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The solution of elasto-plastic problems is one of the most complicated and actual problems of solid mechanics. Tra-

ditionally, these problems are solved by the methods of complex analysis, calculus of variations or semi-inverse meth-
ods. Unfortunately, all these methods can be applied to a limited number of problems only.  

In this paper, a technique of conservation laws is used. This technique allows constructing analytical formulas to 
determine the elasto-plastic boundary for a wide class of problems. As a result, the elasto-plastic boundaries were con-
structed for twisted straight rods with cross sections limited by piecewise smooth contour, for flexible consoles with 
constant cross-sections, as well as for anti-plane problems. Computer programs for construction of elasto-plastic 
boundaries for twisted straight rods were written using obtained technique.  

In this work, the elasto-plastic boundary arising during the torsion of a straight beam of arbitrary cross section, 
which is limited by a piecewise smooth contour is constructed; and the elasto-plastic boundaries for the problems of a 
consol bending and anti-plane deformation are found. The plan of the paper is the following. In the first section the 
basic equations of elasticity and boundary problems are considered; in the second section the basic equations of the 
theory of ideal plasticity of von Mises are given; in the third section the conditions on the boundaries of the elastic and 
plastic domains are formulated. The fourth section is devoted to torsion of elastic prismatic rods; the fifth one describes 
elastic bending of bars; in the sixth section the plane problem of theory of elasticity is given. The seventh section covers 
an anti-plane problem of elasticity theory; in the eighth section, conservation laws for the equations of elasticity are 
constructed; in the ninth one, conservation laws of two-dimensional equations of plasticity are discussed. In the tenth 
section an elasto-plastic boundary of a twisted straight rod is found; in the eleventh one an elasto-plastic boundary in 
the bended console is given; and finally, in the twelfth section a method for the construction of elasto-plastic boundaries 
for large areas is described. 
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Решение упруго-пластических задач – одна из сложнейших и актуальных проблем механики деформируемо-
го твердого тела. Традиционно эти задачи решаются или методами ТФКП, вариационного исчисления, или 
полуобратными методами. К сожалению, все эти методы могут быть применены лишь к ограниченному чис-
лу задач. В работе используется техника законов сохранения. Это позволяет построить аналитические фор-
мулы для нахождения упруго-пластической границы для широкого класса задач. В результате удалось постро-
ить упруго-пластические границы: для скручиваемых прямолинейных стержней, сечение которых ограничено 
кусочно-гладким контуром; для изгибаемых консолей постоянного сечения, а также для антиплоских задач. 
Разработанная методика позволила написать компьютерные программы для построения упруго-пластических 
границ для скручиваемых прямолинейных стержней. В предлагаемой работе построена упруго-пластическая 
граница, возникающая при кручении прямолинейного бруса произвольного сечения, которое ограничено кусочно-
гладким контуром, а также упруго-пластическая граница в задачах об изгибе консоли и антиплоской дефор-
мации. В первом разделе статьи рассмотрены основные уравнения упругости и краевые задачи, во втором – 
даны основные уравнения теории идеальной пластичности Мизеса, в третьем – сформулированы условия 
на границах упругих и пластических областей, в четвертом – рассмотрено кручение призматических упругих 
стержней, в пятом – описан упругий изгиб брусьев, в шестом – рассмотрена плоская задача теории упругости,  
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в седьмом – описана антиплоская задача теории упругости, в восьмом – построены законы сохранения  
для уравнений упругости, в девятом – рассмотрены законы сохранения двумерных уравнений пластичности,  
в десятом – найдена упруго-пластическая граница в скручиваемом прямолинейном стержне, в одиннадцатом – 
найдена упруго-пластическая граница в изгибаемой консоли, в двенадцатом – предложена методика для по-
строения упруго-пластических границ для областей больших размеров. 

 
Ключевые слова: законы сохранения, упруго-пластическая граница, точное решение, упругость, пластич-

ность, упруго-пластичность.   
 
