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Our future direction is the investigation of the 
machine learning algorithm applications in the  dynamic 
mode. In this case the feature vectors are extracted 
consequently every short period of time (for example each 
0,01 sec.). Moreover, speaker specific and gender specific 
information should be used in order to improve the 
emotion recognition accuracy from speech. The emotion 
recognition accuracy (as well as a SDS’s performance in 
general) might be significantly improved by training of 
the speaker specific emotional models and using gender 
specific information as well. The next step is the 
exploitment of the best algorithms for emotion 
recognition and speaker identification from speech in 
order to build a speaker dependent emotion recognition 
systems. 
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In this paper we describe and investigate the two-steps system sorting out inappropriate words in searching of simi-
lar words in the lexicon for automatic concatenation of Russian sub-word units. This two-steps system consists of com-
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puting the Levenshtein distance on the first stage and computing the similarity coefficient by the relevance function on 
the second stage. We also compared the performance of the Wagner-Fisher algorithm and the suggested algorithm 
SAWT. 
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ДВУХУРОВНЕВАЯ СИСТЕМА ПОИСКА СХОЖИХ СЛОВ ДЛЯ ЭФФЕКТИВНОЙ И НАДЕЖНОЙ  

АВТОМАТИЧЕСКОЙ КОНКАТЕНАЦИИ СЛОГОВ РУССКОЙ РЕЧИ 
 

А. Спирина1, С. Г. Заблоцкий2, М. Ю. Сидоров2 
 

1 Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева 
Российская Федерация, 660014, Красноярск, просп. им. газ. «Красноярский рабочий», 31 

E-mail: s_nastia@mail.ru 
2Университет города Ульма 

Германия, 89081, Ульм, Аллея Альберта Эйнштейна, 43 
E-mail: sergey.zablotskiy@uni-ulm.de, maxim.sidorov@uni-ulm.de 

 
Описывается и исследуется двухуровневая система отбора наиболее подходящих слов в поиске схожих слов 

по словарю для автоматической конкатенации слогов русской речи. Эта система состоит из вычисления рас-
стояния Левенштейна на первом этапе и вычисления коэффициента сходства с помощью функции релевант-
ности на втором этапе. Мы также сравнили эффективность алгоритма Вагнера–Фишера и предлагаемого 
алгоритма SAWT. 
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The lexicon for Russian continuous speech recognition 

is much larger than that for English. This fact complicates 
the use of standard well developed approaches to language 
modeling. Quite a common approach to handle an abundant 
lexicon is the employment of sub-units, like syllables or 
morphemes.  The challenge of such approach is the subse-
quent concatenation of recognized sub-unites. 

There exist some related works done to solve this 
problem such as [1]. However, further improvement of 
the concatenation accuracy and the performance of the 
algorithms are required.  

Continuous speech is transformed into the sequence of 
syllables, but word boundaries are unknown. The task is 
to accelerate the automatic concatenation of Russian sub-
word units. For this purpose the Genetic Algorithm (GA) 
can be used. However, the likelihood of the sentence gen-
erated by GA should be estimated. The problem can be 
partly solved by accelerating the search for the same and 
similar words from the lexicon to the words from GA by 
exploiting the fuzzy search algorithms. 

Fuzzy search. Spell-checkers and different web 
search engines (such as Google, Yandex, etc) are also 
based on the fuzzy (string) search algorithms. For exam-
ple, the fuzzy search algorithms are used in the web 
search engines to generate the results of the “Did you 
mean …” suggestion list [2]. 

The problem of the fuzzy search can be formulated as 
follows: “Find in the text or lexicon of size N all the 
words matching the original word within the maximum K 
possible differences” [2]. 

There exist different fuzzy search algorithms, such as: 
linear search, bitap (Shift-Or or Baeza-Yates-Gonnet, and 
its modifications by Wu and Manber), Signature Hashing 
Method and others [2].  

Fuzzy search algorithms are based on some metric,  
i. e. distance function between two strings, which meas-
ures their similarity or difference. One of the most well-
known metrics is the Levenshtein distance. 

