачи плазмообразующего газа и транспортирующего газа с порошком в сопло плазмотрона, выполнен керамическим и установлен на корпусе катодного узла. Плазмотрон позволяет повысить качество наносимых покрытий, увеличить коэффициент использования материала и ресурс работы плазмотрона за счет равномерного прогрева напыляемого материала до температуры плавления, уменьшения газодинамического сопротивления при движении газопорошковой смеси по каналам и тангенциальной подачи плазмообразующего газа, стабилизирующей горение дуги.

На рис. 1 представлен предлагаемый плазмотрон в разрезе. На рис. 2 представлен конусообразный обтекатель.

Плазмотрон состоит из системы ввода обрабатываемого материала и транспортирующего газа, включающая входной патрубок l, цилиндрическая полость 2 которого переходит в коническую полость 3, образованную диффузором 4 и обтекателем 5, установленным на корпусе катодного узла 6. На обтекателе равномерно расположены шесть каналов, выполненных под углом 60^{0} к направлению движения газопорошковой смеси, выравнивающие плотность газопорошковой смеси по сечению канала 7 и создающие вихревой поток. В корпусе катодного узла посредством вставки 8 закреплен катод 9. В нижней части корпуса катодного узла 6 посредством резьбы закреплен керамический кожух 10 конической формы. Поверхности керамического кожуха 10 и изолятора 11 образуют коническую транспортирующую полость 12, которая фокусируется в прикатодной полости 13, переходящей в цилиндрическую полость сопла-анода 14. Таким образом, полости 3, 7 и 12 образуют непрерывный транспортирующий канал с минимальным газодинамическим сопротивлением, связывающий цилиндрическую полость патрубка 1 с прикатодной областью 13. Сопло-анод 15 с вольфрамовой вставкой 32 фиксируется в корпусе анодного узла 16 прижимной гайкой 17.

Корпус анодного узла 16 имеет систему охлаждения, соединенную с патрубком 18 ввода охлаждающей жидкости. Патрубок 18 одновременно является клеммой соединения сопла-анода с плюсом «+» источника питания плазмотрона. В систему охлаждения анодного узла входят полость 19 и отверстие 20, соединяющее ее с патрубком 18 ввода охлаждающей жидкости. Затем охлаждающая жидкость через отверстие 21, патрубки 22 и соединительный шланг 23 поступает в корпус катодного узла. Система охлаждения катодного узла состоит из отверстий 24, 26, полости 25 и патрубка 27 для вывода охлаждающей жидкости. Патрубок 27 одновременно является клеммой подвода минуса «–» источника питания плазмотрона к катоду. Система ввода плазмообразующего газа состоит из патрубка 28, закрепленного на поверхности катодного узла и соединенного каналом 30 с конической полостью 31, образованной поверхностью катода 9 и внутренней поверхности керамического кожуха 10. Конструкция канала ввода обеспечивает тангенциальную подачу плазмообразующего газа, что способствует стабилизации горения дуги в прикатодной области.

Электродуговой плазмотрон работает следующим образом.

В патрубок 18 для охлаждения подается вода. В патрубок 28 подается плазмообразующий газ и между катодом 9 и соплом 15 возбуждают электрическую дугу. Плазмообразующий газ закручивается по часовой стрелке, что обеспечивается тангенциальной подачей газа через канал ввода. После выхода плазмотрона на рабочий режим в специальный патрубок подается газопорошковая смесь, у которой после соприкосновения с поверхностью конусообразного обтекателя 5, имеющего каналы, происходит выравнивание ее плотности и закручивание смеси по сечению кольцевого канала в ту же сторону, что и плазмообразующий газ.

Рис. 1. Плазмотрон ПМ-1

Fig. 1. Plasmotron PM-1

Рис. 2. Обтекатель

Fig. 2. Low-drag fairing

Таблица 1

Данные, полученные при разрыве образцов (плазмотрон ПМ-1)

№ Образца	I, A	<i>Р</i> _{отр} , кН	σ _{сц} , МПа	$σ_{cii.cp}$, ΜΠα	
1-28.11.17	150	5,544	11,294		
2-28.11.17	150	5,758	11,731	11,568	
3-28.11.17	150	5,733	11,68		
4-28.11.17	200	6,169	12,567		
5-28.11.17	200	6,239	12,71	12,862	
6-28.11.17	200	6,534	13,31		
7-28.11.17	250	6,449	13,137		
8-28.11.17	250	6,848	13,95	13,463	
9-28.11.18	250	6,529	13,301		
10-28.11.18	300	7,29	14,851		
11-28.11.18	300	6,6	13,445	14,045	
12-28.11.18	300	6,794	13,84	1	

Примечание: $P_{\text{отр}}$ – сила, при которой произошёл отрыв покрытия от образца; $\sigma_{\text{сц}}$ – адгезионная прочность покрытия; $\sigma_{\text{сц,ср}}$ – среднее значение между тремя полученными значениями $\sigma_{\text{сц}}$ при одной силе тока на одном плазмотроне.