Introduction. Solution of elasto-plastic problems is 

one of the most complicated and actual problems of solid 
mechanics. It is determined by the fact that elasto-plastic 
boundary is not known in advance and should be defined 
during the solution of a problem. The elasto-plastic prob-
lems were considered by many well-known mechanicians. 
One can find a good review in works of B. D. Annin and 
G. P. Cherepanov [1], L. A. Galin [2; 3]. For the moment, 
a common approach for solving such problems has not 
been worked out yet. There are only a few single solu-
tions for different special cases. As classical results one 
should consider an exact solution for the problem  
of elasto-plastic torsion of a rod with oval cross-section 
constructed by V. V. Sokolovsky, as well as solution of  
L. A. Galin for the problem of straining of a plane with 
circular hole.   

An interesting theoretical result was obtained by B. D. 
Annin [1]. He proved the unique existence for the prob-
lem of elasto-plastic torsion of the rod with oval cross-
section. 

For solving of the elasto-plastic problem the methods 
of complex analysis, calculus of variations or semi-
inverse methods were applied. In this paper, for construc-
tion of the elasto-plastic boundary the conservation laws 
were used. The conservation laws were applied in works 
[4–6] for the solving of the problem of 2-dimensional 
ideal plasticity; they allowed to obtain analytical solutions 
of  Cauchy and Riemann problems. In following works of 
one of the co-authors of the present article the conserva-
tion laws were used for solving of some elasto-plastic 
problems [7; 8]. The obtained method allowed to write an 
algorithm (computer programs) for construction of elasto-
plastic boundaries of twisted straight rods. For these pro-
grams the certificates of State registration are got [9; 10]. 

In present paper the elasto-plastic boundary for the 
problem of torsion of a straight beam of arbitrary cross-
section, which is limited by a piecewise smooth contour is 
constructed; and the elasto-plastic boundaries for the 
problems of a consol bending and anti-plane deformation 
are found. For convenience, the article is divided into 
sections. In the first section the basic equations of elastic-
ity and boundary problems are considered; in the second 
section the basic equations of the theory of ideal plasticity 
of von Mises are given; in the third section the conditions 
on the boundaries of the elastic and plastic domains are 
formulated. The fourth section is devoted to torsion of 
elastic prismatic rods; the fifth one describes elastic bend-
ing of bars; in the sixth section the plane problem of the-
ory of elasticity is given. The seventh section covers an 
anti-plane problem of elasticity theory; in the eighth sec-
tion, conservation laws for the equations of elasticity are 
constructed; in the ninth one, conservation laws of two-
dimensional equations of plasticity are discussed. In the 

tenth section an elasto-plastic boundary of a twisted 
straight rod is found; in the eleventh one an elasto-plastic 
boundary in the bended console is given; and finally, in 
the twelfth section a method for the construction of 
elasto-plastic boundaries for large areas is described. 

1. The Basic Equations of Elasticity and Boundary 
Problems. Let’s consider steady-state equations of linear 
isotropic elasticity. 

The equilibrium equations look like: 

0,xyx xz X
x y z

 
   

  
 

 0,xy y yz Y
x y z

  
   

  
 (1) 

0,yzxz z Z
x y z

 
   

  
 

here , , , , ,x y z xy xz yz       are components of a stress 

tensor, , ,X Y Z  are components of an external force af-

fected to a unit of volume. The components of a stress 
tensor related to components of a strain tensor by means 
of Hook’s law: 
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 and ,     are constants of Lamé, , ,u v w  are com-

ponents of a vector of deformations, , , , , ,x y z xy xz yz       

are components of a strain tensor. 
Taking into account (2), equations of theory of elastic-

ity can be written using displacements: 
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here ∆ is the Laplace operator. 
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On account of (2) the components of a stress tensor 
are in accord with the compatibility equations along with 
the equilibrium equations (1). The compatibility equations 
here are written in case of absence of external forces: 
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1 0,x
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1 0,xy x y

 
    

 
 (4) 
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1 0,yz y z

 
    

 
 

x y z       ,   is a Poisson’s ratio. 

Problems for elasticity equations are usually pose ei-
ther using displacements (in this case one have to solve 
equations (3)) or using stresses (in that case one solves 
equations (1)–(3)). 

