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suitability of applying regression methods for IQ estima-
tion may be analyzed regarding it as estimating a continu-
ous mathematical function. Finally, Conditioned Random 
Fields have shown to work well for sequence tagging. As 
this is related applying an IQ value to each exchange of a 
sequence of exchanges, those may also increase IQ rec-
ognition performance. 
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The client-server speech recognition systems face the challenge to provide consistent performance over diverse 

channel conditions. It is therefore necessary to develop methods which could anticipate the effect of the transmission 
errors. In this paper we consider an error mitigation approach which does not modify the original data; instead it tries 
to reconstruct lost information at the receiver via interpolation of successfully transmitted features. Using the packet 
identification number the DSR server is able to decide unambiguously which packets were lost and which were closest 
packets received without error. With correctly received packets before and after the burst, error mitigation module can 
interpolate missing features. 
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В клиент-серверных системах распознавания речи стоит задача обеспечить последовательную работу в 
различных условиях канала передачи данных. Таким образом, необходимо разработать методы, которые по-
зволят снизить эффект ошибок при передаче данных. В данной работе рассматривается подход для сглажи-
вания ошибки, который не изменяет исходные данные, вместо этого он старается воссоздать потерянную 
информацию в приемнике с помощью интерполяции успешно переданных функций. Используя номер пакета 
идентификации сервера DSR, можно однозначно решить, какие пакеты были потеряны, и какие ближе к полу-
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чению без ошибок. С помощью правильно принятых пакетов до и после работы модуля сглаживания можно 
интерполировать недостающие функции. 

 
Ключевые слова: распределенное распознавание речи, сглаживание ошибки передачи, интерполяция. 
 
The days are numbered where we used our mobile phones 

exclusively for telephone conversation. Today we have access 
to thousands of different applications and services for our mo-
bile companions and their number is rapidly growing. How-
ever, the usability of such services is still hindered by the lim-
ited user interface of mobile devices. Speech based user inter-
face could augment standard interface improving quality of the 
service. The main problem, however, is that reliable large vo-
cabulary speech recognition cannot be done using limited re-
sources of the mobile phones.  

The most vividly discussed proposal to overcome this 
challenge is the principle of Distributed Speech Recogni-
tion (DSR). In this approach, the speech recognition proc-
ess is separated into two parts: a front-end on the client-side 
and a back-end on the server-side. The front-end extracts 
characteristic features out of the speech signal, whereas the 
back-end, making use of the language and acoustic models 
performs the computationally costly recognition. 

Fig. 1 shows system architecture for DSR. The client 
captures the speech signal using a microphone and extracts 
features out of the signal. The features are compressed in 
order to obtain low data rates and transmitted to the server. 
At the server back-end, the features are decompressed and 
subjected to the actual recognition process. 

To ensure low latency and reduce transmission costs 
in the context of DSR the usage of a minimal message-
oriented UDP protocol is advantageous for the feature 
transmission [1]. Since UDP does not use acknowledge-
ment technique, it does not generate extra traffic for the 
retransmission of lost data. However, this means that 
some sort of error mitigation process has to be carried out 
on the server side to compensate for transmission losses. 
The approach which is considered in this paper aims to 
recover lost data using successfully received information. 
Using the packet identification number the DSR server is 
able to decide unambiguously which packets were lost 
and which were closest packets received without error. 
With correctly received packets before and after the burst, 
error mitigation module can interpolate missing features. 

Fig. 1 shows system architecture for DSR. The client 
captures the speech signal using a microphone and extracts 
features out of the signal. The features are compressed in 
order to obtain low data rates and transmitted to the server. 
At the server back-end, the features are decompressed and 
subjected to the actual recognition process. 

To ensure low latency and reduce transmission costs in 
the context of DSR the usage of a minimal message-
oriented UDP protocol is advantageous for the feature 
transmission [1]. Since UDP does not use acknowledge-
ment technique, it does not generate extra traffic for the 
retransmission of lost data. However, this means that some 
sort of error mitigation process has to be carried out on the 
server side to compensate for transmission losses. The ap-
proach which is considered in this paper aims to recover 
lost data using successfully received information. Using the 
packet identification number the DSR server is able to de-
cide unambiguously which packets were lost and which 
were closest packets received without error. With correctly 
received packets before and after the burst, error mitigation 
module can interpolate missing features. 

