
Вестник СибГАУ. № 4(50). 2013

 144

Our future direction is the investigation of the
machine learning algorithm applications in the dynamic
mode. In this case the feature vectors are extracted
consequently every short period of time (for example each
0,01 sec.). Moreover, speaker specific and gender specific
information should be used in order to improve the
emotion recognition accuracy from speech. The emotion
recognition accuracy (as well as a SDS’s performance in
general) might be significantly improved by training of
the speaker specific emotional models and using gender
specific information as well. The next step is the
exploitment of the best algorithms for emotion
recognition and speaker identification from speech in
order to build a speaker dependent emotion recognition
systems.

References

1. Burkhardt F., Paeschke A., Rolfes M., Sendlmeier

W., & Weiss B. (2005, September). A database of Ger-
man emotional speech. In Proc. Interspeech (Vol. 2005).

2. Maxine Eskenazi, Alan W Black, Antoine Raux,
and Brian Langner. Let’s Go Lab: a platform for evalua-
tion of spoken dialog systems with real world use In Pro-
ceedings of Interspeech 2008 Conference, Brisbane, Aus-
tralia.

3. Alexander Schmitt, Benjamin Schatz and Wolf-
gang Minker. Modeling and predicting quality in spoken
human-computer interaction. In Proceedings of the SIG-
DIAL 2011 Conference, Association for Computational
Linguistics, 2011.

4. Schmitt A., Heinroth T. and Liscombe J. On No-
Matchs, NoInputs and BargeIns: Do Non-Acoustic Fea-
tures Support Anger Detection? Proceedings of the SIG-
DIAL 2009. Conference, Association for Computational
Linguistics, London, UK, 2009, p. 128–131.

5. Haq S. and Jackson P. J. B. Multimodal Emotion
Recognition. In W. Wang (ed), Machine Audition: Princi-
ples, Algorithms and Systems, IGI Global Press, ISBN
978-1615209194, chapter 17, 2010, p. 398–423.

6. Available at: http://uudb.speech-lab.org/.
7. Schuller B., Vlasenko B., Eyben F., Rigoll G., &

Wendemuth A. (2009, November). Acoustic emotion rec-

ognition: A benchmark comparison of performances.
In Automatic Speech Recognition & Understanding,
2009. ASRU 2009. IEEE Workshop on, p. 552–557.

8. Michael Grimm, Kristian Kroschel, and Shrikanth
Narayanan. The Vera am Mittag German Audio-Visual
Emotional Speech Database. In Proceedings of the IEEE
International Conference on Multimedia and Expo
(ICME), Hannover, Germany, 2008.

9. Available at: http://www.einslive.de/sendungen/
domian/.

10. Bogdanov D. S., Bruhtiy A. V., Krivnova O. F.,
Podrabinovich A. Ya. and Strokin G. S., 2003. Organiza-
tional Control and Artificial Intelligence, chapter Tech-
nology of Speech Databases Development (in Russian),
p. 448. Editorial URSS.

11. Zablotskiy S., Shvets A., Sidorov M., Semenkin
E. and Minker W. Speech and Language Resources for
LVCSR of Russian. In Proceedings of the LREC 2012,
Istanbul.

12. Available at: http://www.speech.cs.cmu.edu/
databases/pda/README.html.

13. Sidorov M., Schmitt A., Zablotskiy S. and
Minker W. Survey of Automated Speaker Identification
Methods. In Proceedings of Intellegent Environment
2012, Athens, Greece. In Press.

14. Boersma Paul & Weenink David (2013). Praat:
doing phonetics by computer [Computer program]. Ver-
sion 5.3.50, retrieved 21 May 2013 from
http://www.praat.org/.

15. Mark Hall, Eibe Frank, Geoffrey Holmes, Bern-
hard Pfahringer, Peter Reutemann, Ian H. Witten (2009).
The WEKA Data Mining Software: An Update; SIGKDD
Explorations, vol. 11, Issue 1.