Смесь поступает через коническую полость 12, образованную керамическим кожухом 13 и изолятором 11, а плазмообразующий газ – через канал 30, образованный между катодом 9 и поверхностью отверстия в корпусе катодного узла 6, и конический канал 31 между внутренней поверхностью кожуха 10 и катодом 9 в прикатодную область 13. При этом обеспечивается равномерный прогрев напыляемого материала до температуры плавления, что приводит к повышению качества покрытия, уменьшению энергозатрат и к увеличению ресурса работы плазмотрона.

Для проведения испытаний на прочность сцепления покрытия наносились на стальные образцы, выполненные в виде грибков. Величину прочности сцепления покрытия с подложкой определяли методом отрыва (клеевая методика, клей ВК-9) согласно ГОСТ 209–75 при помощи универсальной испытательной машины Eurotest T50. Полученные данные представлены в табл. 1 и 2. Расход напыляемого порошка в питателе был одинаковым для обоих плазмотронов. Прочность сцепления покрытия определяли по следующей формуле:

$$\sigma_{\rm cu} = \frac{P_{\rm orp}}{F} = \frac{P_{\rm orp}}{\pi r^2} = \frac{4P_{\rm orp}}{\pi d^2}$$

где *d* = 0,025 м.

По данным табл. 1, 2 построены графики зависимости адгезионной прочности покрытий, нанесенных разными плазмотронами, от величины силы тока (рис. 3). Прочность сцепления покрытий, нанесенных экспериментальным плазмотроном ПМ-1, примерно на 20 % выше, чем при нанесении импортным F4. Полученные результаты подтверждают, что плазмотрон ПМ-1 обеспечивает равномерный прогрев напыляемого порошка до температуры плавления, что приводит к повышению прочности сцепления покрытия с подложкой при одинаковых расходах газов и подводимой мощности.

Толщина покрытия оказывает немаловажное влияние на износо- и коррозионную стойкость. Толщину покрытия, сформированного плазменным напылением, определяли с помощью микрометра. Замеры на каждой пластинке производили в 5 произвольно взятых точках. Результаты занесены в табл. 3, 4.

По данным табл. 3. и 4 построен график зависимости толщины покрытия от силы тока (рис. 4).

Толщина покрытий также оказалась больше примерно на 15–18 %. Это значит, что коэффициент использования материала выше за счет равномерного прогрева напыляемого порошка. Изучение микроструктуры и пористости обработанных образцов проводили с помощью металлографического микроскопа Neophot 32. Увеличение микроскопа составляет от 10 до 2000 раз. Полученные данные по пористости покрытий представлены в табл. 5 и 6.

Таблица 2

№ Образца	I, A	Р _{отр} , кН σ _{си} , МПа		σ _{сц.ср} , МПа
25-8.12.17	250	5,323	10,843	
26-8.12.17	250	5,073	10,334	10,586
27-8.12.17	250	5,193	10,58	
28-8.12.17	300	5,317	10,832	
29-8.12.17	300	5,824	11,865	11,302
30-8.12.17	300	5,503	11,21	
31-8.12.17	350	5,559	11,324	
32-8.12.17	350	5,846	11,91	11,651
33-8.12.17	350	5,753	11,72	

Данные, полученные при разрыве образцов (плазмотрон F4)

Рис. 3. Зависимость адгезионной прочности покрытия от силы тока

Fig. 3. Dependence of coating adhesion strength from current rate

Толщина покрытия (плазмотрон ПМ-1)

Таблица 3

No official LA	ΤA	<i>h_i,</i> мкм					h yang	Среднее
л≌ооразца	<i>I</i> , A	1	2	3	4	5	$n_{\rm cp}$, MKM	$h_{\rm cp}$, мкм
13-28.11.17	150	110	131	112	130	112	119	
14-28.11.17	150	125	131	130	146	139	134,2	125,9
15-28.11.17	150	110	139	111	131	131	124,4	
16-28.11.17	200	121	126	112	132	129	124	
17-28.11.17	200	148	131	132	140	151	140,4	132,5
18-28.11.17	200	127	120	144	136	138	133	
19-28.11.17	250	124	118	143	151	129	133	
20-28.11.17	250	159	131	128	152	135	141	137,1
21-28.11.18	250	131	120	152	136	147	137,2	
22-28.11.18	300	144	126	127	141	122	132	
23-28.11.18	300	135	143	161	150	141	146	139,7
24-28.11.18	300	153	131	130	149	142	141	

Примечание: *I* – значение силы тока (А), при котором проводилось напыление; *h_i* – толщина покрытия в точке замера; *h_{cp}* – среднее арифметическое всех значений толщины в точках замера.

