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tic (3-opt) and Intelligent Water Drops algorithm (IWDs) is fulfilled and competitive results are demonstrated. 

 
Keywords: genetic algorithm, travelling salesman problem, ant colony algorithm. 
 

САМОКОНФИГУРИРУЮЩИЙСЯ ЭВОЛЮЦИОННЫЙ АЛГОРИТМ  
ДЛЯ РЕШЕНИЯ ЗАДАЧИ КОММИВОЯЖЕРА 

 
О. Е. Семенкина, Е. А. Попов, О. Э. Семенкина 

 
Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева  

Российская Федерация, 660014, Красноярск, просп. им. газ. «Красноярский рабочий», 31 
E-mail: oleese@mail.ru, epopov@bmail.ru, semenkina.olga@mail.ru  
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Considered way of GA self-configuration was intro-
duced in [1] where its usefulness was demonstrated on 
benchmark problems and in applied problems of neural 
networks weights adjustment. This approach was then suc-
cessfully used in solving real world optimization problems 
with algorithmically given functions and mixed variables 
[2]. This made the approach to be a candidate for the de-
velopment of adaptive algorithms of combinatorial optimi-
zation. This paper considers self-configuring GA, self-
configuring ACO and their application in one of the most 
known combinatorial optimization problem named Travel-
ling Salesman problem (TSP). The traveling salesman 
problem belongs to the class of NP-complete problems, is 
often used to test the newly created algorithms of combina-
torial optimization and it has a lot of applications in rout-
ing, scheduling and many other fields [3]. Performance of 
these algorithms is compared with other heuristics namely 
Lin-Kernigan heuristic and Intelligent Water Drops algo-
rithm. Results of numerical experiments on benchmark 
problems show that suggested approach demonstrates 
competitive effectiveness.  

Algorithms description 
Lin-Kernighan heuristic. One of the classical meth-

ods for solving the traveling salesman problem is a local 
search [4], in particular so called k-opt algorithm (Lin-
Kernighan heuristic [5]). TSP solution is presented by 
cyclic graph f. The k-opt neighborhood Nk(f) includes all 
the tours which can be obtained by removing k edges 
from the original tour f and adding k different edges such 
that the resulting tour is feasible. The essence of the algo-
rithm is to consider neighborhood of current solution. If 
there exists a graph g in this neighborhood with better 
objective function value, then g becomes current solution. 
The procedure is repeated as long as the current solution 
can be improved. 

Exploring the whole Nk(f) takes O(nk) operations and, 
thus, 2-opt and rarely 3-opt are used in practice. This pa-
per deals with 3-opt because it is more efficient.  

Intelligent water drops algorithm. Intelligent water 
drops algorithm (IWDs) [6] possesses a few properties of 
a natural water drops. The paths that a river follows have 
been created by a swarm of water drops. Thus, any swarm 
of water drops will influence the rivers path. On the other 
side, for a swarm of water drops, the river is the part of 
the environment that has an influence over it.  
A large influence on the movement of the river shows 
which type of soil and how resistant it is to the flow, as it 
determines the speed drops. Thus, the path of the water 
drops swarm depends on path of the river, type of soil and 
its resistance. So the formation of a natural river is the 
result of a competition between the water drops and the 
environment that resists its movement. Notice that all 
natural rivers are full of twists and turns. This is due to 
the influence of gravity which pulls the water through the 
path of least resistance to the lowest point. 

It is assumed that each drop of water is able to transfer 
an amount of soil from one place to another. Furthermore, 
the soil is transferred from the fast parts of the river to the 
slow parts. This makes the fast parts deeper, allowing 
them to hold a greater volume of water. The quantity of 

soil a water drop is able to transfer depends on its veloc-
ity. Furthermore, the velocity of a water drop depends on 
the amount of soil in its way. The velocity of a water drop 
grows faster on a path with less soil. Water drops prefer a 
path with the least amount of soil. 

On the basis of the above properties Shah-Hosseini in 
2007, proposed the Intelligent water drops algorithm [6]. 
Every intelligent water drop (IWD) has two important 
properties: the amount of soil that it carries, and its veloc-
ity. For each IWD, the values of both properties, soil and 
velocity, may change as the IWD flows in its environ-
ment. From the mathematical point of view, the environ-
ment is a problem for river sand swarm of water drops 
looking for the optimal path. 

Velocity of IWD, that moves from its location i to the 
location j, is increased by an amount 

2 ( , )
v

v v

a
vel

b c soil i j
Δ =

+
, 

where parameters av, bv and cv should be chosen as posi-
tive numbers. 

