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This paper considers genetic algorithm (GA) and ant colony optimization algorithm (ACO) with the automated
choice of operators for the travelling salesman problem solving. The choice is based on operator probabilistic rates
calculated during algorithm execution. The performance comparison with other heuristics such as Lin-Kernigan heuris-
tic (3-opt) and Intelligent Water Drops algorithm (IWDs) is fulfilled and competitive results are demonstrated.

Keywords: genetic algorithm, travelling salesman problem, ant colony algorithm.
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Paccmampusaromen cenemuueckuti aneopumm (I'A) u ancopumm onmumusayuu Ha OCHOB8E MYPABLUHBIX KOJOHULL C
ABMOMAMUYECKUM 8b100POM ONepamopos OJis pewenus 3a0avu KomMmueosicepa. Boibop ocnosan na eeposimuocmuom
DPAHIACUPOBAHUL ONEPAMOPO8 8 medeHue pabomul arcopumma. Ilpedcmasneno cpagnenue s¢hpexmusHocmu ¢ Opyeumu
aneopummamu, makumu Kax areopumm Jlun-Kepuueana u aneopumm uHmMeieKmyanibHblx 600AHbIX KANelb, NOKA3aAHbl

coomeemcmeyroujue YuClernovle pe3ylbmamal.

Kniouesvie cnosa: eenemuueckuii ajgeopumm, 3a0aua Kommueosiacepa, aicopumm mypasbutblx KOJIOHU.
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Considered way of GA self-configuration was intro-
duced in [1] where its usefulness was demonstrated on
benchmark problems and in applied problems of neural
networks weights adjustment. This approach was then suc-
cessfully used in solving real world optimization problems
with algorithmically given functions and mixed variables
[2]. This made the approach to be a candidate for the de-
velopment of adaptive algorithms of combinatorial optimi-
zation. This paper considers self-configuring GA, self-
configuring ACO and their application in one of the most
known combinatorial optimization problem named Travel-
ling Salesman problem (TSP). The traveling salesman
problem belongs to the class of NP-complete problems, is
often used to test the newly created algorithms of combina-
torial optimization and it has a lot of applications in rout-
ing, scheduling and many other fields [3]. Performance of
these algorithms is compared with other heuristics namely
Lin-Kernigan heuristic and Intelligent Water Drops algo-
rithm. Results of numerical experiments on benchmark
problems show that suggested approach demonstrates
competitive effectiveness.

Algorithms description

Lin-Kernighan heuristic. One of the classical meth-
ods for solving the traveling salesman problem is a local
search [4], in particular so called k-opt algorithm (Lin-
Kernighan heuristic [5]). TSP solution is presented by
cyclic graph f. The k-opt neighborhood Ny(f) includes all
the tours which can be obtained by removing &k edges
from the original tour f'and adding k different edges such
that the resulting tour is feasible. The essence of the algo-
rithm is to consider neighborhood of current solution. If
there exists a graph g in this neighborhood with better
objective function value, then g becomes current solution.
The procedure is repeated as long as the current solution
can be improved.

Exploring the whole N(f) takes O(n*) operations and,
thus, 2-opt and rarely 3-opt are used in practice. This pa-
per deals with 3-opt because it is more efficient.

Intelligent water drops algorithm. Intelligent water
drops algorithm (IWDs) [6] possesses a few properties of
a natural water drops. The paths that a river follows have
been created by a swarm of water drops. Thus, any swarm
of water drops will influence the rivers path. On the other
side, for a swarm of water drops, the river is the part of
the environment that has an influence over it.
A large influence on the movement of the river shows
which type of soil and how resistant it is to the flow, as it
determines the speed drops. Thus, the path of the water
drops swarm depends on path of the river, type of soil and
its resistance. So the formation of a natural river is the
result of a competition between the water drops and the
environment that resists its movement. Notice that all
natural rivers are full of twists and turns. This is due to
the influence of gravity which pulls the water through the
path of least resistance to the lowest point.

