
Вестник СибГАУ. № 4(50). 2013

 148

Computational time for 100 runs of algorithm in sec-
onds is on the vertical axis, the length of the original
words is on the horizontal axis.

Conclusion. To sum it up, from the figures above it
could be seen that the ASAWT with and without rele-
vance function works faster than the Wagner-Fisher algo-
rithm. The final lists of similar words are almost identical.
The two-step system allows to keep the accuracy at the
same level.

However, the algorithm has some drawbacks, namely
there are no weights modeling the closeness of the pro-
nounced sounds. This problem is supposed to be solved in
a future work.

Acknowledgements. This work is partly supported by
the DAAD (German Academic Exchange Service).

References

1. Zablotskiy S., Shvets A., Sidorov M., Semenkin E.

and Minker W. Speech and Language Resources for
LVCSR of Russian. International Conference on Lan-

guage Resources and Evaluation (LREC), Istanbul, Tur-
key, 2012. May.

2. Smetanin N. (2011, March 24). Fuzzy string search.
Nikita’s blog. Search algorithms, software development
and so on. Retrieved July 30, 2013, from http://ntz-
develop.blogspot.ru/.

3. Levenshtein V. I. 1966. Binary Codes Capable of
Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10, February.

4. Wagner R. A., Fischer M. J. The string-to-string
correction problem. J. ACM. 1974, vol. 21, № 1, p. 168–
173.

5. Wikipedia. Similarity index (coefficient). Wikipe-
dia. The free encyclopedia. Retrieved July 30, 2013, from
http://ru.wikipedia.org/ (in Russian).

6. Karakhtanov D. S. Using of fuzzy search algorithm
in processing of data for credit institutions. Audit and
financial analysis. 2010, vol. 2 (in Russian).

© Спирина А. В., Заблоцкий С. Г.,

 Сидоров М. Ю., 2013

УДК 519.6

SELF-ADJUSTED EVOLUTIONARY ALGORITHMS BASED APPROACH
FOR AUTOMATED DESIGN OF FUZZY LOGIC SYSTEMS

V. V. Stanovov, E. S. Semenkin

Siberian State Aerospace University named after academician M. F. Reshetnev

31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660014, Russian Federation
E-mail: vladimirstanovov@yandex.ru, eugenesemenkin@yandex.ru

A new approach to form a fuzzy logic system with evolutionary algorithms is introduced. Several algorithms were

implemented as programs, efficiency measurements were made with and without self-adjustment. A new data represen-
tation method was developed for fuzzy rules base coding in genetic programming method by using reverse polish nota-
tion principle. The genetic algorithm was adapted to adjust linguistic variables semantics. The efficiency of developed
algorithm was shown and compared to analogies on several test regression problems and real classification problems.

Keywords: genetic algorithms, genetic programming, self-adjustment, fuzzy logic system design.

САМОНАСТРАИВАЮЩИЙСЯ ЭВОЛЮЦИОННЫЙ АЛГОРИТМ

ДЛЯ АВТОМАТИЗИРОВАННОГО ФОРМИРОВАНИЯ СИСТЕМ НА НЕЧЕТКОЙ ЛОГИКЕ

В. В. Становов, Е. С. Семенкин

 Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева
Российская Федерация, 660014, Красноярск, просп. им. газ. «Красноярский рабочий», 31

E-mail: nihilanht@mail.ru, eugenesemenkin@yandex.ru

Представлен новый подход для формирования систем на нечеткой логике эволюционными алгоритмами.
Несколько алгоритмов были реализованы в качестве программ, проведены измерения эффективности с само-
настройкой и без таковой. Был разработан новый метод представления данных для кодирования нечетких
правил в генетическом программировании на основе принципа обратной польской записи. Генетический алго-
ритм был адаптирован для настройки семантики лингвистических переменных. Эффективность разработан-
ного алгоритма была показана в сравнении с аналогами на некоторых тестовых регрессионных задачах и
практических задачах классификации.

Ключевые слова: генетический алгоритм, генетическое программирование, самонастройка, проектирова-
ние систем на нечеткой логике.

2nd International Workshop on Mathematical Models and its Applications

 149

Fuzzy logic systems are a type of intellectual informa-
tion technologies and for today they are used widely a
variety of problems. Among them, there are car speed
control systems, handwritten text recognition systems,
robots control systems and different data analysis prob-
lems. But using them even more widely is difficult be-
cause their forming process takes a lot of time and human
resources. So, developing algorithms that would allow us
to form such systems automatically will help to increase
the efficiency of using and the availability of such sys-
tems.

