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Computational time for 100 runs of algorithm in sec-
onds is on the vertical axis, the length of the original 
words is on the horizontal axis.  

Conclusion. To sum it up, from the figures above it 
could be seen that the ASAWT with and without rele-
vance function works faster than the Wagner-Fisher algo-
rithm. The final lists of similar words are almost identical. 
The two-step system allows to keep the accuracy at the 
same level.  

However, the algorithm has some drawbacks, namely 
there are no weights modeling the closeness of the pro-
nounced sounds. This problem is supposed to be solved in 
a future work. 
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Представлен новый подход для формирования систем на нечеткой логике эволюционными алгоритмами. 
Несколько алгоритмов были реализованы в качестве программ, проведены измерения эффективности с само-
настройкой и без таковой. Был разработан новый метод представления данных для кодирования нечетких 
правил в генетическом программировании на основе принципа обратной польской записи. Генетический алго-
ритм был адаптирован для настройки семантики лингвистических переменных. Эффективность разработан-
ного алгоритма была показана в сравнении с аналогами на некоторых тестовых регрессионных задачах и 
практических задачах классификации. 
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Fuzzy logic systems are a type of intellectual informa-
tion technologies and for today they are used widely a 
variety of problems. Among them, there are car speed 
control systems, handwritten text recognition systems, 
robots control systems and different data analysis prob-
lems. But using them even more widely is difficult be-
cause their forming process takes a lot of time and human 
resources. So, developing algorithms that would allow us 
to form such systems automatically will help to increase 
the efficiency of using and the availability of such sys-
tems. 

Fuzzy logic systems are also very useful as they repre-
sent knowledge as rules, which are commonly easy to 
understand for a human. And that is why most of the 
times they are formed by experts, i.e., using their knowl-
edge. But knowledge extraction procedure may not get 
hidden expert knowledge, and this is one of the disadvan-
tages of such an approach. 

Automatic fuzzy logic system forming is formulated 
as an optimization problem, i.e., choosing some optimal 
rules base in terms of an efficiency criterion. Solutions 
representation in computer memory is also a difficult al-
gorithmic and computational problem. 

The genetic programming is a method for these prob-
lems solving. It has the flexible data representation using 
graphs, and it allows choosing the best solution automati-
cally. Still, it has several disadvantages, for example, the 
necessity for optimal setting of genetic operators. The 
algorithm’s efficiency depends on the set of genetic op-
erators used, and for every research problem this combi-
nation of genetic operators may be different. To choose 
the best operators, several self-adjustment methods can be 
used. 

But forming a fuzzy logic rules base is not enough to 
form a fuzzy system. Defining linguistic variables and 
their semantics is also necessary. The linguistic variables 
are used in the fuzzy logic systems to determine the fuzzy 
values (terms) like “weak”, “medium” and “strong”. Ba-
sically, the number of terms and their position is deter-
mined by experts, but this definition may be not ideal. To 
adjust the position of terms, a self- adjusted genetic algo-
rithm can be used. 

The first part of the paper describes the genetic algo-
rithm, the second deals with genetic programming, and 
the third describes the fuzzy logic systems generating 
algorithm. 

Self-adjusted genetic algorithm. To test the effi-
ciency of self-adjustment methods, a standard genetic 
algorithm (GA) was developed and implemented sepa-
rately. The operators of this algorithm are presented in 
table 1.  

Let’s consider two self-adjustment methods [1]: Popu-
lation-Level Dynamic Probabilities (PDP) and Individual-
Level Dynamic Probabilities (IDP). These methods were 
developed to adjust mutation type in genetic program-
ming algorithm. 

The main idea of PDP method is that operator’s prob-
abilities depend on success of their application. So, after 
every genetic operator application the fitness of the ob-
tained offspring is compared to parents’ fitness. If the 

fitness increased, the operators applied receive a reward, 
i.e., their application probabilities increase. New prob-
abilities depend on the success rates, number of operators 
used and are calculated as following: 
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Table 1 

Groups of genetic operators for GA 
 

Operator 
groups 

Selection Crossover Mutation 

Operators Proportional 
Rank 

Tournament 

Single-point 
Two-point 
Uniform 

Weak 
Average 
Intensive 

 
Here successi is the number of successful i-th operator 

applications; usedi is the number of operators’ applica-
tions. Also, there can be different success rates. For ex-
ample, if the offspring is better than both parents, then it 
is clearly successful (success = success+1), and if it is 
better than only one parent, then it is partly successful 
(success = success+0,5); if it is worse than both parents, 
then it is unsuccessful (success values does not change). 