It is assumed that each drop of water is able to transfer
an amount of soil from one place to another. Furthermore,
the soil is transferred from the fast parts of the river to the
slow parts. This makes the fast parts deeper, allowing
them to hold a greater volume of water. The quantity of
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soil a water drop is able to transfer depends on its veloc-
ity. Furthermore, the velocity of a water drop depends on
the amount of soil in its way. The velocity of a water drop
grows faster on a path with less soil. Water drops prefer a
path with the least amount of soil.

On the basis of the above properties Shah-Hosseini in
2007, proposed the Intelligent water drops algorithm [6].
Every intelligent water drop (IWD) has two important
properties: the amount of soil that it carries, and its veloc-
ity. For each IWD, the values of both properties, soil and
velocity, may change as the IWD flows in its environ-
ment. From the mathematical point of view, the environ-
ment is a problem for river sand swarm of water drops
looking for the optimal path.

Velocity of IWD, that moves from its location i to the
location j, is increased by an amount

a,

Avel =——F————— |
b, +c,s0il” (i, j)
where parameters a,, b, and ¢, should be chosen as posi-
tive numbers.

IWD’s soil is increased by removing some soil of the
path ij. The amount of soil added to the IWD is calculated by

a4

Asoil(i, j) =

b, +c, -time* (i, j;vel ™) ’
where ay, by and ¢, are positive parameters. Time is calcu-
lated by the simple laws of physics for linear motion.
HUD(, j)
vel"P

Local heuristic function HUD(. , .) has been defined
for a given problem to measure the undesirability of an
IWD to move from one location to the next. For TSP it is
calculated as follow:

HUD(, j) =[e(i)-e(j)|

where e (i) is vector of coordinates, |||| — Euclidean met-

time(i, J; vel P (¢ +1)) =

ric.
Soil amount between i and j is updated by the amount
of soil removed by the IWD by formula:

soil(i, j) = (1-p,)-s0il(i, j) —p, - Asoil i, /)
The soil of the IWD is increased by the amount of soil
as shown below:
s0il™P = 50il™" + Asoil(i, j)
The probability of choosing location j after i is propor-

tional to the amount of the soil on the path between loca-
tions i and j and can be calculated by formula:

IWD ; ~ _ S (s0il(i, j))
P ()= > f(soil(i, k)’
kel
where
S (soil(i, ) = 6. + 2(s0il(i, )))
and

soil(i, j)

g(soil(i, j)) = soil(i, ) _rlnli/n(soil(l', 1))

if  min(soil(i,1)) > 0

otherwise
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The constant parameter ¢, is a small positive number

to prevent division by zero. V. is a list of visited nodes.

Effectiveness of the algorithm depends on many pa-
rameters. Some of them (velocity updating parameters a,,
b, and c,, soil updating parameters ay, b, u ¢y, global soil
updating parameter p;yp) were fixed in our experiments
according to the recommendations of the algorithm's au-
thor (1, 0.01, 1, 1, 0,01, 1 and 0,9 accordingly). However,
the remaining parameters required settings for a specific
task (significance of the best solution in upgrading of soil
matrix a, local soil updating parameter p,, initial soil on
each edge of the graph InitSoil, initial velocity of each
drop (InitVelocity). Each parameter can take a large num-
ber of values, but in this study we did not set ourselves
the aim of fine-tuning algorithm for a specific task and
therefore considered only 24 variants: a = 0,1, 0,3 or 0,5,
p.= 0,9 or 0,7, InitSoil = 1000 or 10000 and InitVelocity
=20 or 200.

Ant colony optimization algorithm. Ant colony opti-
mization algorithm (ACO) [7] is a nature-inspired optimi-
zation meta-heuristic based on the behavior and organiza-
tion of ant colonies in their search for a food. Being al-
most blind animals, ants anyway can find shortest path
from the nest to the food. For information exchange, ants
use a ferment, or more exactly pheromone, that they leave
on the traversed path. The probability that the ant will
choose a certain path is proportional to the amount of
pheromone on it.