IWD’s soil is increased by removing some soil of the 
path ij. The amount of soil added to the IWD is calculated by 
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where as, bs and cs are positive parameters. Time is calcu-
lated by the simple laws of physics for linear motion. 
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Local heuristic function HUD(. , .) has been defined 
for a given problem to measure the undesirability of an 
IWD to move from one location to the next. For TSP it is 
calculated as follow: 

( , ) ( ) ( )HUD i j e i e j= −  

where ( )e i  is vector of coordinates, ⋅  – Euclidean met-
ric. 

Soil amount between i and j is updated by the amount 
of soil removed by the IWD by formula: 

( , ) (1 ) ( , ) ( , )n nsoil i j soil i j soil i j= −ρ ⋅ −ρ ⋅Δ  

The soil of the IWD is increased by the amount of soil 
as shown below: 

( , )IWD IWDsoil soil soil i j= + Δ  
The probability of choosing location j after i is propor-

tional to the amount of the soil on the path between loca-
tions i and j and can be calculated by formula: 
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The constant parameter sε  is a small positive number 
to prevent division by zero. Vc is a list of visited nodes.  

Effectiveness of the algorithm depends on many pa-
rameters. Some of them (velocity updating parameters av, 
bv and cv, soil updating parameters as, bs и cs, global soil 
updating parameter ρIWD) were fixed in our experiments 
according to the recommendations of the algorithm's au-
thor (1, 0.01, 1, 1, 0,01, 1 and 0,9 accordingly). However, 
the remaining parameters required settings for a specific 
task (significance of the best solution in upgrading of soil 
matrix α, local soil updating parameter ρn, initial soil on 
each edge of the graph InitSoil, initial velocity of each 
drop (InitVelocity). Each parameter can take a large num-
ber of values, but in this study we did not set ourselves 
the aim of fine-tuning algorithm for a specific task and 
therefore considered only 24 variants: α = 0,1, 0,3 or 0,5, 
ρn = 0,9 or 0,7, InitSoil = 1000 or 10000 and InitVelocity 
= 20 or 200. 

Ant colony optimization algorithm. Ant colony opti-
mization algorithm (ACO) [7] is a nature-inspired optimi-
zation meta-heuristic based on the behavior and organiza-
tion of ant colonies in their search for a food. Being al-
most blind animals, ants anyway can find shortest path 
from the nest to the food. For information exchange, ants 
use a ferment, or more exactly pheromone, that they leave 
on the traversed path. The probability that the ant will 
choose a certain path is proportional to the amount of 
pheromone on it.  

Solutions in ACO are represented as permutation of n 
cities and ants chose next city using taboo-list (list of vis-
ited cities) and pheromone matrix at every stage. ACO has 
some adjustable parameters: evaporation rate (ρ), relatively 
importance of previous search experience (α) and relatively 
importance of the distance between cities (β). 

Pheromone trails are updated after each ant has com-
pleted a tour by formula:  

τij(t+1) = ρ⋅τij(t) + Δτij, 
where ρ is parameter such that (1 – ρ) is evaporation and 

Δτij  = 
1

m

k=
∑ Δτ k

ij . 

Here Δτ k
ij  is an amount of the pheromone that the ant 

k leaves on the edge ij and can be calculated by formula: 

Δτ k
ij =
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0,
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where Q is a constant, Lk – length of the k-th ant tour. 
Let ηij = 1/dij (dij is distance between i and j) be called 

a visibility. The probability of choosing the city j after i is 
a function of the distance between cities and amount of 
pheromone on the edge ij and can be expressed as follows 
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where allowedk is a list of unvisited by k-th ant cities. 

Some parameters, such as Q and ρ, does not signifi-
cantly affect the efficiency of the algorithm, so in this 
paper we will consider only the parameters α and β. 

Genetic algorithm. A well-known genetic algorithm 
(GA) [8] is based on some principals of evolution, but in 
the GA for the TSP a chromosome is represented as per-
mutation of the n numbers (number of cities). That is why 
some standard operations have a few changes, but many 
adjustable parameters remain such as mutation probabil-
ity, the type of selection, etc.  

There are three type of selection in genetic algorithm: 
1) Tournament selection (parameter is size of the 

tournament). 
First, we select a random subset of k individuals from 

the population and then select the best solution out of this 
subset. 

2) Fitness proportional selection.  
The probability of the i-th individual to be selected is 

proportional to its fitness function value fiti and is calcu-
lated as follows: 

i
i

1

m

j
j

fit
p

fit
=

=

∑
, 

where m is a number of individuals. 
3) Rank selection (linear or exponential ranking). 
Individual i has rank less than individual j (Ri < Rj) if 

i-th fitness function value is less than j-th fitness function 
value (fiti < fitj). 

