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In this study a multi-agent evolutionary strategies algorithms system is considered in application to linear dynamic
system identification problem solving. The proposed approach is based on previous results of designing the universal
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Every agent is model-based and has an aim to find an extremum for agent’s criterion. The solution of the problem is
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The problem of making a model for a dynamic plant
or process is not new and has a lot of definitions. For
some problem definitions there are quite a lot of
techniques, so problems can be called classic today. For
instance, there are techniques that are based on the
mathematical statistics maximum likelihood method [1]
or techniques that are based on autocorrelation function
and nonparametric kernel statistics [2]. Still we can face
different systems or definitions that require new
approaches to reach a success, since the nature of the task
makes it useless or impossible to apply common
techniques.

One of these problems is so-called identification of the
black box, when the structure is unknown and there are
only observations of inputs and outputs. It is still possible
to make a model in a form of stochastic differential
equation [3], if the order of the equation is known and
there is an acceptable observation of the reaction on the
unit-step function. Also, it is possible to estimate the
transient function via fuzzy output estimation [4],
artificial neural network modelling [5; 6], genetic
programming [7], or another function estimation
technique. Every of suggested methods have their own
advantages and disadvantages. But all of them allow to
find or the estimation for the observed time segment only,
or the estimation, which symbolic representation makes it
useless for analytic methods of control or analysis. Some
of them are dependent on the size of the sample. In this
study we consider a special case of the problem, when the
observations are noised, the size of the sample can be
small and the aim is not just to estimate the dynamic
model of the system but estimate it in symbolic form.

In the article [8] the linear dynamic system
identification with the 2™ order ordinary differential
equation via the genetic algorithm was examined.
Although, the genetic algorithm is a well-known and
reliable global optimization technique, it is more
preferable to apply the seeking not only on the given
compact and avoid quantizing of the arguments. That is
why it was suggested to implement the optimization
technique for the real valued arguments.

In the previous work the approach of reducing the
initial identification problem to extremum problem on the
real vector field was suggested and the modified and
hybrid evolutionary strategies algorithm was designed and
examined. The efficient algorithm settings were found to
be promising in application to the identification task.

Linear differential equations models are useful in
many different fields, so the linear dynamics
identification problem is significant and takes place in
different problem definitions. The filtering problem and
articulatory identification [7; 9], are related to the
stochastic ODE identification. The proposed approach can
be extended to stochastic ODE or Bessel equations
identification. Hence, it is also can be applicable to
Markov processes [10; 11]. That is why the linear
differential equation identification can be useful is some
fields related to speech recognition problem, gesture
recognition problem and, probably, many more.
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Let one have the sample of one input, one output

Uil

system measurements {y }i=Ls, where s is its

size, y; € R is dynamic system output measurement at
time 7,, and u; =u(t;) is control measurement. It is also

known, that the dynamic system is linear and stationary,
so it can be described with the ordinary differential
equation (ODE):

a, -x* +a, -x*D +..tayg-x=b-u(t), x(0)=x,.(1)
Here x, is supposed to be known. In the case of the

transition observation, we can put forward a hypothesis
about initial point: the system output is known at time
t =0 and the derivative values can be set to zero,
because usually the system observation starts with it’s
being in the steady state. In general, the initial point can
be approximated or even being the part of optimization
problem. Using the sample data we need to identify
parameters and the system order 771 , which is assumed to
be limited, so m <M, M N . M is a parameter that is

set by the researcher. This value limits the structure of the
differential equation, i. e., it limits the ODE order. It is

also assumed that there is an additive noise
E:E()=0,D()<w, that affects the output
measurements:

yi=x(t)+§;. (@)

Since the identification problem definition requires the
model in symbolic form, the system structure is needed.
For the ODE structure can be defined with the order of
the differential equation and its parameters. That is why
we put forward a hypothesis about ODE order, that it is
less than chosen maximum order for the equation M . So
now, the proposed approach is uderparametrized.

Without loss of the generality, let the leading
coefficient of ODE be the constant equal to 1, so that

a _ a b
x4 Dl (K 1)+...+—0-x=—'u(t), 3)
a ay ay
or
x(k)+€zk-x(k71)+...+&l-x=1;-u(t). 4

Then one can be searching for the solution of the
identification task as a vector of parameters for linear
differential equation with the order m

a2 w L va -k =agu(n), $0)=x,, (5)

where the of
0, ..., 0, W Gy, d) €R', n<M+1,

delivers an extremum to the functional

vector equation parameters

A

a

m>°

min
aeR", n<M+1

N
[(aa”)ZZb’i _)Af(ti)| - (6)
i=1 a=a

In general case, the solution X(#) is evaluated with a

numerical integration technique, because the control
function has no analytical from, rather is given
algorithmically. We prefer the criterion (6) instead of
quadratic criteria because of its robustness.
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Previous study was focused on designing a special
technique that allows automatically estimate the order and
the parameters with an algorithm, which argument is a
vector with fixed length. The advantage of that technique
is an ability of simultaneous problems solving. Anyway,
the main disadvantage was the fact that proposed
reduction required a special scheme for integration of
ODE. And since the order reduction is connected with
setting the first vector’s arguments to 0, the optimization
algorithm should deal with this fact. Actually, it means
that for stochastic optimization algorithms on the real
vector field some special modifications are needed to be
designed and examined, because of the solution
sensitiveness to small disturbances that takes place.