Fuzzy logic systems are also very useful as they repre-
sent knowledge as rules, which are commonly easy to
understand for a human. And that is why most of the
times they are formed by experts, i.e., using their knowl-
edge. But knowledge extraction procedure may not get
hidden expert knowledge, and this is one of the disadvan-
tages of such an approach.

Automatic fuzzy logic system forming is formulated
as an optimization problem, i.e., choosing some optimal
rules base in terms of an efficiency criterion. Solutions
representation in computer memory is also a difficult al-
gorithmic and computational problem.

The genetic programming is a method for these prob-
lems solving. It has the flexible data representation using
graphs, and it allows choosing the best solution automati-
cally. Still, it has several disadvantages, for example, the
necessity for optimal setting of genetic operators. The
algorithm’s efficiency depends on the set of genetic op-
erators used, and for every research problem this combi-
nation of genetic operators may be different. To choose
the best operators, several self-adjustment methods can be
used.

But forming a fuzzy logic rules base is not enough to
form a fuzzy system. Defining linguistic variables and
their semantics is also necessary. The linguistic variables
are used in the fuzzy logic systems to determine the fuzzy
values (terms) like “weak”, “medium” and “strong”. Ba-
sically, the number of terms and their position is deter-
mined by experts, but this definition may be not ideal. To
adjust the position of terms, a self- adjusted genetic algo-
rithm can be used.

The first part of the paper describes the genetic algo-
rithm, the second deals with genetic programming, and
the third describes the fuzzy logic systems generating
algorithm.

Self-adjusted genetic algorithm. To test the effi-
ciency of self-adjustment methods, a standard genetic
algorithm (GA) was developed and implemented sepa-
rately. The operators of this algorithm are presented in
table 1.

Let’s consider two self-adjustment methods [1]: Popu-
lation-Level Dynamic Probabilities (PDP) and Individual-
Level Dynamic Probabilities (IDP). These methods were
developed to adjust mutation type in genetic program-
ming algorithm.

The main idea of PDP method is that operator’s prob-
abilities depend on success of their application. So, after
every genetic operator application the fitness of the ob-
tained offspring is compared to parents’ fitness. If the

fitness increased, the operators applied receive a reward,
i.e., their application probabilities increase. New prob-
abilities depend on the success rates, number of operators
used and are calculated as following:

(100)
,i all

i all
r n p

p p
scale

⋅ − ⋅⎡ ⎤= + ⎢ ⎥⎣ ⎦

2

1
20, , .ni

i all jj
i

success
r p scale r

used n =
= = = ∑

Table 1

Groups of genetic operators for GA

Operator
groups

Selection Crossover Mutation

Operators Proportional
Rank

Tournament

Single-point
Two-point
Uniform

Weak
Average
Intensive

Here successi is the number of successful i-th operator

applications; usedi is the number of operators’ applica-
tions. Also, there can be different success rates. For ex-
ample, if the offspring is better than both parents, then it
is clearly successful (success = success+1), and if it is
better than only one parent, then it is partly successful
(success = success+0,5); if it is worse than both parents,
then it is unsuccessful (success values does not change).

The IDP method was described so that it can only be
applied to choose the mutation type. It was modified to
choose the crossover type. The essence of the method is
that every individual in the population has several count-
ers cntj

i that show the number of unsuccessful applica-
tions of operator i for individual j. These values are used
to calculate the probabilities:

1

1 1

(max 1) (100)

(max 1)

k i
k n j j all

i all nk k
k n j jk

cnt cnt n p
p p

n cnt cnt
≤ ≤

≤ ≤ =

⎡ ⎤+ − ⋅ − ⋅
⎢ ⎥= +
⎢ ⎥⋅ + −⎣ ⎦∑

,

20
allp

n
= , n is the number of operators, m is the operator

number.
As this method requires one or two parent individuals,

it cannot be used to choose the selection type. I.e., the
probabilities needed to choose the operator depend on the
individuals we use, and so to be able to apply IDP
scheme, there should be at least one individual. Before the
selection process, we do not know which cnt values to
take. Taking cnt values from a random individual from
the population is not good, because of the idea that every
individual has its own cnt values.

