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The optimal control problem for nonlinear dynamic systems is considered. The proposed approach is based on both 

partially analytical and partially numerical techniques of the optimal control problem solving. Optimal control problem 
is reduced to unconstrained extremum problem, which is related to seeking for the initial point of the co-state variables 
that would satisfy the boundaries. To solve the optimization problem, well-known global optimization techniques are 
suggested and compared. The performance of the evolutionary strategies algorithm was increased by implementing the 
special restarting condition in the scheme. 
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Рассматривается задача нахождения оптимального управления для нелинейных динамических систем. 

Предложенный подход основан на частично аналитическом и частично численном решении задачи оптималь-
ного управления. Исходная задача сводится к задаче поиска экстремума функций без ограничений, решением 
которой являются начальные координаты для сопряженных переменных, при которых удовлетворяются гра-
ничные условия. Для решения приведенной задачи сравнивались различные широко известные методы глобаль-
ной оптимизации. Эффективность метода эволюционных стратегий была повышена через введение специаль-
ного условия на перезапуск алгоритма. 
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In this paper the idea of modified evolutionary strate-

gies algorithm performance improvement is investigated. 
Some hypotheses about the ways to increase the effi-
ciency were put forward. In previous work the different 
evolutionary and nature-based algorithm were examined 
and it was shown that these techniques are not reliable, so 
there is a need in special operands to be implemented. 
Current work consists of problem definition, previous 
results and suggested improvements. 

The optimal control problem for dynamic systems 

with one control input and integral functional is consid-
ered. Since the problem is old and it originates from the 
practical needs, there exist many techniques to solve the 
optimal control problem in different problem definitions 
and for different systems. But the developing of the mod-
ern technologies creates new optimal control problems 
that cannot be solved via well-known and classical ap-
proaches. The main problem is nonlinearity of the system 
model or the criterion. In general case, there is no univer-
sal analytical technique that guarantees the solution of 
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nonlinear differential equation to be found. But using the 
maximum principle, we can always determine the charac-
teristics of the function that is suspected to be the solution 
of the optimal control problem. 

On the other hand, the numerical approaches are use-
ful and efficient but only for some problems that they 
were designed for. Any control function approximation 
technique that is being used to determine the solution for 
the initial optimal control problem is related with reduc-
tion of the problem to extremum seeking on the real vec-
tor field. And the problem reduction uses a convolution of 
different objective functions and penalty functions for all 
the constraints, and it requires more computational re-
sources and more efficient optimization algorithms. There 
is no doubt that the direct method based techniques are 
efficient, but increasing of accuracy of the function ap-
proximation leads to increasing of extremum problem 
dimension.  

The indirect method of solving the optimal control 
problem is related with solving the extremely difficult 
boundary-value problem, but the found solution gives us 
the proper control function with the known structure. In 
the given study the shooting method is based on the modi-
fied evolutionary optimization algorithm.  

It is important to highlight that there is a sufficient 
benefit of using the information science techniques of 
solving the complex optimization problems. The modern 
methods and algorithms from the fields of informatics, 
bioinformatics and cybernetics are reliable, flexible and 
highly efficient techniques. And it is possible to improve 
them for every distinct optimization problem with unique 
characteristics via modifying the schemes, operators or 
hybridizing the algorithms. 

Many works on optimal control problem solving for 
nonlinear dynamic systems are about some specific tasks. 
Many works are about the approaches to solve optimal 
control problems for affine nonlinear systems, like the 
work mentioned before, for example, [1] and [2]. In the 
last article the studied problem is related to optimal con-
trol of nonlinear systems via usage of the Lyapunov func-
tions, but only one boundary in problem definition is con-
sidered. Also, in article [3] the approach of predictive 
optimal control for nonlinear systems is considered. There 
are plenty of numerical techniques application examples, 
[4]. Actually, since the problem is complex and there are 
many problems with unique features, and there are many 
different problem definitions for optimal control. 