16. Mierswa, Ingo and Wurst, Michael and Klinken-
berg, Ralf and Scholz, Martin and Euler, Timm. YALE:
Rapid Prototyping for Complex Data Mining Tasks. In
Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD-06), 2006.

© Сидоров М. Ю., Заблоцкий С. Г.,
Минкер В., Семенкин Е. С., 2013

УДК 519.6+004.9

TWO-STEPS SYSTEM IN SEARCHING SIMILAR WORDS FOR FAST AND RELIABLE
AUTOMATIC CONCATENATION OF RUSSIAN SUB-WORD UNITS

A. Spirina1, S. G. Zablotskiy2, M. Yu. Sidorov2

1Siberian State Aerospace University named after academician M. F. Reshetnev
31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660014, Russian Federation. E-mail: s_nastia@mail.ru

2Ulm University
43, Albert-Einstein-Allee, Ulm, 89081, Germany.

Е-mail: sergey.zablotskiy@uni-ulm.de, maxim.sidorov@uni-ulm.de

In this paper we describe and investigate the two-steps system sorting out inappropriate words in searching of simi-
lar words in the lexicon for automatic concatenation of Russian sub-word units. This two-steps system consists of com-

2nd International Workshop on Mathematical Models and its Applications

 145

puting the Levenshtein distance on the first stage and computing the similarity coefficient by the relevance function on
the second stage. We also compared the performance of the Wagner-Fisher algorithm and the suggested algorithm
SAWT.

Keywords: fuzzy search algorithm, Levenshtein distance, relevance function.

ДВУХУРОВНЕВАЯ СИСТЕМА ПОИСКА СХОЖИХ СЛОВ ДЛЯ ЭФФЕКТИВНОЙ И НАДЕЖНОЙ

АВТОМАТИЧЕСКОЙ КОНКАТЕНАЦИИ СЛОГОВ РУССКОЙ РЕЧИ

А. Спирина1, С. Г. Заблоцкий2, М. Ю. Сидоров2

1 Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева
Российская Федерация, 660014, Красноярск, просп. им. газ. «Красноярский рабочий», 31

E-mail: s_nastia@mail.ru
2Университет города Ульма

Германия, 89081, Ульм, Аллея Альберта Эйнштейна, 43
E-mail: sergey.zablotskiy@uni-ulm.de, maxim.sidorov@uni-ulm.de

Описывается и исследуется двухуровневая система отбора наиболее подходящих слов в поиске схожих слов

по словарю для автоматической конкатенации слогов русской речи. Эта система состоит из вычисления рас-
стояния Левенштейна на первом этапе и вычисления коэффициента сходства с помощью функции релевант-
ности на втором этапе. Мы также сравнили эффективность алгоритма Вагнера–Фишера и предлагаемого
алгоритма SAWT.

Ключевые слова: алгоритм нечеткого поиска, расстояние Левенштейна, функция релевантности.

The lexicon for Russian continuous speech recognition

is much larger than that for English. This fact complicates
the use of standard well developed approaches to language
modeling. Quite a common approach to handle an abundant
lexicon is the employment of sub-units, like syllables or
morphemes. The challenge of such approach is the subse-
quent concatenation of recognized sub-unites.

There exist some related works done to solve this
problem such as [1]. However, further improvement of
the concatenation accuracy and the performance of the
algorithms are required.

Continuous speech is transformed into the sequence of
syllables, but word boundaries are unknown. The task is
to accelerate the automatic concatenation of Russian sub-
word units. For this purpose the Genetic Algorithm (GA)
can be used. However, the likelihood of the sentence gen-
erated by GA should be estimated. The problem can be
partly solved by accelerating the search for the same and
similar words from the lexicon to the words from GA by
exploiting the fuzzy search algorithms.

Fuzzy search. Spell-checkers and different web
search engines (such as Google, Yandex, etc) are also
based on the fuzzy (string) search algorithms. For exam-
ple, the fuzzy search algorithms are used in the web
search engines to generate the results of the “Did you
mean …” suggestion list [2].