Solutions in ACO are represented as permutation of n
cities and ants chose next city using taboo-list (list of vis-
ited cities) and pheromone matrix at every stage. ACO has
some adjustable parameters: evaporation rate (p), relatively
importance of previous search experience (o) and relatively
importance of the distance between cities ().

Pheromone trails are updated after each ant has com-
pleted a tour by formula:

Ti(t+1) = p-1y(t) + ATy,
where p is parameter such that (1 — p) is evaporation and

S k
AT’/ = Z At ij*
k=1

Here Arf‘/ is an amount of the pheromone that the ant

k leaves on the edge i/ and can be calculated by formula:

>

k
0,
where Q is a constant, L; — length of the k-th ant tour.

Let n; - 1/dj; (dj is distance between i and j) be called
a visibility. The probability of choosing the city j after i is
a function of the distance between cities and amount of
pheromone on the edge ij and can be expressed as follows

[Ti/— (t):la : [T],;,- ][3
> O Il

keallowedy

if ant k uses edge ij in its tour

Atk

g

otherwise

if j e allowed,,
Py =

0,

where allowedy is a list of unvisited by £-th ant cities.

if j ¢ allowed,,
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Some parameters, such as Q and p, does not signifi-
cantly affect the efficiency of the algorithm, so in this
paper we will consider only the parameters o and f3.

Genetic algorithm. A well-known genetic algorithm
(GA) [8] is based on some principals of evolution, but in
the GA for the TSP a chromosome is represented as per-
mutation of the n numbers (number of cities). That is why
some standard operations have a few changes, but many
adjustable parameters remain such as mutation probabil-
ity, the type of selection, etc.

There are three type of selection in genetic algorithm:

1) Tournament selection (parameter is size of the
tournament).

First, we select a random subset of & individuals from
the population and then select the best solution out of this
subset.

2) Fitness proportional selection.

The probability of the i-th individual to be selected is
proportional to its fitness function value fi#; and is calcu-
lated as follows:

fit;
i
j=1
where m is a number of individuals.
3) Rank selection (linear or exponential ranking).
Individual i has rank less than individual j (R; < R)) if
i-th fitness function value is less than j-th fitness function
value (fit; < fit;).
3.1) Linear ranking.
Probability of the i-th individual to be selected is cal-
culated by formula:

bi

R‘ m
p; =———, where Zpk =1

m
ZRk k=1
k=1

3.2) Exponential ranking.

All individuals are assigned a weight according to the
value of fitness function so that the best individual has
weight o; = 1, (k + 1)-th individual has weight

Jop, i Ry =R,
Opyp =

o, A, otherwise,
where A [0;1].

In this case probability of the i-th individual to be se-

lected is
®
m
%

Algorithms self-configuration. All bionic algorithms
have many adjustable parameters and this is a significant
disadvantage because parameter tuning is a difficult task
even for the specialists. Nowadays, for elimination of this
defect one applies the tuning algorithm parameters during
its work or, it can be said, an adaptation [9].

In this study we have investigated the adaptive GA,
which had 8 different selection variants - tournament selec-
tion with size of the tournament equals 2, 4 or 8, rank selec-
tion with a linear ranking, rank selection with exponential

i

b =

@;
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ranking with parameter A equal to 0,95, 0,8 or 0,5, and fit-
ness proportional selection. Also it had 5 different mutation
variants — very low, low, medium, high and very high.
Adaptive ACO had 4 different variants of parameter o and
also 4 variance of parameter 3, in both cases 1, 2, 5 or 10.
Variant of each operator shall be determined sepa-
rately. Let z be a number of variants of operator. In our
situation, for example, z = 8 in case of selection operator
of adaptive GA. If we take a parameter of the algorithm
instead of the operator, and different values of this pa-
rameter instead of operator variants, then z = 4 in case of
parameter & of ACO. So here the essence of adaptation
will be described in terms of operators and their variants.
At the beginning of the algorithm probability of se-
lecting all the options of the operator are the same:
p = 1/z. At each generation, the effectiveness of each
operator variant is estimated in the following way:

>

=1 .
averagefitness; = / s i=12,..,z
n

1

where 7; is a number of individuals obtained by the i-th
variant of the operator; f;; is the value of the fitness func-
tion of the j-th individual obtained by the i-th variant of
the operator; averagefitness; is the average value of the
fitness function of individuals that were generated by the
i-th variant of the operator.