These techniques also require an analytical form of the 
system state and fit only the considered structures. And in 
our study, the proposed approach with implementation of 
some efficient global optimization technique is suggested 
to be applicable and reliable for solving many optimal 
control problems, as an effective analogue to shooting-
based techniques. 

In the study [5] symbolic-numeric indirect approach is 
considered, which is based on Newton Affine Invariant 
scheme for solving boundary value problem, which fits 
the considered systems and is being different technique of 
solution seeking. Following scheme can find also a local 
optimum. 

The evolutionary strategies algorithm was used to 
solve the optimal control problem, but as a direct method. 
In the paper [6] the control function was discretized and 
every part of it was optimized via evolutionary strategies 
algorithm. That means, that there a as many optimization 
variables, as many discrete points are approximating the 
control. 

The method of semi-analytical and semi-numerical 
optimal control problem solving is considered. The first 
part of the method is based on the Pontryagin’s maximum 
principle [7], after determination of the Hamiltonian, the 
system with co-state variables can be used. For the new 
system that is a transformation of the initial problem it 
becomes possible to reduce the optimal control problem 
to extremum seeking on a real vectors’ field. 

Let the system be described with nonlinear differential 
equation  

( , , ),dx f x u t
dt

=                            (1) 

where ( ) : n nf R R R R+⋅ × × →  is a vector function of its 

arguments; nx R∈ is a vector of system state; u R∈  is a 
continuous control function; n  is the system dimension. 

We need to find a control function u(t) that would 
bring the system from the initial point 0(0)x x=  to the 

end point *( )x T x=  within a finite time T. Also, the 
control function and the system state are the functions that 
deliver the extremum to the given functional 

0

( , ) ( , ) .
T

I x u F x u dt extr= →∫                 (2) 

To find the solution for the variational problem with 
constrains one can use a common technique. First of all, 
one should find the Hamiltonian [7], that is defined by the 
following equation: 

( , , ) ( , ) ( , , )H x u t F x u p f x u t= − + ⋅ ,          (3) 

 therefore the system with co-state variables p  can be 
determined with equations 

( , , )dx f x u t
dt

= , dp dH
dt dx

−
= .              (4) 

The given system (4) is completed with system state 
and co-state variables’ starting points 0(0)x x=  and 

0(0)p p= , respectively. It actually means, that the 
control function ( )u t  can be determined by choosing dif-
ferent values for starting point for the co-state variables, 

0p . To close up the system and to determine the control 
function as the function of state or co-state variables, the 
condition of Hamilton stationary is used, 

0dH
du

= .                                   (5) 

Since the differentiation of the symbolic expression is 
not a common problem, the forming of the system in the 
current study was not made automatically. Anyway, some 
mathematical softwares are able to operate with analytical 
problems, simplify expressions and differentiate them. 
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That is why it is seems promising that the general method 
can be realized in one programm in the future. 

The structure of the control function is determined by 
equation (5). After using of the transversability 
conditions, by changing the starting point of the co-state 
variables, we change the control function and the solution 
of the optimal control problem.  

Normally, it means that the proper vector of the co-
state variables initial point, which provides the condition 

*( )x T x=  would give us the solution for the whole 
problem, since the functional (2) and the differential 
equation (1) are forming the system (4). Initial point is the 
real vector and it could be searched with some 
optimization technique. 

Since the main problem is reduced to optimization 
problem on the field nR , let the 0(0)( ), ( ) p px t p t =  be the 

solution for the system (4) in case of 0(0)p p=  is being 
the starting point fort he co-state variables. Now it is 
possible to define a criterion, 

0
0

0 *
(0)( ) ( ) minp p

p
K p x x T == − → .        (6) 

The proposed criterion generally is multimodal, com-
plex function of its arguments. It is not known, of course, 
where any extremum is located. Moreover, if the initial 
system (1) or functional (2) that forms the Hamiltonian 
(3) is nonlinear, so there is no analytical solution for the 
given criterion (6) and it can be evaluated only numeri-
cally. 