3.1) Linear ranking. 
Probability of the i-th individual to be selected is cal-

culated by formula: 
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3.2) Exponential ranking. 
All individuals are assigned a weight according to the 

value of fitness function so that the best individual has 
weight ω1 = 1, (k + 1)-th individual has weight 

1
1

,      ,
,    otherwise, 
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where [ ]0;1λ∈ .  
In this case probability of the i-th individual to be se-

lected is 

i
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m
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j

p

=

ω
=
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Algorithms self-configuration. All bionic algorithms 
have many adjustable parameters and this is a significant 
disadvantage because parameter tuning is a difficult task 
even for the specialists. Nowadays, for elimination of this 
defect one applies the tuning algorithm parameters during 
its work or, it can be said, an adaptation [9]. 

In this study we have investigated the adaptive GA, 
which had 8 different selection variants - tournament selec-
tion with size of the tournament equals 2, 4 or 8, rank selec-
tion with a linear ranking, rank selection with exponential 
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ranking with parameter λ equal to 0,95, 0,8 or 0,5, and fit-
ness proportional selection. Also it had 5 different mutation 
variants – very low, low, medium, high and very high. 
Adaptive ACO had 4 different variants of parameter α and 
also 4 variance of parameter β, in both cases 1, 2, 5 or 10. 

Variant of each operator shall be determined sepa-
rately. Let z be a number of variants of operator. In our 
situation, for example, z = 8 in case of selection operator 
of adaptive GA. If we take a parameter of the algorithm 
instead of the operator, and different values of this pa-
rameter instead of operator variants, then z = 4 in case of 
parameter α of ACO. So here the essence of adaptation 
will be described in terms of operators and their variants. 

At the beginning of the algorithm probability of se-
lecting all the options of the operator are the same: 
 p = 1/z. At each generation, the effectiveness of each 
operator variant is estimated in the following way: 

1 , 1, 2,...,

in

ij
j

i
i

f
averagefitness i z

n
== =
∑

 

where ni is a number of individuals obtained by the i-th 
variant of the operator; fij is the value of the fitness func-
tion of the j-th individual obtained by the i-th variant of 
the operator; averagefitnessi is the average value of the 
fitness function of individuals that were generated by the 
i-th variant of the operator. 

Probability of the operator variant with the largest 
value of average fitness (i.e. the most effective) increases 
by ((z – 1)·K)/(z·N), while the probability of all other op-
erator variants decreases by K/(z·N)), where N is the 
number of past generations of the algorithm, K is a con-
stant, usually equals to 2. In addition, there must be a 
lower bound of the probability of the operator variant as 
no one of its probabilities can be equal to zero. If some 
probability reaches lower bound, this variant stops to give 
its share in the benefit of the best variant. The sum of 
probabilities of all variants of the same operator is always 
equal to 1. Thus, the probability distribution of the opera-
tor variant selection is gradually displaced towards the 
most effective operator variant from less effective vari-
ants. 

Thereby, when the algorithm has to create the next off-
spring from the current population, it firstly must configure 
settings, i.e. form the list of operators with the use of opera-
tor probability distributions. Then the algorithm selects 
parents with the chosen selection operator, produces an 
offspring with the chosen crossover operator, mutates this 
offspring with the chosen mutation probability and puts it 
into an intermediate population. When the intermediate 
population is complete, the fitness evaluation is executed 
and the operator rates (probabilities to be chosen) are up-
dated according to the operator’s productivity, i. e. the ratio 
of the average offspring’s fitness obtained with this opera-
tor and the offspring population average fitness.  

Algorithms work analysis. Algorithms performance 
was compared on two well-known benchmark problems 
Oliver30 and Eil51. To solve these problems all heuristics 
have got as much resource as algorithm 3-opt required on 
average (i. e., 52800 objective function calculations in 
case of Oliver30 and 342210 in case of Eil51). Results of 
numerical experiments averaged on 100 runs are pre-
sented in table 1.  

Figure shows one example of algorithms work on 
Oliver30 problem in case where the better solution 
(423.741) was found. Here we can see some advantage in 
the effectiveness of ACO that may be due to the fact that 
it begins its work with a solution oriented on the distances 
between cities, but not with a completely random as other 
algorithms. 

Table 1 shows that adaptive methods lose conven-
tional with the best settings not so much. At the same 
time, they do not require testing many variants of parame-
ters. Effectiveness of biology inspired algorithms on a 
specific task varies considerably depending on the set-
tings.  

If we solve the problem only once (that is what we ac-
tually do with real problems), the effectiveness of the 
algorithms will be approximately equal to the mean value 
on this task and not to the best value. Such a comparison 
on the tasks is shown in table 2, where two lines for each 
algorithm contain the values of the objective function, 
found in the best and average settings through all the set-
tings and columns contain averaging over runs, and the 
standard deviation. 