If a problem is written using stresses, one should add 
boundary conditions to equations (1), (3): 

,x xy xzX l m n       

 ,xy y yzY l m n       (5) 

,xz yz zZ l m n       

here ,  ,  l m n  are direction cosines of an external normal 
line to the boundary surface at point under study, 

,  ,  X Y Z  are components of a vector of superficial forces 
affected to a unit of area.  

If the problem is written in displacements then on  
a boundary S these displacements are specified: 

 / ,su u  / ,sv v  / ,sw w  (6) 

here , ,u v w are certain functions on S. 
Remark. There are others problems in the theory of 

elasticity, but they are not adduced in this article. 
2. The Basic Equations of the Theory of Plasticity 

of Mises. For steady-state equations of the theory of plas-
ticity of Mises one should add the plasticity law of Mises 
to the equilibrium equations (1). This law looks like: 

 

2 2 2

2 2 2 2

1 1 1

3 3 3

         2 2 2 2 ,

x y z

xy xz yz k

                     
     

      

 (7) 

here k is a yield point under simple shear.  
In the case of plane deformation the plasticity law (7) 

can be reduce to form: 

  2 2 24 4 .x y xy k      (8) 

In plastic domain, the components of deviator of the 
strain tensor relate to the components of tensor of a strain 
rate with correlations  

1 ,3x x xS e       1 ,3y y yS e       

 1 ,3z z zS e       ,xy xye     (9) 

,yz yze    ,xz xze    

here   is a nonnegative function obtained from (7): 
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here 1 2 3, ,u u u are components of the vector of strain rate. 
3. Conditions on the Boundaries of the Elastic and 

Plastic domains. Determination of a boundary separating 
elastic and plastic domains is one of the most difficult 
problems of the solid mechanics. The boundary is not 
known in advance and is defined during the elasto-plastic 
problem solving. In some cases a shape of the boundary 
can be guessed by general considerations.  

Assume that an elastic state of a medium continuously 
changes over to a yield state. In this case close to elasto-
plastic boundary and on each side of it the Hook’s law is 
applies. This fact leads to the continuity of all components 
of the stress tensor and strain tensor, on the elasto-plastic 
boundary. 

4. Torsion of Elastic Prismatic Rods. Let’s consider 
an elastic prismatic rod with a cross-section of a variable 
form. It’s lateral surface is free from efforts, face planes 
have forces equivalent to rotational moment M. 

Let the coordinate origin is placed in an arbitrary point 
of the face plane and axis z is parallel to generatrix of the 
rod. The boundary conditions (3) will look like: 

0,x xyl m     

 0,xy yl m     (11) 

0,xz yzl m     

and on the face planes of the rod ( 0,  z z l  ) 

0,xzdxdy


   0,yzdxdy


   

 0,zdxdy


   0,zx dxdy


   (12) 

0,zy dxdy


   

   ,yz xzx y dxdy M


     (13) 

here   is the area of a cross-section. As is the convention 
in the theory of torsion:  

 0,x y xy       (14) 

and the remaining components of the stress tensor are in 
accord with equilibrium equations (1) which are the fol-
lowing form taking into account (14): 
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Compatibility equations (4) will look like 
2 2 2 2

2 2 2
0,z z z z

x yx y z

       
   

   
 

  
2

1 0,z
xz x y

 
    

 
 (16) 

 
2

1 0.z
yz y z

 
    

 
 

From the equations (16) one can get  

 ,z Azy Bzx Dx Ey Fz H        (17) 

here A, B, D, E, F, H are arbitrary constants. 
By substituting (17) into (13) on gets that 0z   in 

all alternate cross-sections of the rod. Therefore equations 
(15), (16) are reduced to the following: 

 0,yzxz

x y


 

 
 (18) 

 0,xz   0.yz   (19) 

Let’s transform the equations (18), (19). For this pur-
pose we’ll derive the equation (18) on x and subtract from 
it the first equation (19): 

 0.yz xz

y x y

 
  

   
 (20) 

Now we’ll derive the equation (18) on y and subtract 
from it the second equation (19). 