The given criterion (6) is being transformed into fit-
ness function for the evolutionary algorithms 

0
0

1( )
1 ( )

fitness p
K p

=
+

, 

so the fitness function is a mapping:  [0, 1]nR → . The 
greater fitness is, the better current solution is. 

To prove the high complexity of the optimization 
problem let the system be defined by equation 

1 0

1

ln( ) cos( )
( , , )

sin( ) ( )
x x

f x t u
t x u t

+⎛ ⎞
= ⎜ ⎟⋅ +⎝ ⎠

, 1T = , 

0 1
2

x ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 
2

( )
5

x T ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

,                       (7) 

and the integrand function for the functional of the opti-
mal control problem 

2( , ) min.
u

F x u u= →                         (8) 

is considered. Then, it is necessary to define the extended 
system (4), 

1 0

1
1

0 0 0 1

0

1

ln( ) cos( )

sin( )
2( , , ) ,sin( ) cos( )P

x x
p

t x
F x p t x p t x p

p
x

+⎛ ⎞
⎜ ⎟
⎜ ⎟⋅ +
⎜ ⎟

= ⎜ ⎟⋅ − ⋅ ⋅⎜ ⎟
−⎜ ⎟

⎜ ⎟
⎝ ⎠

 

since we closed up the system with condition (5), 
10 ( )

2
pdH u t

du
= → = . 

Now, having the system with co-state variables and 
the structure of the control function it is possible to form 
an optimization problem for initial point of co-state vari-
ables, so the end point of the system state would be 
achieved at time T .  

As one can see, the nonlinear differential equation 
consists of logarithm function, trigonometric functions 
and the system itself is nonstationary.  

 

 
 

Fig. 1. The surface of the criterion (6) for optimal control problem (7)–(8) 
 

 
 

Fig. 2. The surface of the criterion (6) for optimal control problem (9)–(10) 
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The mapping (6) for the given problem is shown on 
the fig. 1. The surface was made via evaluating numeri-
cally the nonlinear differential equation for extended sys-
tem, varying the initial point of the co-state variables. As 
it can be shown on the current surface some extremum 
problems that are reduced from the optimal control prob-
lems  have a lot of local maximums that are less than 1 
and so do not satisfy two-point problem, and among them 
there could be closed sets or distinct points, that delivers 
extremum to criterion (6) and it equals 1. 

Let us describe the next optimal control problem for 
the plant with inverted pendulum, which movement is 
determined with system of nonlinear differential equation 

1

1 0 0
( , , )

sin( ) ( ) cos( )
x

f x t u
x x u t x

⎛ ⎞
= ⎜ ⎟− + + ⋅⎝ ⎠

, 

5T = , 0 1
1

x ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 
0

.
0

Tx ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                 (9) 

and functional 

0

2
0 ,

( , ) min .
u x

F x u u x= + →                (10) 

is being considered. Then, it is necessary to define the 
extended system (4), 

0
2

1 0
1 0

1 0
0 1 0

1 0

cos ( )
sin( )

2( , , ) ,
sin(2 )

2 cos( )
4

P

x

p x
x x

F x p t
p x

x p x

p p

⎛ ⎞
⎜ ⎟

⋅⎜ ⎟− + +⎜ ⎟
= ⎜ ⎟⋅ ⋅⎜ ⎟− ⋅ + ⋅ −
⎜ ⎟
⎜ ⎟− +⎝ ⎠

 

because we closed up the system with condition (5), 
1 0cos( )

0 ( )
2

p xdH u t
du

⋅
= → = . 

The mapping (6) for current problem is shown on the 
fig. 2. 

Every optimal control problem reduced to extremum 
problem for vector function with unknown characteristics 
and behavior of the criterion. 

As it can be seen on figures, the problem is complex. 
Moreover, there is no any information about the location 
of the extremum. 