Probability of the operator variant with the largest
value of average fitness (i.e. the most effective) increases
by ((z — 1):K)/(z"N), while the probability of all other op-
erator variants decreases by K/(z'N)), where N is the
number of past generations of the algorithm, K is a con-
stant, usually equals to 2. In addition, there must be a
lower bound of the probability of the operator variant as
no one of its probabilities can be equal to zero. If some
probability reaches lower bound, this variant stops to give
its share in the benefit of the best variant. The sum of
probabilities of all variants of the same operator is always
equal to 1. Thus, the probability distribution of the opera-
tor variant selection is gradually displaced towards the
most effective operator variant from less effective vari-
ants.

Thereby, when the algorithm has to create the next off-
spring from the current population, it firstly must configure
settings, i.e. form the list of operators with the use of opera-
tor probability distributions. Then the algorithm selects
parents with the chosen selection operator, produces an
offspring with the chosen crossover operator, mutates this
offspring with the chosen mutation probability and puts it
into an intermediate population. When the intermediate
population is complete, the fitness evaluation is executed
and the operator rates (probabilities to be chosen) are up-
dated according to the operator’s productivity, i. e. the ratio
of the average offspring’s fitness obtained with this opera-
tor and the offspring population average fitness.

Algorithms work analysis. Algorithms performance
was compared on two well-known benchmark problems
Oliver30 and Eil51. To solve these problems all heuristics
have got as much resource as algorithm 3-opt required on
average (i. e., 52800 objective function calculations in
case of Oliver30 and 342210 in case of Eil51). Results of
numerical experiments averaged on 100 runs are pre-
sented in table 1.

Figure shows one example of algorithms work on
Oliver30 problem in case where the better solution
(423.741) was found. Here we can see some advantage in
the effectiveness of ACO that may be due to the fact that
it begins its work with a solution oriented on the distances
between cities, but not with a completely random as other
algorithms.

Table 1 shows that adaptive methods lose conven-
tional with the best settings not so much. At the same
time, they do not require testing many variants of parame-
ters. Effectiveness of biology inspired algorithms on a
specific task varies considerably depending on the set-
tings.

If we solve the problem only once (that is what we ac-
tually do with real problems), the effectiveness of the
algorithms will be approximately equal to the mean value
on this task and not to the best value. Such a comparison
on the tasks is shown in table 2, where two lines for each
algorithm contain the values of the objective function,
found in the best and average settings through all the set-
tings and columns contain averaging over runs, and the
standard deviation.

Table 1
Adaptive algorithms comparison with other algorithms on the tasks Oliver30, Eil51
3-opt IWDs GA Adaptive GA ACO Adaptive ACO

Oliver30
best 423,741 423,741 423,741 423,741 423,741 423,741
average 428,610 425,500 432,356 434,239 423,782 426,428
std deviation 7,4740 3,7022 13,2365 13,6875 0,1675 3,7653

Eil51
best 428,872 428,872 431,953 429,118 429,484 429,484
average 438,598 437,279 447,943 449,938 432,732 433,936
std deviation 5,0160 5,57137 7,5848 9,94143 3,11622 2,88955
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Examples of the ACO, IWDs, GA and adaptive GA behavior on task Oliver30

Table 2
Adaptive algorithms comparison with other algorithms with different parameters variants
on the tasks Oliver30 and EilS1
WD GA Adaptive ACO Adaptive
3-opt
best average best average GA best average ACO
Oliver30
Best run 423.741 423,741 423,965 423,741 424,139 423,741 423,741 428,684 | 423,741
Average 434.61 426,413 434,75 431,647 442,982 434,485 424,04 443,771 | 426,428
run
Standard 11.931 3,19925 10,1741 11,3784 12,8611 12,7539 0,42986 11,7151 3,7653
deviation
Eil51
Best run 435,58 433,101 450,775 442,672 444,923 440,817 428,872 478,636 429,118
Average 450,346 442,05 468,64 450,913 460,762 457,286 429,866 496,615 434,634
run
Standard 8,59725 8,33447 11,6792 7,6221 10,7719 12,0611 0,74094 11,1774 3,38365
deviation