So, when the IDP method is used to choose the cross-
over and mutation types, the PDP method is used to
choose the selection type. Moreover, the same as for PDP
method, there should be a way to differ the operators’
success. So, if the offspring is worse than parents then
cntj

i=cntj
i+1; if it is worse than one of them then cntj

i
does not change, and if it is better than both parents then
cntj

i=0.
After the calculation, the pi values are mapped into in-

terval (0,1). pall value is the minimum value and to is
needed to make the worst operator using probability not

Вестник СибГАУ. № 4(50). 2013

 150

become zero, because in this case the operator will not be
used at all.

The self-adjustment efficiency was measured in com-
parison to conventional genetic algorithm with all pa-
rameter combinations (45 combinations as there were five
selection types used, including three tournament selec-
tions with tournament sizes equal 2, 5 and 9). The test
functions used are complex for standard optimization
methods. They have lots of local optima, plateaus, and
global optima within them.

The reliability value was used to determine the effi-
ciency of all algorithms; it was measured as the ratio of
number of cases when the algorithm found the goal with
certain accuracy to the number of algorithm runs (100
runs for every parameter combination). The results of all
methods performance on one test function is presented on
figure 1. For all other test functions these results look
approximately so as well. The aver. GA reliability is cal-
culated as an arithmetical mean of all reliabilities meas-
ured at every parameters combination.As can be seen
from the graph, both self-adjustment methods show nearly
the same reliability, and they are much better than the
average genetic algorithm. Still, the best combination of
parameters for the selected test function gives higher reli-
ability value than self-adjusted GA. As a result, we may
say that the presented self-adjustment methods are effec-
tive and can be used to choose genetic operators during
the algorithm execution on the problem in hand.

Self-adjusted genetic programming. Genetic pro-
gramming (GP) [2] has the same problems with operators
used. So, the same self-adjustment methods can be ap-
plied to it. To see if these methods are efficient with ge-
netic programming, the algorithm was implemented sepa-
rately to solve symbolic regression problems.

The symbolic regression problem is finding an opti-
mal mathematical equation, which can be used to ap-
proximate some numerical dependence between several
variables. These equations can be used to solve regression
and classification problems. They consist of the following
operations (functional set): +, -, *, /, sin, cos, tan, atan,
ln, sqrt, pow and include input variables and constants as
terminal set. An example of symbolic equation is:

(5*)*sin() (1)*cos()X Y Y X+ + .

Coding such equations in computing memory requires
building trees, as +, -, *, /, pow are binary operations. To
ease this coding, a reverse polish notation principle was
used, in which the operands stand before the operation
sign. Such data representation allows to code equations
into strings without brackets. An example of symbolic
equation in reverse polish notation is:

5 * sin* 1 cos*X Y Y X+ + .
Also such an implementation allows accessing any part

of the equation without going throw the entire tree and
avoids often problems with the computer memory allocation
and cleanup. The only problem with reverse polish notation
is that subtrees extraction procedures are more complex and
take more time during crossover and mutation.

Two self-adjustment methods – PDP and IDP can be
applied in this case without changes.

Table 2
Groups of genetic operators for GP

Operator
groups

Selection Crossover Mutation

Operators Proportional
Rank
Tournament

Standard
Single-point

Point
Growing

The fitness function for GP also includes penalties that

depend on the equation length and number of variables
used in it. The algorithm was tested to approximate the
same test functions, used for genetic algorithm testing.
So, finding the exact solution is hardly possible. In the
figure below the error values on each of these functions
are compared for different GP algorithms.

Same as for the genetic algorithm, the self-adjustment
procedure allows overcoming the efficiency of average
algorithm, and is a little worse, than the algorithm with
the best combination of parameters.

Genetic programming for fuzzy logic systems
forming. The genetic programming algorithm for forming
fuzzy logic systems uses the Pittsburg approach for form-
ing rule bases, i.e., it forms complete rule bases, not sepa-
rate rules. The rule bases are presented as trees, as shown
at figure 3. The selection operator does not change in this
case, while the crossover operator cannot use the root as a
point for crossover unlike standard GP.

The root of the tree means logical operation “or”, and
it combines different rules. Every subtree of the root is a
separate rule. The nodes within every subtree of the root
can be from terminal or functional set. If the node is from
the functional set, it means the logical operation “and”,
combining parts of the rule. If the node is from the termi-
nal set, it is a part of the rule, and says “if variable x
equals y”. A combination of such parts forms a rule. The
fuzzy inference value is kept in the functional or terminal
node, connected to the root.