The current study is based on another principle of
order and parameters estimation, but still the algorithm
provides automatic simultaneous seeking. Let every
optimization problem for different values of variable 7
be solving with a distinct algorithm.

As a basis of the optimization technique the
evolutionary strategies algorithm was chosen. The basic
idea of this algorithm is described in [12]. This heuristic
evolution-based technique was chosen, because the
identification problem leads to solving the multimodal
optimization task with complex criterion, that can be
evaluated only numerically. The system structure and its
parameters are defined with an integer and a vector. The
criteria (6) for these vectors are complex and sensitive to
its components, which are changing by stochastic search
operators. This is why we have to develop the specific
modification for the global optimization technique. The
proposed approach is based on hybridized and modified
evolutionary strategies algorithm (HMES).

Let every individual be represented with tuple

H, :<0pi,spi,ﬁtness(0p[)>, i=1L,N,,
where opj« €R, j= 1,k is the set of objective parameters

of the differential equation; sp;- €R", j=1k isthe setof

strategic parameters; [N, is the population size;
1
fitness(x): RF - (0,11, fitness(x) = ——— the
1+1(x)

fitness function.

Selection types were borrowed from the genetic
algorithm: proportional, rank-based and tournament-
based. The algorithms in this study are based on produces
one offspring from two parents and every next population
have the same size as previous. Recombination types
initially were chosen from the intermediate, weighed,
randomly weighed and discrete crossovers. The mutation
of every offspring’s gene happens with the chosen

the
z={0,1}, P(z=1)=p,,, which is generated for every

probability p, . If we have random value

current objective gene and its strategic parameter then

Opfsz&pring — Op;gfj’&pring +z- N(O, Sp;;fﬁspring ) ,
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Spin_/ﬁprmg _ Spl{e/f"vprng +z-N(0,1)|,

where N(m,c?) is the normally distributed random value

with the expected value m and the variance o. The
other way of implementing the mutation operand is with
using the exponential adaptation of strategic parameters
with an extra parameter of adaptation T :

Op;z_ﬁ’spring — Opfjﬁpring +z- N(O’Sp?/ﬁpr‘irzg) ,

offspring __ . offspring _tz-N(0,1)
Sp; =5p;i € :

The stochastic evolutionary algorithm was hybridized
with stochastic coordinate-wise optimization technique.

Let N, randomly chosen individuals for N, randomly

chosen objective chromosomes are changing with NV,
iterations of local search. The local optimization step is
h,. After every circle and iteration the initial point is

being replaced with best solution. If all others solutions
are worse, it does not change.

During the development of the ODE identification
system that was based on modified evolutionary strategies
algorithms parallelization some investigations were done.
First, the sample for the ODE with chosen order was
generated, and then every client program was searching
for the best parameters of model. Every client was
working with its own order. After the system stops
evaluations, it brings as many models with different
orders of ODE, as many clients were launched. Here we
present some results of relation between the maximum
fitness function values for the best solution found and the
order of the system. On the fig. 1 diagrams are
demonstrating this relation for the samples generated by
systems with different orders of the ODE: a — second
order; b — fourth order, ¢ — sixth order, d — eighth order.
So, the every sample was identified with ODE, orders of
models varied from 1* to 9™. The algorithm is stochastic,
that is why the results were averaged for 20 runs in every
case. The settings of algorithms were examined, so every
client had the same and the most efficient settings due to
efficiency estimation done.

On these figures one can see that for the every system,
the model with the same order fits best than other models.
Moreover, increasing the difference in orders between the
model and the system leads to decreasing the fitness
value. The relation has a form of unimodal mapping with
the pike in point with correct order. That is why it was
suggested to develop an algorithm that would reallocate
resources for all HMES solving optimization problems
related to ODE parameters identification for different
orders of equation.

We skipped the varying of all the HMES settings in
the current research. First of all, the aim of this study was
to develop the identification technique that is based on a
different approach for estimation of the order. We do
believe that the paradigm would be successful with any
settings that are efficient enough to reach the adequate
estimation. Second of all, in previous studies [13; 14] and
[15] a lot of settings investigations were done, also for the
algorithm that is described above. Hence, the most
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efficient settings were chosen. In a further work there
would be another complete examination, since there is no
doubt that with the new paradigm another algorithm’s
settings could improve the efficiency.