The IDP method was described so that it can only be 
applied to choose the mutation type. It was modified to 
choose the crossover type. The essence of the method is 
that every individual in the population has several count-
ers cntj

i that show the number of unsuccessful applica-
tions of operator i for individual j. These values are used 
to calculate the probabilities: 
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number. 
As this method requires one or two parent individuals, 

it cannot be used to choose the selection type. I.e., the 
probabilities needed to choose the operator depend on the 
individuals we use, and so to be able to apply IDP 
scheme, there should be at least one individual. Before the 
selection process, we do not know which cnt values to 
take. Taking cnt values from a random individual from 
the population is not good, because of the idea that every 
individual has its own cnt values. 

So, when the IDP method is used to choose the cross-
over and mutation types, the PDP method is used to 
choose the selection type. Moreover, the same as for PDP 
method, there should be a way to differ the operators’ 
success. So, if the offspring is worse than parents then 
cntj

i=cntj
i+1; if it is worse than one of them then cntj

i 
does not change, and if it is better than both parents then 
cntj

i=0. 
After the calculation, the pi values are mapped into in-

terval (0,1). pall value is the minimum value and to is 
needed to make the worst operator using probability not 
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become zero, because in this case the operator will not be 
used at all. 

The self-adjustment efficiency was measured in com-
parison to conventional genetic algorithm with all pa-
rameter combinations (45 combinations as there were five 
selection types used, including three tournament selec-
tions with tournament sizes equal 2, 5 and 9). The test 
functions used are complex for standard optimization 
methods. They have lots of local optima, plateaus, and 
global optima within them. 

The reliability value was used to determine the effi-
ciency of all algorithms; it was measured as the ratio of 
number of cases when the algorithm found the goal with 
certain accuracy to the number of algorithm runs (100 
runs for every parameter combination). The results of all 
methods performance on one test function is presented on 
figure 1. For all other test functions these results look 
approximately so as well. The aver. GA reliability is cal-
culated as an arithmetical mean of all reliabilities meas-
ured at every parameters combination.As can be seen 
from the graph, both self-adjustment methods show nearly 
the same reliability, and they are much better than the 
average genetic algorithm. Still, the best combination of 
parameters for the selected test function gives higher reli-
ability value than self-adjusted GA. As a result, we may 
say that the presented self-adjustment methods are effec-
tive and can be used to choose genetic operators during 
the algorithm execution on the problem in hand. 

Self-adjusted genetic programming. Genetic pro-
gramming (GP) [2] has the same problems with operators 
used. So, the same self-adjustment methods can be ap-
plied to it. To see if these methods are efficient with ge-
netic programming, the algorithm was implemented sepa-
rately to solve symbolic regression problems. 

The symbolic regression problem is finding an opti-
mal mathematical equation, which can be used to ap-
proximate some numerical dependence between several 
variables. These equations can be used to solve regression 
and classification problems. They consist of the following 
operations (functional set): +, -, *, /, sin, cos, tan, atan, 
ln, sqrt, pow and include input variables and constants as 
terminal set. An example of symbolic equation is: 

(5* )*sin( ) ( 1)*cos( )X Y Y X+ + . 

Coding such equations in computing memory requires 
building trees, as +, -, *, /, pow are binary operations. To 
ease this coding, a reverse polish notation principle was 
used, in which the operands stand before the operation 
sign. Such data representation allows to code equations 
into strings without brackets. An example of symbolic 
equation in reverse polish notation is: 

5 * sin* 1 cos*X Y Y X+ + . 
Also such an implementation allows accessing any part 

of the equation without going throw the entire tree and 
avoids often problems with the computer memory allocation 
and cleanup. The only problem with reverse polish notation 
is that subtrees extraction procedures are more complex and 
take more time during crossover and mutation. 

Two self-adjustment methods – PDP and IDP can be 
applied in this case without changes.  

Table 2 
Groups of genetic operators for GP 

 

Operator 
groups 

Selection Crossover Mutation 

Operators Proportional 
Rank 
Tournament 

Standard 
Single-point 

Point 
Growing 

 
The fitness function for GP also includes penalties that 

depend on the equation length and number of variables 
used in it. The algorithm was tested to approximate the 
same test functions, used for genetic algorithm testing. 
So, finding the exact solution is hardly possible. In the 
figure below the error values on each of these functions 
are compared for different GP algorithms. 

Same as for the genetic algorithm, the self-adjustment 
procedure allows overcoming the efficiency of average 
algorithm, and is a little worse, than the algorithm with 
the best combination of parameters. 