Both adaptive algorithms show good results on these
problems as they outperform other algorithms with their
settings giving average performance. Although on aver-
age adaptive GA cannot outperform other algorithms with
their best settings and adaptive ACO cannot outperform
conventional ACO with the best settings, one has to re-
mark that we don't know beforehand which settings of the
algorithm on the given task will be the best. There are 16
variants of ACO and 24 variants of GA and IWDs that
means much extra efforts for the determination of these
“best” algorithms before they could win adaptive GA.
One can use the part of these efforts to improve results of
the adaptive GA or adaptive ACO.

Besides, if we deal with real-world problems, possible
situation is the best settings absence. It means that there
are different best settings in the different steps of problem
solving. In such cases self-configuring algorithms bring
much more advantages.

Conclusion. In this paper we compared performance
of some heuristic algorithms of combinatorial optimiza-

tion, such as 3-opt algorithm, intelligent water drops algo-
rithm, conventional genetic algorithm and conventional
ant colony algorithm with self-configuring (adaptive)
genetic and ant colony algorithms.

Our investigations demonstrate that adaptive algo-
rithms are the effective methods of optimization with the
remarkable property, which consists in the fact that the
user does not have to adjust parameters but can have
competitive results in solution quality.

As a future work plans, it can be comparison with
other algorithms, development of adaptive versions of
other algorithms and using suggested approach for solv-
ing real world problems.
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The performance of spoken dialogue systems (SDS) is not perfect yet, especially for some languages. Emotion rec-
ognition from speech (ER) is a technique which can improve the SDS behavior by finding critical points in the human-
machine interaction and changing a dialogue strategy. Inclusion of the speaker specific information, by conducting the
speaker identification procedure (SI) at the set up of ER task could also be used in order to improve the dialogue qual-
ity. Choosing of both appropriate speech signal features and machine learning algorithms for the ER and SI remain a
complex and challenging problem. More than 50 machine learning algorithms were applied in the study for ER and SI
tasks, using 9 multi-language corpora (Russian, English, German, and Japanese) of both acted and non-acted emo-
tional utterance recordings. The study provides the results of evaluation as well as their analysis and future directions.

Keywords: emotion recognition from speech, speaker identification from speech, machine learning algorithms,
speaker adaptive emotion recognition from speech.
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TIpou3zsodumenvHocms OUANO208bIX CUCTEM, OCHOBAHHBIX HA eCIECMEEHHOM S3bIKe, NO-NPENCHEMY HAXOOUMCs Ha
00CMAmMoOYHO HUBKOM YPOGHe, 0COBEHHO OJil HeKOMOpbIX A3bIK06. Pacnosnasanue smoyuti na ocHoge peue6oo cueHana
npedcmasisiem codou noo0xX00, CROCOOHbBIL YIYYUUMb KAYeCe0 pabompl MAKUX CUCHEM NOCPeOCmEoM OnpeoeieHus
KPUMUYECKUX MOYEK 8 OUANI02e MeNHCOY YeTI0BEKOM U KOMNbIOMEPOM U nociedyrwel aoanmayuu ouanoza. Mcnonwso-
6aHuUe nPoyedypbl UOSHMUDUKAYUY YITYHUIdem KaYecmeo PACHO3HABAHUS IMOYUL HA OCHOBE PEYe6020 CUSHANA NOb30-~
eamens, MaK KAk CMAHOBUMCS 8O3MONCHBIM NOCMPOCHUE MOOeiell IMOYULl KOHKPEMHO20 Yelogekd. Beibop nooxoos-
WUX RAPAMEMPOB PEUesblx CUSHALO08 U AN2OPUMMA MOOCTUPOBAHUS Ol 3a0a4 UOCHMUDUKAYUL 2080PAUE20 U PACHO-
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