 0.yzxz

x y x

 
  

   
 (21) 

It follows from (19) and (20)  

 ,yzxz C
y x


 

 
 (22) 

here C is an arbitrary constant. 
A system (18), (19) may be replaced be equations (18) 

and (22). 
As from (12) one can get 

 ,xz
u w

z x

        
 ,yz

v w

z y

  
      

 (23) 

then 

 .yzxz u v

y x z y x

    
         

 (24) 

It is known that 
1

2

u v

y x

  
   

 is the third component 

of the vector  rot , ,u v w . We’ll obtain 

 2 ,yzxz z

y x z

 
   

  
 (25) 

here z

z




 is the angle of a torsion per unit length of fiber 

of the rod. This angle is called twist and is denoted  . 
From (25) and (22) one gets 

 2 2 .zC
z


     


 (26) 

We obtained finally that the problem of torsion of 
elastic prismatic rod comes to integration the following 
equations  

 0,yzxz

y x


 

 
  2 ,yzxz

y x


   

 
 (27) 

with boundary conditions 

 0.xz yzl m     (28) 

As the equations (27) come to Poisson’s equation then 
it is the base of numerous examples of solving the prob-
lem of torsion of elastic prismatic rods. 

This fact leads to analogies which permit to reduce the 
problem (27), (28) to others mechanical problems which 
solution is described by the same equations. Here are 
some of them: membrane analogy, some fluid-flow 
analogies, electrodynamic analogy. One can introduce a 
term torsional hardness / .C M   

It is considered, the bigger a torsional hardness the 
better a rod resists to the torsion. 

It was shown that among all the prismatic rods with 
the same area of lateral face, the biggest torsional hard-
ness belongs to a rod with a circular cross-section. 

Moreover, it is proved that among all the prismatic 
rods with multiply connected cross-section of the defined 
area and the defined total area of holes, the rod with ring-
shaped cross-section which is bounded by two concentric 
circles has the highest torsional hardness. These and other 
problems of the theory of torsion of elastic bodies one can 
find in [11]. 

Saint-Venant noted an interesting fact: the maximum 
tangential stress as a rule is achieved upon the lateral face 
of a rod in the points the closest to a center of gravity of a 
cross-section. 

5. Elastic Bending of Bars. Let’s consider a prismatic 
rod bending by two equal and opposite moments M in one 
of the principal plane (fig. 1). 

The coordinate origin is in the centre of gravity of a 
cross-section, the plane xz  is in the main plane of bend-
ing. One gets the following elementary solution of the 
equations (1) in case of absence of body forces:  

 ,z
Ex

R
    0,y x xy xz yz           (29) 

here R is a radius of curvature of the bended rod; E is 
Young’s modulus of stretch and compression.  

Let’s consider a common case of bending of a console 
with the constant cross-section, which is under the action 
of a force P applied to an end and which is parallel to one 
of a main axes of the cross-section (fig. 2). 

Let’s suppose that in console case, stresses allocate in 
a distance z from the fixed end in the same way as (29): 

 
 

.z

P l z x

l


   (30) 

Let’s suppose now that in every point of the cross-
sections tangential stresses xz  and yz  affected and the 

other components of the stress tensor , ,x y xy    are 

equal to zero. 



 
 
 

Математика, механика, информатика 
 

 347

 

 

 
 

Fig. 1. Bending of a Bar 
 

 

 
 

Fig. 2. Bending of a Console 
 
By such suppositions, in case of absence of volume 

forces one gets from the equations (1) 

 0,xz

z





 0,yz

z





 .yzxz Px

x y l


  

 
 (31) 

It is follows from (31) that tangent stresses do not de-
pend on z, and they are the same for every cross-section.  