To sum up, seeking for the solution of the reduced 
problem, in general, is associated with the global optimi-
zation technique that works on the vector field with no 
constraints. Anyway, it is possible to use the optimization 
techniques, which works on the compact, but then the 
special procedure of extending the compact or switching 
to different one should be implemented.  

Since many optimization techniques are suitable for 
the considered problem and deal with its features, it was 
suggested to compare these well-known techniques: evo-
lutionary strategies, differential evolution and particle 
swarm optimization.  

The main principle of evolutionary strategies (ES) is 
described in [8]. To provide the efficiency growth evolu-
tionary strategies algorithm was modified. Another 
modification of the evolutionary strategies algorithm 
suggested is the CMA-ES, which is described in [9] and 
uses the covariance matrix adaptation. As the next 

optimization technique the differential evolution (DE) 
algorithm is suggested, which main principle is described 
in [10]. The last considered method of extremum seeking 
is the partial swarm optimization (PSO), which is 
described in [11]. 

The random coordinate-wise real-valued genes 
optimization (LO) has been implemented for the 
algorithms performance improvement. The optimization 
is fulfilled in the following way. For every 2N  randomly 

chosen real-valued genes for 1N  randomly chosen 

individuals 3N  steps in random direction with step  
size lh  are executed.  

For problems that were described above: (7)–(8), (9)–
(10), we set the maximum numbers of criterion evaluation 
to 8000, and tested different setting of the given 
algorithms. The number of algorithms’ iterations and the 
size of populations were varied too: 1600 and 5, 800 and 
10, 400 and 20, 200 and 40, 100 and 80, respectively. 

Since the proposed optimization techniques have 
different natures and their settings were varied regarding 
to the features of algorithms. For the evolutionary 
strategies techniques the selection was varied: 
proportional, rank, tournament; crossover operator was 
varied: intermediate, weighted intermediate and discrete; 
mutation: classical and modified, with mutation 
probability equals to 1 k . For differential evolution 
technique the settings were chosen due to 
recommendation given: 0,5rC =  and 

{ }0, 2 : 10,iF a i i i N∈ = ⋅ ≤ ∈ . For the particle swarm 
optimization settings were taken from the followig sets: 

{ }0,5 : 4,i i i Nω∈ ⋅ ≤ ∈ , { }1,2 0, 4 : 6,i i i Nϕ ∈ ⋅ ≤ ∈ . The 
initial population was randomly generated, 

(0,10)iop N∈ , (0,1)isp N∈  and (0,1)iv N∈ . For the 
ES+LO technique, the settings for LO and the number of 
individuals and populations were chosen as the numbers, 
which sum is equal to maximum number evaluation. The 
settings for the CMA-ES algorithm were set as it is 
recommended in reference, for this technique the only 
numbers of populations and individuals were varied. 

It is important to highlight the fact of stagnation of 
some algorithms. For the problem (9)–(10) the average of 
the fitness function for every population and the fitness of 
the best individual are shown on the fig. 3. These curves 
are the averaging of the presented variables after 20 restarts 
of algorithms with the same settings. The horizontal axis is 
the number of iteration for every algorithm; vertical axis is 
the fitness function value. As one can see, there are many 
iterations made by the algorithm that gives no solution 
improvement. Moreover, the scouting of the surface does 
not give any sufficient result.  

So the first problem is related with the stagnation of 
the algorithms, and the second important thing is reaching 
the global extremum point, for dissipative fitness 
functions. Let us compare the efficiency of algorithms for 
two different problems (7)–(8) and (9)–(10). In the table  
1 the average values of the fitness function for the found 
solution are presented. 
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In table 2 the probability estimation of 
1 ( *) 0.05fitness op− <  is considered, since that 
algorithms can reach local optimum point for (9)–(10), it 
is easier to add one more characteristic – chances to reach 
the global optimum. 
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Fig. 3. Behaviour of average fitness function value 

and fitness of the best individual. Thick lines are the  
average fitness and thin lines are the best fitness 

 
Table 1 

Average values of the fitness function for different  
techniques with the most efficient settings 