Среднее h_i , мкм № образца *I*, A *h*_{cp}, мкм *h*_{cp}, мкм 34-8.12.17 107,7 35-8.12.17 36-8.12.17 37-8.12.17 38-8.12.17 118,3 39-8.12.17 40-8.12.17 41-8.12.17 122,0 42-8.12.17

Рис. 4. Зависимость толщины покрытия от силы тока

Fig. 4. Dependence of coating thickness from current rate

Значения пористости покрытий (плазмотрон ПМ-1)

Таблица 5

№ образца	I, A	П, %	П _{ср} , %
13-28.11.17	150	20	
14-28.11.17	150	23	23
15-28.11.17	150	26	
16-28.11.17	200	19	
17-28.11.17	200	20	21,3
18-28.11.17	200	25	
19-28.11.17	250	17	
20-28.11.17	250	19	18,8
21-28.11.18	250	20,5	
22-28.11.18	300	13	
23-28.11.18	300	15	14,7
24-28.11.18	300	16	

Примечание: *I* – величина силы тока, при которой проводилось напыление (А); П – пористость покрытия (%); П_{ср} – среднее значение пористости для образцов с напылением на одном режиме.

Толщина покрытия (плазмотрон F4)

Таблица 4

Таблица б

Зна	чения пористости покрыти	и (плазмотрон F4)	
№ образца	I, A	П, %	Пср, %
34-8.12.17	250	32	·
35-8.12.17	250	31	30
36-8.12.17	250	27	
37-8.12.17	300	27	
38-8.12.17	300	28	28
39-8.12.17	300	30	
40-8.12.17	350	25,5	
41-8.12.17	350	24	26
42-8.12.17	350	28,2	

Рис. 5. Зависимость пористости покрытий от силы тока

+ Плазмотрон "ПА-34М

× Плазмотрон "F4"

Fig. 5. Dependence of coating porosity from current rate

По данным табл. 5, 6 построен график зависимости пористости покрытия от величины силы тока для двух плазмотронов (рис. 5). Полученные результаты показывают, что пористость покрытий, полученных на плазмотроне ПМ-1, меньше примерно на 13 %, что также происходит за счет равномерного прогрева напыляемого порошка.

Заключение. Результаты данной работы показывают, что характеристики покрытий, напыленных плазмотроном ПМ-1, выше полученных на промышленном плазмотроне F4 (Switzerland). Повысились прочность сцепления на 20 %, толщина покрытий и коэффициент использования материала – примерно на 15–18 %, а пористость снизилась на 13 %.

Библиографические ссылки

1. Хасуй А. Техника напыления. М. : Машиностроение, 1975. 288 с.

2. Кудинов В. В. Плазменные покрытия. М. : Наука, 1977. 270 с. 3. Кудинов В. В., Иванов В. М. Нанесение плазмой тугоплавких покрытий. М. : Машиностроение, 1981. 212 с.

4. Газотермические покрытия из порошковых материалов : справочник / Ю. А. Харламов [и др.]. Киев : Наукова думка, 1987. 544 с.

5. Копылов В. И., Шатинский В. Ф. Исследование процессов в контактной зоне при плазменном напылении и оценка их параметров // Неорганические и органосиликатные покрытия. Л. : Наука, 1975. С. 96–106.

6. Пузряков А. Ф. Теоретические основы технологии плазменного напыления : учеб. пособие. 2-е изд., перераб. и доп. М. : Изд-во МГТУ им. Н. Э. Баумана, 2008. 235 с.

7. Харламов Ю. А. Факторы, влияющие на адгезионную прочность газотермических покрытий // Защитные покрытия на металлах. Киев, 1988. Вып. 22. С. 30–34.

8. Полак Л. С., Суров Н. С. Исследование взаимодействия частиц порошка с потоком плазмы в сопле // Физика и химия обработки материалов. 1969. № 2. С. 19–29.

9. Михеев А. Е., Колмыков В. А. Повышение эксплуатационных характеристик поверхностей элементов конструкций летательных аппаратов. Автоматизация процессов обработки. М. : МАКС Пресс, 2002. 224 с.

10. Михеев А. Е., Стацура В. В., Никушкин Н. В. Оборудование для нанесения качественных газотермических покрытий // Применение газотермических покрытий в машиностроении : Ш отраслевая науч.техн. конф. М., 1990. С. 84–87.

11. Обработка тугоплавких оксидов в низкотемпературной плазме / В. В. Стацура [и др.] // Материалы и технологии XXI века : сб. науч. тр. Всерос. научно-техн. конф. Пенза, 2001. С. 123–125.

12. Донской А. В., Клубникин В. С. Электроплазменные процессы и установки в машиностроении. Л. : Машиностроение. Ленингр. отд-ние, 1979. 221с.