Genetic programming for fuzzy logic systems 
forming. The genetic programming algorithm for forming 
fuzzy logic systems uses the Pittsburg approach for form-
ing rule bases, i.e., it forms complete rule bases, not sepa-
rate rules. The rule bases are presented as trees, as shown 
at figure 3. The selection operator does not change in this 
case, while the crossover operator cannot use the root as a 
point for crossover unlike standard GP. 

The root of the tree means logical operation “or”, and 
it combines different rules. Every subtree of the root is a 
separate rule. The nodes within every subtree of the root 
can be from terminal or functional set. If the node is from 
the functional set, it means the logical operation “and”, 
combining parts of the rule. If the node is from the termi-
nal set, it is a part of the rule, and says “if variable x 
equals y”. A combination of such parts forms a rule. The 
fuzzy inference value is kept in the functional or terminal 
node, connected to the root. 

So this tree codes the following rules (read from left to 
right): 

If x1=1 and x2=1 then output=1; 
If x3=2 then output=3; 
If x1=2 and x2=3 and x3=3 then output=2; 
If x3=1 then output=3; 
If x2=2 and x1=3 then output=1. 
This coding allows forming compact rule bases with 

needed number of rules and low memory requirements. 
The same as for standard GP, here selection, crossover 
and mutation operations can be applied. The only one 
difference is that the root of the tree cannot be the cross-
over point. 

The second part of forming a fuzzy logic system is ad-
justing the linguistic variables semantics. This includes 
determining terms position, but not the number of terms. 

The algorithm was tested on several test functions, the 
same as genetic programming for solving symbolic re-
gression problem. The comparison of errors obtained on 
every function is shown at fig. 4. The self adjustment pro-
cedure used for fuzzy GP is PDP. 

As one may see, the algorithms have different behav-
ior on different functions, but their overall efficiency is 
close enough.  
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Fig. 1. Standard GA reliabity compared to self-adjusted GA reliability 
 

 

 
 

Fig. 2. Standard GP error compared to self-adjusted GP errors 
 
 
 
 

 
 
 

Fig. 3. Rules base representation 
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Fig. 4. Comparison of symbolic regression (SR) GP and fuzzy logic forming GP 
 

Table 3 
Comparison of different methods [3] solving classification problems 

 
Algorithm 

name 
Australian 

credit 
German 
credit 

Algorithm 
name 

Australian 
credit 

German 
credit 

SCGP 0,9022 0,7950 Bayesian approach 0,8470 0,6790 

MGP 0,8985  0,7875  Boosting 0,7600 0,7000 

2SGP 0,9027 0,8015 Bagging 0,8470 0,6840 

GP 0,8889 0,7834 RSM 0,8520 0,6770 

Fuzzy classifier 0,8910 0,7940 CCEL 0,8660 0,7460 
C4.5 0,8986 0,7773 CART 0,8744 0,7565 

LR 0,8696 0,7837 MLP 0,8986 0,7618 

k-NN 0,7150 0,7151 GP 0,8960 0,7693 

GP RPN 0,8960 0,7550 Fuzzy GP 0,9010 0,7750 

 
Several real classification problems were solved to 

compare the algorithm efficiency with analogies. They 
are: 

– Bank clients classification problem, Australian vari-
ant, 14 attributes, 2 classes, sample size is 690. Classes 
and variables meanings are encrypted; 

– Bank clients classification problem, German variant, 
24 attributes, 2 classes (bad or good customer based on 
statistical data), sample size if 1000. 

For every problem the algorithm was run several 
times. The average correct classification rates are shown 
at table 3 (higher is better). The presented algorithm name 
is Fuzzy GP. 

The resulting algorithm has one of the highest efficien-
cies comparing to competitors. It also is better than the 
symbolic regression algorithm, which was also tested and 
has the name GP RPN. Although there are methods with 
lower error values, they form a symbolic regression which 
is hard to interpret, while the presented method gives a 
rules base which is easy to analyze for people. 

Conclusions. As a result of this work, a new approach 
for fuzzy logic systems design was presented. This ap-
proach uses evolutionary algorithms with original self-

adjustment procedures, which allow automatic choice of 
most suitable genetic operators. The data representation in 
genetic programming allows forming small and effective 
rule bases. The linguistic variables adjustment procedure 
increases the algorithm efficiency by choosing term posi-
tions. All of these advantages give the algorithm an op-
portunity to compete with the best known algorithms 
while solving complex classification problems. 
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