 
 Algorithm 
Problem ES DE PSO CMA-ES ES+LO 

(7)–(8) 0,97 0,98 0,95 0,99 0,99 
(9)–(10) 0,93 0,95 0,96 0,94 0,97 

 
Table 2 

The estimation of probability to return solution  
that is close to the global optimum 

 
 Algorithm 
 ES DE PSO CMA-ES ES+LO 

Problem 0,3 0,5 0,6 0,35 0,65 
 
One can put forward a hypothesis about improvement 

of the algorithm performance via implementing the  
 

critique, which aim would be detecting the stagnation of 
an algorithm. If for chosen numer of populations there is 
no improvement of the best solution the population is 
being regenerated. 

In the current study the following scheme was 
investigated: 

– If last tailn  populations best solution is not 
changing, i. e. max( ) min( ) tailtail tail boarder− > , where 

, tailtail tail n= is the vector of best solutions and 

tailboarder  is critique parameter – algorithm is restarting; 
– If algorithm is restarting, then the database is 

extended with new solution found: 
_database database best solution= ∪ ; 

– If the algorithm is not restarting and 
database ≠ ∅ , then if  

_______________
_ , 1,i bestbest set database boarder i database− < = ,  

where bestboarder  is another critique parameter; 
– There is also a possibility to change the expected 

value of the initial population distribution, i. e. 
(0, )restartcenter center N= + σ . 

In the current investigation, all the algorithms’ settings 
and population, individual numbers were varied. Due to 
given problems, the hybrid evolutionary strategies 
algorithm was the most effective in searching the 
extremum and reliable in case of the problems with 
objective function that have a surface as it is shown on 
figure 2. After all the runs, the best settings were 
estimated as following ones: 20 individuals for 200 
populations, tournament selection (10 %), discrete 
crossover, modified mutation (mutation probability 0,75) 
and 1 2 / 2IN N N= = , where IN  is population 
size, 3 0.1N = , with evaluations number limitation equal 
to 8000. 

To investigate the algorithm performance two 
different schemes were examined: with changing of the 
expected value for the initial population and without it. 
The size of tail was varied from 5 to 20 and boarder was 
0,005, 0,01, 0,05, 0,1. The examination was done on (9)–
(10) problem. For every setting of the critique, the global 
solution was found at least once. It means that the 
restarting sufficienly increases efficiency oft he 
algorithm. 

 

 
 

Fig. 4. Relation between the number of restarts (left) and the number of global optimum  
points found (right) for different boarders and tail sizes 
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If we compare two schemes, the sum of cases when 
algorithm founded global optimum point for different 
settings is 512 and 476 for algorithm with changing of 
expected value and not, respectively. The number of total 
runs was 796 and 819, the number of populations that was 
aborted because of their best solution being close to one 
from the set was 534 and 516, respectively. The last fact 
means that the checking the distance between point that 
was already suspected to be «final» improves the per-
formance as well and prevent from extra evaluations. On 
the fig. 4 the relation between increasing of the tail size 
and number of restarts for different boarders is on the left 
diagram, and number of global optimum points found for 
different boarder values and increasing of the tail size is 
on the right diagram.As it can be seen on the figures, 
there is nonlinear influence of increasing the size of the 
tail, but the size of the tail does change the algorithm 
efficiency, as well as the boarder size. The further study 
will be focused on different schemes of critique’s action 
and detection and ways to adapt the new parameters. 
Anyway, even now, with the same number of function 
evaluation we increased the estimated probability to find 
the desired solution from 0.65 to 1.  
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Intelligent information technologies enable to solve complex data mining problems in various domains of human 

activity. In this paper such popular techniques as artificial neural networks, fuzzy rule based systems and neuro-fuzzy 
systems are considered. A genetic programming algorithm is used for building intelligent systems ensembles in order to 
improve the performance and reliability of decision making. The methods proposed are applied to time series prediction 
task. The results obtained are compared to other state-of-the-art time series forecasting techniques. 
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