The Levenshtein distance and the Wagner-Fisher al-
gorithm. The Levenshtein distance (edit distance) be-
tween two strings is the minimum number of single-
character edits (insertion, deletion, substitution) required 
to transform one string into the other. [3] 

Suppose S1 and S2 are strings, then, mathematically, 
the Levenshtein distance can be described by the follow-
ing formula (1): 

,
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Different sources suggest Csubstitution to be equal to 2 in-
stead of 1 in the formula (1). In the following tests Csubstitu-

tion = 2 was used. 
There exists a set of algorithms for computing the 

Levenshtein distance. Most popular algorithm is the 
Wagner-Fisher algorithm [4]. In this work the Wagner-
Fisher algorithm was used, in which Csubstitution is pre-
sented by formula (2): 
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Weight Function is the function of weight coefficients 
for the symbol comparison. This function provides a set 
of rules for the phonetic comparison. It measures the pho-
netic similarity between two words. 

To accelerate the performance the lexicon is stored in 
one single tree. The Levenshtein distance is computed at 
each node of the tree. 

But the Wagner-Fisher algorithm has some draw-
backs. This algorithm applied to the tree can sort out ap-
propriate words at the beginning of the tree. 

The algorithm of search appropriate words in a tree. 
The algorithm SAWT was developed to accelerate the 
search for the similar words from the lexicon and to over-
come drawback of the Wagner-Fisher algorithm described 
above. 

The ASAWT is worthy of using only if the maximum 
allowed distance between strings is rather small (here 
distance is the measure of difference), for example 2 or 3. 
This algorithm is able to overcome the disadvantage of 
the Wagner-Fisher algorithm. 

The idea of the ASAWT is as follow: 
First of all, suppose that: 
1. The maximum allowed distance between two 

strings is k. 
2. S1 of size n is the original string and S2 of size m is 

the test string. Furthermore, there is a restriction for n and 
m: | n – m | ≤ k (this restriction saves the computational 
load while searching). 

3. A value of the position p in the original string is 
known (starting from p = 0 corresponding to the first in-
dex in the string). 

4. A value of the error err is known (starting from  
err = 0). 

Then the mechanism of the distance computation be-
tween two strings consists of the following steps: 

1. Denote ith character of the string S by S[i] and  j = 0. 

2. 2 1
s

, [ , ]: [ ] [ ];
 

1, .
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err
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5. If err > k, then stop the computation. It means that 
S1 and S2 are different. 

6. j = j + 1 
7. If p < n AND j < m, then go to the step 2. 
8. err = err + n – p + m – j. 
If err ≤ k  the strings are decided to be similar, other-

wise the strings are different. 
For example, suppose S1 is “TRUST” and S2 is 

“TEST”, k = 1 (left table) and k = 3 (right table). 
It should be mentioned that the cost for insertion, dele-

tion is 1 and for substitution is 2 like in the Wagner-
Fisher algorithm whit formula (2), but without exploiting 
of WeightFunction. 

Similarity coefficient. To get more appropriate results 
two-step system sorting out inappropriate words from the 
lexicon was applied. 

At the first step the Levenshtein distance between the 
original word (generated by the GA) and the words from 
the lexicon is computed. At the second step the similar-
ity coefficient between the original word and the  
word from the lexicon is computed by the Relevance 
function. 

The similarity coefficient is the fractional number be-
tween 0 and 1, 0 means that two words are absolutely 
different, 1 means that two words are identical. 

There exist different word similarity coefficients, such 
as the Sörensen coefficient, the Kulczinsky coefficient, 
the Ochiai coefficient, the Szymkiewicz-Simpson coeffi-
cient and Braun-Blanquet coefficient [5]. These coeffi-
cients reflect the similarity coefficient dependence on the 
length of the words.  

For example, the formula (3) is presents the Sörensen 
coefficient: 

2 ,S
cK

a b
=

+
                              (3) 

where a and b are the lengths of the words, c is the num-
ber of the matching characters, which can be computed by 
the formula (4) where for computing the Levenshtein dis-
tance (LD) the cost for all edit operations is equal to 1. 

max( , )с a b LD= − .                         (4) 

The Relevance function. The Relevance function 
gives the similarity coefficient which allows to take into 
account the positions of the difference in the word. Thus 
the difference at the beginning or at the end of the word is 
less critical than in the middle of the word [6]. 