2. Classical interpolation methods. In the context of 
the DSR one can find several interpolation methods for 
loss recovery. Most prominent among those are the near-
est neighbor repetition [2], the linear interpolation and the 
cubic Hermite polynomial interpolation [3]. In the follow-
ing we will use notations introduced by James and Milner 
in the above mentioned work. For the loss burst of the 
length B with Xbefore and Xafter being feature vectors cor-
rectly received immediately before and after erasure. The 
standard feature vector Xt contains 14 feature components 
characterizing speech frame t [2]. The missing feature 
vectors Xn for1 ≤ n ≤ B will be determined as follows: 

– nearest neighbor repetition – the missing frame is 
replaced by the nearest correctly received frame  
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Fig. 1. Client-Server based ASR system – Distributed Speech Recognition 
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– linear interpolation – missing features are interpo-
lated using linear function of time 
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– cubic Hermite polynomial – is cubic polynomial 
interpolator with parameters implying continuous first 
derivatives of polynomial at the burst edges 
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where t = n/(B + 1) with 1 ≤ n ≤ B and beforeX ′  and afterX ′  
are approximations of derivatives which are iteratively 
calculated to preserve “nice looking” shape of the interpo-
lated data (we have used Matlab implementation). At this 
point we have to note that due to the derivatives estima-

tion the cubic interpolator requires two consecutive fea-
ture vectors before and after the error burst. 

Hybrid Correlation-Based Interpolator. In our ex-
periments we were able to confirm the published results 
[3], claiming that the advance cubic interpolation to some 
extend outperforms the simple nearest neighbor repeti-
tion. However, a closer analysis of the statistical proper-
ties of the cepstral coefficients suggests that not all com-
ponents can be equally well reconstructed using smooth 
interpolators, c. f. fig. 2.  

In fact when analyzing the interframe component cor-
relation, c. f. Figure 3, one can see that there exist a group 
of low correlated components and a group of high corre-
lated coefficients. The weak correlated components have 
very low prediction power. Using sophisticated interpola-
tion therefore does not make any sense for them. In turn, 
highly correlated coefficients result in a smooth time tra-
jectory which can be well interpolated.  
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Fig. 2. Different interpolators used to recover missing feature components with different correlation level: 

a – 1st feature vector component; b – 11th feature vector component 
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Fig. 3. Temporary correlation levels of different feature components: 
a – 2D view; b – 3D view 
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Correlations and threshold x in component classification for hybrid interpolator 
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Fig. 4. Dependence of the recognition accuracy on the threshold x 
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Fig. 5. Performance of different interpolators in conjunction with different interleaving modes: 

a – no interleaving;  b – packet interleaving with depth d = 5 
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This observation served as a motivation for our hybrid 
interpolator – it is a combination of the nearest neighbor 
(NN) approach and the cubic estimator: 

– use cubic for highly correlated components – Class I; 
– use NN for low correlated component – Class II. 
In order to separate the 14 feature components into 

these two categories a certain threshold has to be found. 
For that we analyzed 1001 record on the test set 1 from 
the Aurora-2 database. We have considered interframe 
correlation with lag three for all 14 components. Table 
shows the obtained correlations and the classification of 
components into Class I and Class II for different thresh-
old levels. 

It should be noted that when threshold x is set at very 
low level (x = 0,5) all components are assigned to the 
Class I and hybrid interpolator converges to a pure cubic 
approach. For x = 1 it becomes a pure NN interpolator. To 
determine the optimal threshold level we have performed 
a number recognition experiments with different threshold 
levels using real life error pattern EP3.  

As we can see on figure 4 the dependence of the recog-
nition accuracy on the threshold shows a clear optimum. 
Furthermore the optimal WER for the hybrid strategy out-
performs individual WERs of both NN and cubic interpola-
tions schemes. The optimal threshold for this test was x = 
0,7. It implies cubic interpolation for 10 components and 
nearest neighbor estimations for the remaining 4. 

Experimental Results and Conclusion. In order to 
evaluate the performance of different interpolation ap-
proaches we have conducted a number of recognition 
experiments on the test set A from the AURORA-2 task 
[4]. Three different error patters (EP1, EP2 and EP3) cor-
responding to good, medium and poor transmission chan-
nel quality were used. figure 5, a shows obtained word 
error rates. figure 5, b compares performance of different 
interpolation approaches when DSR setup is augmented 

by the interleaving of input data [3]. From the diagram it 
becomes clear that basically all methods perform at the 
same level over good (EP1) and medium (EP2) quality 
channels. At the same time under more demanding trans-
mission channel conditions the suggested hybrid approach 
offers some additional gain in quality of service. 

In this paper we suggested new hybrid approach to the 
interpolation of lost features combining nearest neighbor 
repetition and cubic interpolation. The experiments with 
different system settings and channel conditions have 
shown that such an interpolator is more advantageous 
compared to the standard ones. Furthermore it was shown 
that it can be easily combined with packet interleaving 
technique as a joint measure for the concealment of 
transmission errors. 
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