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suitability of applying regression methods for IQ estima-
tion may be analyzed regarding it as estimating a continu-
ous mathematical function. Finally, Conditioned Random
Fields have shown to work well for sequence tagging. As
this is related applying an 1Q value to each exchange of a
sequence of exchanges, those may also increase 1Q rec-
ognition performance.
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ON THE CONCEALMENT OF TRANSMISSION ERRORS FOR DISTRIBUTED
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The client-server speech recognition systems face the challenge to provide consistent performance over diverse
channel conditions. It is therefore necessary to develop methods which could anticipate the effect of the transmission
errors. In this paper we consider an error mitigation approach which does not modify the original data, instead it tries
to reconstruct lost information at the receiver via interpolation of successfully transmitted features. Using the packet
identification number the DSR server is able to decide unambiguously which packets were lost and which were closest
packets received without error. With correctly received packets before and after the burst, error mitigation module can
interpolate missing features.
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O COI'VIACOBAHMMU OIIUBOK MMEPEJAYHA B PACIIPEJEJTEHHBIX CUCTEMAX
PACIIO3HABAHUS PEUN
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B knuenm-cepgepruix cucmemax pacno3HA8aHus peyu cmoum 3a0aia obecneuums nocie008amenvhyo pabomy 6
PA3TUYHBIX YCIOBUAX KAHANA nepedadu Oannvix. Takum obpasom, HeobXooumo paspabomams memoobl, Komopuie no-
3601151 CHU3UMb 3hexm owubox npu nepedaye OanHvlx. B dannou pabome paccmampusaemcesi nooxoo Osi canadicu-
8aHUA OUWIUOKU, KOMOPbIU He USMEHAem UCXOOHble OAHHbIE, BMECINO dM020 OH CMAPAemcs 80CCO30AMb NOMEPAHHYIO
uHghopmayuio 6 npuemMHuKe ¢ NOMOWbIO UHMEPNOTAYUU YCHeWHO nepedannvix @yukyuil. Mcnonw3ys nomep nakema
udenmuuxayuu cepgepa DSR, ModcHo 00HO3HAUHO peuiumb, Kakue nakemsl OblIU NOMePAHbL, U Kakue Oaudice K noJy-
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yenuto bes owuoox. C HOMOUWbIO NPABUTIbHO NPUHAMbBLX NAKEMO6 00 u nocue pa60mbl Modyﬂ;z CeNAHNCUBAHUA MOHCHO

UHMEPROAUPOSAMb HedoCmalowue PYHKYUU.

Knrouesvie crosa: pacnpedeﬂeHHoe pacnosHaearnue pedu, cerasx;cusarue oumubdKu nepedatm, UHMEPNOJIAYUA.

The days are numbered where we used our mobile phones
exclusively for telephone conversation. Today we have access
to thousands of different applications and services for our mo-
bile companions and their number is rapidly growing. How-
ever, the usability of such services is still hindered by the lim-
ited user interface of mobile devices. Speech based user inter-
face could augment standard interface improving quality of the
service. The main problem, however, is that reliable large vo-
cabulary speech recognition cannot be done using limited re-
sources of the mobile phones.

The most vividly discussed proposal to overcome this
challenge is the principle of Distributed Speech Recogni-
tion (DSR). In this approach, the speech recognition proc-
ess is separated into two parts: a front-end on the client-side
and a back-end on the server-side. The front-end extracts
characteristic features out of the speech signal, whereas the
back-end, making use of the language and acoustic models
performs the computationally costly recognition.

Fig. 1 shows system architecture for DSR. The client
captures the speech signal using a microphone and extracts
features out of the signal. The features are compressed in
order to obtain low data rates and transmitted to the server.
At the server back-end, the features are decompressed and
subjected to the actual recognition process.

To ensure low latency and reduce transmission costs
in the context of DSR the usage of a minimal message-
oriented UDP protocol is advantageous for the feature
transmission [1]. Since UDP does not use acknowledge-
ment technique, it does not generate extra traffic for the
retransmission of lost data. However, this means that
some sort of error mitigation process has to be carried out
on the server side to compensate for transmission losses.
The approach which is considered in this paper aims to
recover lost data using successfully received information.
Using the packet identification number the DSR server is
able to decide unambiguously which packets were lost
and which were closest packets received without error.
With correctly received packets before and after the burst,
error mitigation module can interpolate missing features.

Fig. 1 shows system architecture for DSR. The client
captures the speech signal using a microphone and extracts
features out of the signal. The features are compressed in
order to obtain low data rates and transmitted to the server.
At the server back-end, the features are decompressed and
subjected to the actual recognition process.

To ensure low latency and reduce transmission costs in
the context of DSR the usage of a minimal message-
oriented UDP protocol is advantageous for the feature
transmission [1]. Since UDP does not use acknowledge-
ment technique, it does not generate extra traffic for the
retransmission of lost data. However, this means that some
sort of error mitigation process has to be carried out on the
server side to compensate for transmission losses. The ap-
proach which is considered in this paper aims to recover
lost data using successfully received information. Using the
packet identification number the DSR server is able to de-
cide unambiguously which packets were lost and which
were closest packets received without error. With correctly
received packets before and after the burst, error mitigation
module can interpolate missing features.