The problem of the fuzzy search can be formulated as
follows: “Find in the text or lexicon of size N all the
words matching the original word within the maximum K
possible differences” [2].

There exist different fuzzy search algorithms, such as:
linear search, bitap (Shift-Or or Baeza-Yates-Gonnet, and
its modifications by Wu and Manber), Signature Hashing
Method and others [2].

Fuzzy search algorithms are based on some metric,
i. e. distance function between two strings, which meas-
ures their similarity or difference. One of the most well-
known metrics is the Levenshtein distance.

The Levenshtein distance and the Wagner-Fisher al-
gorithm. The Levenshtein distance (edit distance) be-
tween two strings is the minimum number of single-
character edits (insertion, deletion, substitution) required
to transform one string into the other. [3]

Suppose S1 and S2 are strings, then, mathematically,
the Levenshtein distance can be described by the follow-
ing formula (1):

,

, 1 1, 1, 1

1 2

0, 0, 0
, 0, 0
, 0, 0

min(1, 1,), 0, 0

1, [] []
0,

i j

i j i j i j substitution

substitution

i j
i i j

D
j i j

D D D С i j

if S i S j
С

otherwise

− − − −

= =⎧
⎪ > =⎪= ⎨ = >⎪
⎪ + + + > >⎩

≠⎧
= ⎨
⎩

(1)

Different sources suggest Csubstitution to be equal to 2 in-
stead of 1 in the formula (1). In the following tests Csubstitu-

tion = 2 was used.
There exists a set of algorithms for computing the

Levenshtein distance. Most popular algorithm is the
Wagner-Fisher algorithm [4]. In this work the Wagner-
Fisher algorithm was used, in which Csubstitution is pre-
sented by formula (2):

1 2 1 22* ([], []), [] []
0,

substitutionС
WeightFunction S i S j if S i S j

otherwise

=

≠⎧
= ⎨
⎩

 (2)

Вестник СибГАУ. № 4(50). 2013

 146

Weight Function is the function of weight coefficients
for the symbol comparison. This function provides a set
of rules for the phonetic comparison. It measures the pho-
netic similarity between two words.

To accelerate the performance the lexicon is stored in
one single tree. The Levenshtein distance is computed at
each node of the tree.

But the Wagner-Fisher algorithm has some draw-
backs. This algorithm applied to the tree can sort out ap-
propriate words at the beginning of the tree.

The algorithm of search appropriate words in a tree.
The algorithm SAWT was developed to accelerate the
search for the similar words from the lexicon and to over-
come drawback of the Wagner-Fisher algorithm described
above.

The ASAWT is worthy of using only if the maximum
allowed distance between strings is rather small (here
distance is the measure of difference), for example 2 or 3.
This algorithm is able to overcome the disadvantage of
the Wagner-Fisher algorithm.

The idea of the ASAWT is as follow:
First of all, suppose that:
1. The maximum allowed distance between two

strings is k.
2. S1 of size n is the original string and S2 of size m is

the test string. Furthermore, there is a restriction for n and
m: | n – m | ≤ k (this restriction saves the computational
load while searching).

3. A value of the position p in the original string is
known (starting from p = 0 corresponding to the first in-
dex in the string).

4. A value of the error err is known (starting from
err = 0).

Then the mechanism of the distance computation be-
tween two strings consists of the following steps:

1. Denote ith character of the string S by S[i] and j = 0.

2. 2 1
s

, [,]: [] [];

1, .
i p if i p p k S j S i

p
otherwise

− ∃ ∈ + =⎧
= ⎨−⎩

3. s s1, 1;
, .

p p if p
p

p otherwise
+ + ≠ −⎧

= ⎨
⎩

4. s s, 1;
1, .

err p if p
err

err otherwise
+ ≠ −⎧

= ⎨
+⎩

5. If err > k, then stop the computation. It means that
S1 and S2 are different.

6. j = j + 1
7. If p < n AND j < m, then go to the step 2.
8. err = err + n – p + m – j.
If err ≤ k the strings are decided to be similar, other-

wise the strings are different.
For example, suppose S1 is “TRUST” and S2 is

“TEST”, k = 1 (left table) and k = 3 (right table).
It should be mentioned that the cost for insertion, dele-

tion is 1 and for substitution is 2 like in the Wagner-
Fisher algorithm whit formula (2), but without exploiting
of WeightFunction.