The similarity coefficient in this case can be computed 
by the formula (5) and formula (6): 

1
( )

;

N

i
r i

R
N

==
∑

                               (5) 

 
( 1, 2, ) ( 2, 1, )( ) ,
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Match Str Str i Match Str Str ir i

Count Str i Count Str i
+
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     (6) 

where Match(S1, S2, i) is the number of the matches for all 
substrings of the length i from the string S1 in the  
string S2; Count(Str,i) = (len(Str)-i+1); len(S) is the length 
of the string S. 

For the following tests the Relevance function with  
N = 2 was used. 

Certain threshold should be specified for the R to dis-
tinguish between similar and non-similar words. 

 

Results. The computer program for testing was writ-
ten in C++ using Microsoft Visual Studio 2010. The lexi-
con consists of 2311465 words. All tests were calculated 
by the computer with Intel(R) Core(TM)2 CPU 6700 @ 
2.66GHz, running Linux. All results are dependent on the 
program realization, the characteristics of the computer, 
the computer workload, the words for the test and the 
lexicon. For testing the words of different size were ran-
domly selected from the lexicon. The results of testing are 
presented in the following figures. 
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ASAWT for computing the distance 
 

 T R U S T Err    T R U S T Err 
T 1     0   T 1     0 
E  0 0   1   E  0 0 0 0 1 
S  0 0   2   S  0 0 1  3 
T      2 (err > k, stop)   T     1 3 

Distance –   distance 3 
 - 

 
 

Fig. 1. Computational time for the algorithms with k = 1 
 

 
 

Fig. 2. Computational time for the algorithms with k = 2 
 
Abbreviations on the figures: 
L1, L2 mean the computation of the Levenshtein dis-

tance using the Wagner-Fisher algorithm without 
WeightFunction, with k = 1 and k = 2 correspondingly. 

L1+W, L2+W mean the computation of the Leven-
shtein distance using the Wagner-Fisher algorithm with 
WeightFunction, with k = 1 and k = 2 correspondingly. 

NA1, NA2 mean the computation of the Levenshtein 
distance using the ASAWT without the Relevance func-
tion, with k = 1 and k = 2 correspondingly. 

NAR1, NAR2 mean the computation of the Leven-
shtein distance using the ASAWT with the Relevance 
function, with k = 1 and k = 2 correspondingly. 
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Computational time for 100 runs of algorithm in sec-
onds is on the vertical axis, the length of the original 
words is on the horizontal axis.  

Conclusion. To sum it up, from the figures above it 
could be seen that the ASAWT with and without rele-
vance function works faster than the Wagner-Fisher algo-
rithm. The final lists of similar words are almost identical. 
The two-step system allows to keep the accuracy at the 
same level.  

However, the algorithm has some drawbacks, namely 
there are no weights modeling the closeness of the pro-
nounced sounds. This problem is supposed to be solved in 
a future work. 
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A new approach to form a fuzzy logic system with evolutionary algorithms is introduced. Several algorithms were 

implemented as programs, efficiency measurements were made with and without self-adjustment. A new data represen-
tation method was developed for fuzzy rules base coding in genetic programming method by using reverse polish nota-
tion principle. The genetic algorithm was adapted to adjust linguistic variables semantics. The efficiency of developed 
algorithm was shown and compared to analogies on several test regression problems and real classification problems. 
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САМОНАСТРАИВАЮЩИЙСЯ ЭВОЛЮЦИОННЫЙ АЛГОРИТМ 

ДЛЯ АВТОМАТИЗИРОВАННОГО ФОРМИРОВАНИЯ СИСТЕМ НА НЕЧЕТКОЙ ЛОГИКЕ 
 

В. В. Становов, Е. С. Семенкин 
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Представлен новый подход для формирования систем на нечеткой логике эволюционными алгоритмами. 
Несколько алгоритмов были реализованы в качестве программ, проведены измерения эффективности с само-
настройкой и без таковой. Был разработан новый метод представления данных для кодирования нечетких 
правил в генетическом программировании на основе принципа обратной польской записи. Генетический алго-
ритм был адаптирован для настройки семантики лингвистических переменных. Эффективность разработан-
ного алгоритма была показана в сравнении с аналогами на некоторых тестовых регрессионных задачах и 
практических задачах классификации. 
 

Ключевые слова: генетический алгоритм, генетическое программирование, самонастройка, проектирова-
ние систем на нечеткой логике. 