2. Classical interpolation methods. In the context of
the DSR one can find several interpolation methods for
loss recovery. Most prominent among those are the near-
est neighbor repetition [2], the linear interpolation and the
cubic Hermite polynomial interpolation [3]. In the follow-
ing we will use notations introduced by James and Milner
in the above mentioned work. For the loss burst of the
length B with Xperore and Xager being feature vectors cor-
rectly received immediately before and after erasure. The
standard feature vector X, contains 14 feature components
characterizing speech frame ¢ [2]. The missing feature
vectors X, forl <n < B will be determined as follows:

— nearest neighbor repetition — the missing frame is
replaced by the nearest correctly received frame

n<B/2,
n>B/2.
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Fig. 1. Client-Server based ASR system — Distributed Speech Recognition
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— linear interpolation — missing features are interpo-
lated using linear function of time

n

B+1
1<n<B;
— cubic Hermite polynomial — is cubic polynomial
interpolator with parameters implying continuous first
derivatives of polynomial at the burst edges

X, = Xyerore (1 —32 427 ) +

X +

n_ Xbcforc (Xaftcr - Xbcforc ) >

X e (367 =207 )+
X et (£ =267 +8 )+ X (£ =),

where t = n/(B+ 1) with | <n <Band X; . and

are approximations of derivatives which are iteratively
calculated to preserve “nice looking” shape of the interpo-
lated data (we have used Matlab implementation). At this
point we have to note that due to the derivatives estima-

X!

after

cubic

original

nearest | |

tion the cubic interpolator requires two consecutive fea-
ture vectors before and after the error burst.

Hybrid Correlation-Based Interpolator. In our ex-
periments we were able to confirm the published results
[3], claiming that the advance cubic interpolation to some
extend outperforms the simple nearest neighbor repeti-
tion. However, a closer analysis of the statistical proper-
ties of the cepstral coefficients suggests that not all com-
ponents can be equally well reconstructed using smooth
interpolators, c. f. fig. 2.

In fact when analyzing the interframe component cor-
relation, c. f. Figure 3, one can see that there exist a group
of low correlated components and a group of high corre-
lated coefficients. The weak correlated components have
very low prediction power. Using sophisticated interpola-
tion therefore does not make any sense for them. In turn,
highly correlated coefficients result in a smooth time tra-
jectory which can be well interpolated.
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Fig. 2. Different interpolators used to recover missing feature components with different correlation level:
a — 1st feature vector component; b — 11th feature vector component
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Fig. 3. Temporary correlation levels of different feature components:
a—2D view; b — 3D view
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Correlations and threshold x in component classification for hybrid interpolator
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Fig. 5. Performance of different interpolators in conjunction with different interleaving modes:
a —no interleaving; b — packet interleaving with depth d =5
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This observation served as a motivation for our hybrid
interpolator — it is a combination of the nearest neighbor
(NN) approach and the cubic estimator:

—use cubic for highly correlated components — Class I;

—use NN for low correlated component — Class 11.

In order to separate the 14 feature components into
these two categories a certain threshold has to be found.
For that we analyzed 1001 record on the test set 1 from
the Aurora-2 database. We have considered interframe
correlation with lag three for all 14 components. Table
shows the obtained correlations and the classification of
components into Class I and Class II for different thresh-
old levels.

It should be noted that when threshold x is set at very
low level (x = 0,5) all components are assigned to the
Class I and hybrid interpolator converges to a pure cubic
approach. For x = 1 it becomes a pure NN interpolator. To
determine the optimal threshold level we have performed
a number recognition experiments with different threshold
levels using real life error pattern EP3.

As we can see on figure 4 the dependence of the recog-
nition accuracy on the threshold shows a clear optimum.
Furthermore the optimal WER for the hybrid strategy out-
performs individual WERSs of both NN and cubic interpola-
tions schemes. The optimal threshold for this test was x =
0,7. It implies cubic interpolation for 10 components and
nearest neighbor estimations for the remaining 4.

Experimental Results and Conclusion. In order to
evaluate the performance of different interpolation ap-
proaches we have conducted a number of recognition
experiments on the test set A from the AURORA-2 task
[4]. Three different error patters (EP1, EP2 and EP3) cor-
responding to good, medium and poor transmission chan-
nel quality were used. figure 5, a shows obtained word
error rates. figure 5, b compares performance of different
interpolation approaches when DSR setup is augmented

by the interleaving of input data [3]. From the diagram it
becomes clear that basically all methods perform at the
same level over good (EP1) and medium (EP2) quality
channels. At the same time under more demanding trans-
mission channel conditions the suggested hybrid approach
offers some additional gain in quality of service.

In this paper we suggested new hybrid approach to the
interpolation of lost features combining nearest neighbor
repetition and cubic interpolation. The experiments with
different system settings and channel conditions have
shown that such an interpolator is more advantageous
compared to the standard ones. Furthermore it was shown
that it can be easily combined with packet interleaving
technique as a joint measure for the concealment of
transmission errors.
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