Similarity coefficient. To get more appropriate results
two-step system sorting out inappropriate words from the
lexicon was applied.

At the first step the Levenshtein distance between the
original word (generated by the GA) and the words from
the lexicon is computed. At the second step the similar-
ity coefficient between the original word and the
word from the lexicon is computed by the Relevance
function.

The similarity coefficient is the fractional number be-
tween 0 and 1, 0 means that two words are absolutely
different, 1 means that two words are identical.

There exist different word similarity coefficients, such
as the Sörensen coefficient, the Kulczinsky coefficient,
the Ochiai coefficient, the Szymkiewicz-Simpson coeffi-
cient and Braun-Blanquet coefficient [5]. These coeffi-
cients reflect the similarity coefficient dependence on the
length of the words.

For example, the formula (3) is presents the Sörensen
coefficient:

2 ,S
cK

a b
=

+
 (3)

where a and b are the lengths of the words, c is the num-
ber of the matching characters, which can be computed by
the formula (4) where for computing the Levenshtein dis-
tance (LD) the cost for all edit operations is equal to 1.

max(,)с a b LD= − . (4)

The Relevance function. The Relevance function
gives the similarity coefficient which allows to take into
account the positions of the difference in the word. Thus
the difference at the beginning or at the end of the word is
less critical than in the middle of the word [6].

The similarity coefficient in this case can be computed
by the formula (5) and formula (6):

1
()

;

N

i
r i

R
N

==
∑

 (5)

(1, 2,) (2, 1,)() ,

(1,) (2,)
Match Str Str i Match Str Str ir i

Count Str i Count Str i
+

=
+

 (6)

where Match(S1, S2, i) is the number of the matches for all
substrings of the length i from the string S1 in the
string S2; Count(Str,i) = (len(Str)-i+1); len(S) is the length
of the string S.

For the following tests the Relevance function with
N = 2 was used.

Certain threshold should be specified for the R to dis-
tinguish between similar and non-similar words.

Results. The computer program for testing was writ-
ten in C++ using Microsoft Visual Studio 2010. The lexi-
con consists of 2311465 words. All tests were calculated
by the computer with Intel(R) Core(TM)2 CPU 6700 @
2.66GHz, running Linux. All results are dependent on the
program realization, the characteristics of the computer,
the computer workload, the words for the test and the
lexicon. For testing the words of different size were ran-
domly selected from the lexicon. The results of testing are
presented in the following figures.

2nd International Workshop on Mathematical Models and its Applications

 147

ASAWT for computing the distance

 T R U S T Err T R U S T Err
T 1 0 T 1 0
E 0 0 1 E 0 0 0 0 1
S 0 0 2 S 0 0 1 3
T 2 (err > k, stop) T 1 3

Distance – distance 3
 -

Fig. 1. Computational time for the algorithms with k = 1

Fig. 2. Computational time for the algorithms with k = 2

Abbreviations on the figures:
L1, L2 mean the computation of the Levenshtein dis-

tance using the Wagner-Fisher algorithm without
WeightFunction, with k = 1 and k = 2 correspondingly.

L1+W, L2+W mean the computation of the Leven-
shtein distance using the Wagner-Fisher algorithm with
WeightFunction, with k = 1 and k = 2 correspondingly.

NA1, NA2 mean the computation of the Levenshtein
distance using the ASAWT without the Relevance func-
tion, with k = 1 and k = 2 correspondingly.

NAR1, NAR2 mean the computation of the Leven-
shtein distance using the ASAWT with the Relevance
function, with k = 1 and k = 2 correspondingly.