13. Жуков М. Ф., Смоляков В. Я., Урюков Б. А. Электродуговые нагреватели газа (плазмотроны). М. : Наука, 1973. 232 с.

14. Явления переноса в низкотемпературной плазме / под ред. А. В. Лыкова [и др.]. Минск : Наука и техника, 1969. 248 с.

15. Пат. России RU 2276840, МКИ H 05 H 1/26, С 23 С 4/00. Электродуговой плазмотрон Саунина / Саунин В. Н. № 2004120804/06. Заявл. 07.07.2004 ; опубл. 20.05.2006.

References

1. Khasuy A. *Tekhnika napyleniya* [Sputtering technique]. Moscow, Mashinostroyeniye Publ., 1975, 288 p.

2. Kudinov V. V. *Plazmennye pokrytiya* [Plasma coatings]. Moscow, Nauka Publ., 1977, 270 p.

3. Kudinov V. V., Ivanov V. M. *Naneseniye plazmoy tugoplavkikh pokrytiy* [Plasma application of refractory coatings]. Moscow, Mashinostroyeniye Publ., 1981, 212 p.

4. Borisov Yu. S., Kharlamov Yu. A., Sidorenko S. L., Ardatovskaya E. N. *Gazotermicheskiyye pokrytiya iz poroshkovykh materialov: Spravochnik* [Gasothermic coatings from powder materials: Reference]. Kiev, Naukova dumka Publ., 1987, 544 p.

5. Kopylov V. I., Shatinskiy V. F. [Investigation of processes in the contact zone during plasma deposition and estimation of their parameters]. *Neorganicheskiye i organosilikatnyye pokrytiya*. 1975, P. 96–106 (In Russ.).

6. Puzryakov A. F. *Teoreticheski-yye osnovy tekhnologii plazmennogo napyleniya* [Theoretical Foundations of the Technology of Plasma Sputtering]. Mos-

cow, Izdatel'stvo MGTU im. N. E. Baumana Publ., 2008, 235 p.

7. Kharlamov Yu. A. [Factors influencing the adhesion strength of gas-thermal coatings]. *Zashchitnye pokrytiya na metallakh*. 1988, No. 22, P. 30–34 (In Russ.).

8. Polak L. S., Surov N. S. [Investigation of the interaction of powder particles with the plasma flow in the nozzle]. *Fizika i khimiya obrabotki materialov*. 1969, No. 2, P. 19–29 (In Russ.).

9. Mikheev A. E., Kolmykov V. A. *Povysheniye ek-spluatatsionnykh kharakteristik poverkhnostey elementov konstruktsiy letatel'nykh apparatov. Avtomatizatsiya protsessov obrabotki* [Improving the performance characteristics of the surfaces of structural elements of aircraft. Automation of processing processes]. Moscow, MAKS Press Publ., 2002, 224 p.

10. Mikheev A. E., Statsura V. V., Nikushkin N. V. [Equipment for the application of high-quality gasthermal coatings]. *III otraslevaya nauchnotekhnicheskaya konferentsiya "Primeneniyye gazotermicheskikh pokrytiy v mashinostroyyenii"* [III branch scientific and technical conference "Application of gasthermal coatings in mechanical engineering"]. Moscow, 1990, P. 84–87 (In Russ.).

11. Mikheyev A. E., Statsura V. V., Ivasev S. S., Girn A. V. [Processing of refractory oxides in lowtemperature plasma]. *Sb. nauchnykh trudov Vserossiyskoy nauchno-tekhnicheskoy konferentsii "Materialy i tekhnologii XXI veka"* [Sb. scientific works of the All-Russian scientific and technical conference "Materials and technologies of the XXI century"]. Penza, 2001, P. 123–125 (In Russ.).

12. Donskoy A. V., Klubnikin V. S. *Elektroplazmennyyye protsessy i ustanovki v mashinostroyenii* [Electroplasma processes and installations in mechanical engineering]. Leningrad, Mashinostroyyeniye Publ., 1979, 221 p.

13. Zhukov M. F., Smolyakov V. Y., Uryukov B. A. *Elektrodugovye nagrevateli gaza (plazmotrony)* [Electric arc gas heaters (plasmatrons)]. Moscow, Nauka Publ., 1973, 232 p.

14. *Yavleniya perenosa v nizkotemperaturno y plazme* [Transport phenomena in a low-temperature plasma]. Ed. A. V. Lykova. Minsk, Nauka i tekhnika Publ., 1969, 248 p.

15. Saunin V. N. *Elektrodugovoy plazmotron Saunina* [Electric arc plasmatron Saunina]. Patent RF, No. 2276840, 2006.

© Михеев А. Е., Гирн А. В., Раводина Д. В., Якубович И. О., 2018