As it was mentioned earlier, every HMES is applied
for the different ODE order. For instance, let the
parameter be set: m =9, so there would be 9 different

extremum problems with criterion (6) for n=2,10. Let
the every HMES be the agent with its own aim — to find
best solution on the given space and computational
resources. Working in cooperation, these agents are trying
to figure out, which one of them is the most efficient, and
then to reallocate all the resources between agents. In the
current work we consider a simple cooperation between
the agents; reallocation and cooperation both can be
called momentary and proportional-based. It is also
possible to implement the dynamic reallocation and based
on set of different characteristics.

Let best,,i=1,m be the fitness of the best solution
found by the i-th algorithm. Similarly, let size; be the

size of the population, N,,, N,; — parameters for local

Li>
optimization, p, , — mutation probabilities, k, — number

of parameters. To prevent collapse of any agent, the
minimum population size Min _size >0 is needed. So, if

the sum of all the individuals in populations is

m
Sum _ size = ZSize, , then the free resources are
i=1
Free = Sum _size— Min _size .
In the simplest case, when the agents are model-based
reaction agents the reallocation can be implemented in
following form:

size; = round (fw (i,best,aw)~Free) ,

where f,,: NxRxR,—>[0;1] is increasing weight

function  and A4 best,-* € best", best; € best :

best, > best, = f,,(i,best ,a,)> [, (i,best,a,); a, — are
the set of its parameters; round:N — R turns its

argument to nearest integer. We considered these weight
functions:

fle (i,best) = mbLt" -Free, (7
Zbest ;
=1
a,,-best;
fii,best,a,)=————:Free,a,>0. (8)

Z eaw»best,-
J=1

Of course, using the best solution of every HMES is
not the only way of how to design the scheme. It is also
possible to use, for example, the average of fitness
function.

To provide the investigation of the scheme testing
samples were generated: 10 for every order from first to
ninth. Parameters of the systems were randomly

69

a, =U(0.5), b =U(05),i=109, k=11,
where U(0,5) is uniformly distributed random value. The

generated:

time of the process was set to 5. The control function was
the step function, u(¢)=1. For sample forming s=150

points were taken randomly. For every task 10 runs of the
algorithm were executed. The goal of examination is to
investigate the approach, determine its characteristics.
After examining the HMES algorithm in previous
works, it was suggested to use the following settings: 50
individuals for 50 populations, local optimization
parameters are N, =10, N, =10 and N;=1 with

h,=0,1, the tournament selection with the tournament
size equals 2, the discrete crossover and the mutation with

o 1
the probability p,, = e

One can be interested in if there is resources
reallocating does it need special regularization, since the
different agents works with different dimension and so,
requires more or less resources. In this work two different
investigations were made. The first thing is that there is
no relation between efficiency increasing and increasing
the number of individuals or the number of local
optimization steps. For every sample and every algorithm
10 more tests with 10 launches in every of them were

made: 1 — N, ;=10+,-10,j=110,2 - N, ; =50+10- .

On the fig. 2, a, b similar diagram to one that was shown
on fig. 1 is presented for the investigations of increasing
local search resources and individuals, respectively. The
sample was generated with the system of the 2™ order.

On the fig. 2, both 2, a and 2, b, there are different
polylines; each is the average of the solution fitness
function for the given experiment for different orders of
model. The first interesting fact is that with increasing
number of local search steps, we slightly improved the
efficiency. In a test with varying the population size the
variation of different runs for the same order have larger
variance in a scew zone. Varying the local optimization
steps leads the increasing of variance in a pike and shifts
the best solution to the next to proper order solution more
often than in test with population size.

Anyway, the statistics shows that varying both the
number of steps and the size of population gives no
sufficient improvements. Moreover, sometimes it even
leads to small distortions in identifying the proper order.
That is why, reallocating of the resources in the new
heuristic algorithm is made due to the common sense.

Now let us consider the main strategy of reallocating
and examine how the varying of the weight function
parameters would react on its efficiency. The reallocating
strategy in the current study was implemented as it is
shown below:

— run the same number of circles every HMES;

— reallocate the resources for the number of
individuals;

— set the number of individuals that are going to be
improved to round (size; -0,2);

— check the stop criterion.
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As the stop criterion it is possible to use the
achievement of desired accuracy of the model or the
exceeding of evaluations.

Here we investigate the influence of the parameter a

value on the sizes of populations. First, we compare the
distribution of the resources by the end of algorithm
evaluation for different parameter values. For instance,
the system of the 2™ order was chosen, the results are the
average for 20 launches. The final sizes of populations in
dependence of parameter’s value are shown on fig. 3.
Another diagram on fig. 4 is to show the dependence of
final solution fitness for every order of the parameter
value. The linear polyline is for weight function (7).