Вестник СибГАУ. № 4(50). 2013

 148

Computational time for 100 runs of algorithm in sec-
onds is on the vertical axis, the length of the original
words is on the horizontal axis.

Conclusion. To sum it up, from the figures above it
could be seen that the ASAWT with and without rele-
vance function works faster than the Wagner-Fisher algo-
rithm. The final lists of similar words are almost identical.
The two-step system allows to keep the accuracy at the
same level.

However, the algorithm has some drawbacks, namely
there are no weights modeling the closeness of the pro-
nounced sounds. This problem is supposed to be solved in
a future work.

Acknowledgements. This work is partly supported by
the DAAD (German Academic Exchange Service).

References

1. Zablotskiy S., Shvets A., Sidorov M., Semenkin E.

and Minker W. Speech and Language Resources for
LVCSR of Russian. International Conference on Lan-

guage Resources and Evaluation (LREC), Istanbul, Tur-
key, 2012. May.

2. Smetanin N. (2011, March 24). Fuzzy string search.
Nikita’s blog. Search algorithms, software development
and so on. Retrieved July 30, 2013, from http://ntz-
develop.blogspot.ru/.

3. Levenshtein V. I. 1966. Binary Codes Capable of
Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10, February.

4. Wagner R. A., Fischer M. J. The string-to-string
correction problem. J. ACM. 1974, vol. 21, № 1, p. 168–
173.

5. Wikipedia. Similarity index (coefficient). Wikipe-
dia. The free encyclopedia. Retrieved July 30, 2013, from
http://ru.wikipedia.org/ (in Russian).

6. Karakhtanov D. S. Using of fuzzy search algorithm
in processing of data for credit institutions. Audit and
financial analysis. 2010, vol. 2 (in Russian).

© Спирина А. В., Заблоцкий С. Г.,

 Сидоров М. Ю., 2013

УДК 519.6

SELF-ADJUSTED EVOLUTIONARY ALGORITHMS BASED APPROACH
FOR AUTOMATED DESIGN OF FUZZY LOGIC SYSTEMS

V. V. Stanovov, E. S. Semenkin

Siberian State Aerospace University named after academician M. F. Reshetnev

31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660014, Russian Federation
E-mail: vladimirstanovov@yandex.ru, eugenesemenkin@yandex.ru

A new approach to form a fuzzy logic system with evolutionary algorithms is introduced. Several algorithms were

implemented as programs, efficiency measurements were made with and without self-adjustment. A new data represen-
tation method was developed for fuzzy rules base coding in genetic programming method by using reverse polish nota-
tion principle. The genetic algorithm was adapted to adjust linguistic variables semantics. The efficiency of developed
algorithm was shown and compared to analogies on several test regression problems and real classification problems.

Keywords: genetic algorithms, genetic programming, self-adjustment, fuzzy logic system design.

САМОНАСТРАИВАЮЩИЙСЯ ЭВОЛЮЦИОННЫЙ АЛГОРИТМ

ДЛЯ АВТОМАТИЗИРОВАННОГО ФОРМИРОВАНИЯ СИСТЕМ НА НЕЧЕТКОЙ ЛОГИКЕ

В. В. Становов, Е. С. Семенкин

 Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева
Российская Федерация, 660014, Красноярск, просп. им. газ. «Красноярский рабочий», 31

E-mail: nihilanht@mail.ru, eugenesemenkin@yandex.ru

Представлен новый подход для формирования систем на нечеткой логике эволюционными алгоритмами.
Несколько алгоритмов были реализованы в качестве программ, проведены измерения эффективности с само-
настройкой и без таковой. Был разработан новый метод представления данных для кодирования нечетких
правил в генетическом программировании на основе принципа обратной польской записи. Генетический алго-
ритм был адаптирован для настройки семантики лингвистических переменных. Эффективность разработан-
ного алгоритма была показана в сравнении с аналогами на некоторых тестовых регрессионных задачах и
практических задачах классификации.

Ключевые слова: генетический алгоритм, генетическое программирование, самонастройка, проектирова-
ние систем на нечеткой логике.