 
Table 1 

Adaptive algorithms comparison with other algorithms on the tasks Oliver30, Eil51 
 

 3-opt IWDs GA Adaptive GA ACO Adaptive ACO 
Oliver30 

best 423,741 423,741 423,741 423,741 423,741 423,741 

average 428,610 425,500 432,356 434,239 423,782 426,428 

std deviation 7,4740 3,7022 13,2365 13,6875 0,1675 3,7653 

Eil51 

best 428,872 428,872 431,953 429,118 429,484 429,484 

average 438,598 437,279 447,943 449,938 432,732 433,936 

std deviation 5,0160 5,57137 7,5848 9,94143 3,11622 2,88955 
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Examples of the ACO, IWDs, GA and adaptive GA behavior on task Oliver30 
 

Table 2 
Adaptive algorithms comparison with other algorithms with different parameters variants 

on the tasks Oliver30 and Eil51 
 

IWD GA ACO 
3-opt 

best average best average 
Adaptive 

GA best average 
Adaptive 

ACO 

Oliver30 
Best run 423.741 423,741 423,965 423,741 424,139 423,741 423,741 428,684 423,741 

Average 
run 

434.61 426,413 434,75 431,647 442,982 434,485 424,04 443,771 426,428 

Standard 
deviation 

11.931 3,19925 10,1741 11,3784 12,8611 12,7539 0,42986 11,7151 3,7653 

Eil51 
Best run 435,58 433,101 450,775 442,672 444,923 440,817 428,872 478,636 429,118 
Average 
run 

450,346 442,05 468,64 450,913 460,762 457,286 429,866 496,615 434,634 

Standard 
deviation 

8,59725 8,33447 11,6792 7,6221 10,7719 12,0611 0,74094 11,1774 3,38365 
 

 
Both adaptive algorithms show good results on these 

problems as they outperform other algorithms with their 
settings giving average performance. Although on aver-
age adaptive GA cannot outperform other algorithms with 
their best settings and adaptive ACO cannot outperform 
conventional ACO with the best settings, one has to re-
mark that we don't know beforehand which settings of the 
algorithm on the given task will be the best. There are 16 
variants of ACO and 24 variants of GA and IWDs that 
means much extra efforts for the determination of these 
“best” algorithms before they could win adaptive GA. 
One can use the part of these efforts to improve results of 
the adaptive GA or adaptive ACO. 

Besides, if we deal with real-world problems, possible 
situation is the best settings absence. It means that there 
are different best settings in the different steps of problem 
solving. In such cases self-configuring algorithms bring 
much more advantages. 

Conclusion. In this paper we compared performance 
of some heuristic algorithms of combinatorial optimiza-

tion, such as 3-opt algorithm, intelligent water drops algo-
rithm, conventional genetic algorithm and conventional 
ant colony algorithm with self-configuring (adaptive) 
genetic and ant colony algorithms.  

Our investigations demonstrate that adaptive algo-
rithms are the effective methods of optimization with the 
remarkable property, which consists in the fact that the 
user does not have to adjust parameters but can have 
competitive results in solution quality.  

As a future work plans, it can be comparison with 
other algorithms, development of adaptive versions of 
other algorithms and using suggested approach for solv-
ing real world problems. 
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The performance of spoken dialogue systems (SDS) is not perfect yet, especially for some languages. Emotion rec-

ognition from speech (ER) is a technique which can improve the SDS behavior by finding critical points in the human-
machine interaction and changing a dialogue strategy. Inclusion of the speaker specific information, by conducting the 
speaker identification procedure (SI) at the set up of ER task could also be used in order to improve the dialogue qual-
ity. Choosing of both appropriate speech signal features and machine learning algorithms for the ER and SI remain a 
complex and challenging problem. More than 50 machine learning algorithms were applied in the study for ER and SI 
tasks, using 9 multi-language corpora (Russian, English, German, and Japanese) of both acted and non-acted emo-
tional utterance recordings. The study provides the results of evaluation as well as their analysis and future directions. 
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Производительность диалоговых систем, основанных на естественном языке, по-прежнему находится на 
достаточно низком уровне, особенно для некоторых языков. Распознавание эмоций на основе речевого сигнала 
представляет собой подход, способный улучшить качество работы таких систем посредством определения 
критических точек в диалоге между человеком и компьютером и последующей адаптации диалога. Использо-
вание процедуры идентификации улучшает качество распознавания эмоций на основе речевого сигнала пользо-
вателя, так как становится возможным построение моделей эмоций конкретного человека. Выбор подходя-
щих параметров речевых сигналов и алгоритма моделирования для задач идентификации говорящего и распо-