So this tree codes the following rules (read from left to
right):

If x1=1 and x2=1 then output=1;
If x3=2 then output=3;
If x1=2 and x2=3 and x3=3 then output=2;
If x3=1 then output=3;
If x2=2 and x1=3 then output=1.
This coding allows forming compact rule bases with

needed number of rules and low memory requirements.
The same as for standard GP, here selection, crossover
and mutation operations can be applied. The only one
difference is that the root of the tree cannot be the cross-
over point.

The second part of forming a fuzzy logic system is ad-
justing the linguistic variables semantics. This includes
determining terms position, but not the number of terms.

The algorithm was tested on several test functions, the
same as genetic programming for solving symbolic re-
gression problem. The comparison of errors obtained on
every function is shown at fig. 4. The self adjustment pro-
cedure used for fuzzy GP is PDP.

As one may see, the algorithms have different behav-
ior on different functions, but their overall efficiency is
close enough.

2nd International Workshop on Mathematical Models and its Applications

 151

Fig. 1. Standard GA reliabity compared to self-adjusted GA reliability

Fig. 2. Standard GP error compared to self-adjusted GP errors

Fig. 3. Rules base representation

x1=1 x2=1

x1=2 x2=3

x3=2;3

x3=3

x3=1;3

x1=3

 or

and;1 and;1

and

and;2

x2=2

Er
ro

r

Function number

R
el

ia
bi

lit
y

Parameters combination

Вестник СибГАУ. № 4(50). 2013

 152

Fig. 4. Comparison of symbolic regression (SR) GP and fuzzy logic forming GP

Table 3
Comparison of different methods [3] solving classification problems

Algorithm

name
Australian

credit
German
credit

Algorithm
name

Australian
credit

German
credit

SCGP 0,9022 0,7950 Bayesian approach 0,8470 0,6790

MGP 0,8985 0,7875 Boosting 0,7600 0,7000

2SGP 0,9027 0,8015 Bagging 0,8470 0,6840

GP 0,8889 0,7834 RSM 0,8520 0,6770

Fuzzy classifier 0,8910 0,7940 CCEL 0,8660 0,7460
C4.5 0,8986 0,7773 CART 0,8744 0,7565

LR 0,8696 0,7837 MLP 0,8986 0,7618

k-NN 0,7150 0,7151 GP 0,8960 0,7693

GP RPN 0,8960 0,7550 Fuzzy GP 0,9010 0,7750

Several real classification problems were solved to

compare the algorithm efficiency with analogies. They
are:

– Bank clients classification problem, Australian vari-
ant, 14 attributes, 2 classes, sample size is 690. Classes
and variables meanings are encrypted;

– Bank clients classification problem, German variant,
24 attributes, 2 classes (bad or good customer based on
statistical data), sample size if 1000.

For every problem the algorithm was run several
times. The average correct classification rates are shown
at table 3 (higher is better). The presented algorithm name
is Fuzzy GP.

The resulting algorithm has one of the highest efficien-
cies comparing to competitors. It also is better than the
symbolic regression algorithm, which was also tested and
has the name GP RPN. Although there are methods with
lower error values, they form a symbolic regression which
is hard to interpret, while the presented method gives a
rules base which is easy to analyze for people.

Conclusions. As a result of this work, a new approach
for fuzzy logic systems design was presented. This ap-
proach uses evolutionary algorithms with original self-

adjustment procedures, which allow automatic choice of
most suitable genetic operators. The data representation in
genetic programming allows forming small and effective
rule bases. The linguistic variables adjustment procedure
increases the algorithm efficiency by choosing term posi-
tions. All of these advantages give the algorithm an op-
portunity to compete with the best known algorithms
while solving complex classification problems.

References

1. Niehaus J., Banzhaf W. Adaption of Operator

Probabilities in Genetic Programming. In: Miller J. et al.
(Eds.): EuroGP 2001, LNCS 2038, p. 325–336, 2001.

2. Koza J. Genetic Programming. The MIT Press
Cambridge, Massachusetts London, England, 1998.

3. Semenkin E., Semenkina M. Self-Configuring Ge-
netic Programming Algorithm with Modified Uniform
Crossover. In: Proc. of IEEE Congress on Evolutionary
Computation. IEEE World Congress on Computational
Intelligence, Brisbane, Australia, 2012.

© Становов В. В., Семенкин Е. С., 2013

Function number

Er
ro

r