One can see that with increasing of the weight coeffi-
cient the pike of resources distributions are becoming

1,1

0,9 -

0,7 +

The average fitness
function value

0)5 1T T T 17 T T T T 1
12 3 456 7 8 9 10

The order of the ODE model

1,1
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o
~J
f
|
|
|
|
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The average fitness

c

narrower. It means that there can be lack of resources to
improve the solutions for other orders of ODE and in the
same time there can be no improvement of solution that is
already found. That solution, actually, is forming a pike.

On this figure once can easily see the problem that
was noticed above. The large values of weight lead to a
gap in identification efficiency for orders that are far from
the pike. The next fig. 5 shows the character of the best
individual fitness function value, average fitness for the
population and population size. To fit everything on the
same scales, we normed the population size, its max value
was 178. And best fitness value were normed by its min
and max values.
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Fig. 1. Fitness function of the best solution found average value
in relation with the order of ODE model for different cases:
samples generated by 2™ order ODEs (a); samples generated by 4™ order ODEs (b);
samples generated by 6™ order ODEs (c); samples generated by 8" order ODEs (d)
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Fig. 2. Varying the number of local optimization steps (@), and size of population (b),
for different orders of model
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Fig. 5. The characteristics of the population

All of the settings that were listed above and the
weight function (8) with parameter a, =19, which was

determined to be the most reliable the proposed approach
during the test demonstrated its high efficiency with less
computational efforts as the HMES algorithm with round-
ing of its parameters for some problems. In the further
work the aim of investigation would be to compare both
algorithms and to design and examine the new approaches
to reallocate resources.

The proposed approach can be used for automatic
identification of the linear dynamic system by its observa-
tions. In this paper we presented a scheme of interaction
between different optimization algorithms. Further work
despite would it be the HMES with rounding or the co-
evolution-like scheme is focusing also on implementing
the cooperation of three different but dependent optimiza-
tion problems: identification of the structure and parame-
ters, identification of the input, identification of the start-
ing point.
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But first of all, after examining different ways of in-
teraction between agents and reallocating techniques the
approach we looking forward to implement identification
system that would allow solving MIMO dynamic prob-
lems with unknown order of every system state.
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NCCIEJOBAHUSA ®PEPPOMATI'HUTHBIX TIOPOLIKOB
N ITOKPBITUU HA UX OCHOBE

B. H. Caynumn, C. B. Tenerun

Cunbupckuii rocyIapcTBEHHBIN a9pOKOCMUYECKUH YHUBEPCUTET UMeHH akaiemuka M. @. Pemernena
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Ipusedenvl uccned08anusi XUMUHECKO20 COCMABA, MOPPONIOUL U CIPYKIMYPbL NOPOUKOE MASHUMOMSIZKUX Mame-
puanos uz Kkpucmainudeckux cniaeos 79HM, 10CH u amopgrnozo cnaasa 71KHCP 0ns ux npumenenusi 8 kavecmee
UCXOOHBIX NOPOWKOG NPU NIAZMEHHOM HANBLICHUU (DEPPOMASHUMHBIX CEPOCUHUKOS U MACHUMHBIX IKPAHOB C 8bICOKOU
nponuyaemocmvio. Ilposeden ananuz cmpykmypvl U MASHUMHBIX XAPAKMEPUCMUK HAAZMOHANBLIEHHIX NOKPLIMUL.
Yemanoeneno, umo nopowku 79HM, 10CIO u3-3a Hanuuusi OKCUOHBIX NICHOK NO SPAHUYAM 3ePeH UMEIOM MASHUMHYIO
nponuyaemocms okono 100 I'c/D, a 6 nokpermusix ona naxoounace ¢ ooracmu 100-300 I'c/D npu nanpsscennocmu
maenumuoeo noas om 0,5 0o 3,0 3. Iopowxu cnnasa 71KHCP omauuanuce om Kpucmaiiuyeckux omcymcmeuem ox-
CUOHBIX 06PA308AHUTI HA NOBEPXHOCIU YACTIUY U OOHOPOOHOCbIO CIPYKMYPbL U UMENU MASHUMHYIO NPOHUYAEMOCHTb
00 9000 I'c/D. MaxcumanbHas MacHUMHASA RPOHUYAEMOCb HANBLIEHHbIX 00pa3yos uz nopoutkos cnaasa 71KHCP npu
monwure nokpvimuii om 200 0o 600 mxm cocmasura 2000—-6000 I'c/D npu nanpsasxcennocmu maeHumuoco noas 0,1—
0,35 2.

Krniouesvie cnosa.: macnumomsicxkue mamepuaisl, aMopd)an? Cniae, MacHunHas npoHuyaemocntsb, Niad3mompoH, Ha-
nvljlernue.
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