The compatibility equations come to following:  

 
 

,
1xz
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l v
  


 0.yz   (32) 

One gets in the same way as in the previous para-
graph: 
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1
yz xz P
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(33)

It is obtained from the formulas (33) 

 
,

1
yzxz Py

C
y x l v


   

  
 

here C is a constant. It is possible to show that C = 0 [11]. 
Then equations of the bending of console look like: 

 

 

,

.
1

yzxz

xz xz

Px

x y l

Py

y x l v


    

    
   

 (34) 

One should add a boundary condition to these equa-
tions which is the following on the frontier of the contour 

0xz yzl m    . 

6. A Plane Problem of Elasticity Theory. In this sec-
tion the equations of a plane problem of elasticity theory 
in displacements are given and some boundary problems 
are posed. 

For a plane problem the following conditions are 
valid:  
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 , ,u u x y   , ,v v x y  0.w   

Then from (3) one gets 

 
2 2 2 2

1 2 2 2
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u v u u
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x yx x y

      
                  

 

 
2 2 2 2

2 2 2 2
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u v v v
F

x y y x y

      
                   

 

(35)

The boundary conditions (5) look like 
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(36)

7. An Anti-plane Problem of Elasticity Theory. 
Let’s consider equations (1), (2) when 0,u v   

 , .w x y   This case corresponds to so-called anti-

plane elastic state.  
Equations (1) come to 

0,yzxz Z
x y


  

 
 0,X Y   

and compatibility conditions for deformations come to 
equation 

0.y xz x yz       

Let the elastic body be affected by only its dead 
weigh, then if the axis Oz is up-directed one receives 
z g  , here   is a constant density. 

Finally equations describing elastic state on condition 
that the deformation is anti-plane look as follow 

0,yzxz g
x y


  

 
 

0.xz yzy y

 
   

 
 

(37)

8. Conservation Laws for the Equations of Elastic-
ity. Conservation laws are the fundamental laws of nature, 
they were determined in the beginning of the XXth cen-
tury. A concept of the conservation laws appeared later 
after researches of E. Noether and her followings. The 
wide application of these laws to solving and investiga-
tions of some differential equations is relative to the last 
quarter of the XXth century. But significance and useful-
ness of this concept is not properly understood by major-
ity of researchers even nowadays.  

In this work the simplest definition of the conservation 
laws is given. For more details see [11] and cited litera-
ture there.  

Let’s 1 0,F   2 0F   is a system of two differential 

equations for two sought functions  ,u u x y . 

Definition. Conserved current for the system 1 0,F   

2 0,F   is a vector  ,A B  which is   

 1 1 2 2 ,A B F F
x y

 
   

 
 (38) 

here i  are some differentiation operators. It is assumed 

that both of them are not equal to zero simultaneously.  
Let’s find conservation laws for equations from the 

sections 4–7. 
1. The equations describing the elastic torsion (27) in 

convenient denotation look as follows  

0,x y
u v

u v
x y
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here ; ; 2 .xz yzu v         

Let  

 1 1 1,A u v      2 2 2 ,B u v      (40) 

where , ,i i i    are arbitrary functions of ,x y . 

From (38) with respect to (40) and (39) one obtains 

   

1 1 1 1 1 2 2

2 2 2 1 2

   

.

x x x yx x y

y y y x y y x

u u v v u u

v v u v u v

         

          
 

Here and further, subscript signifies a corresponding 
variable derivative. 

One can get hence 
1 2 ,    1 2 ,    21 2 ,x y        

1 2 0,x y    1 2 0.x y    

Or after simple conversion  
2 1,    2 1,    

 1 2 2 ,x y       1 1 0,x y     (41) 

1 1 0.x y    

Therefore, a conserved current look as follows 
1 1 1,A u v      

1 1 2 ,B u v       
(42)

here  1 1,   is a solution of the Cauchy–Riemann sys-

tem; 1 , 2  are determined from the equation (41). 

With respect to (42) the conservation law may be de-
fined in the following form  

    1 1 1 1 1 2

Г

0,u v dy u v dx            (43) 

where Г is an arbitrary piecewise smooth closed contour.  
Let  0 0,x y  a point inside the domain bounded by Г. 

One can choose 
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Let Г1 is a circle    2 2 2
0 0x x y y R     (fig. 3). 

 

 
 

Fig. 3. A Circle Г1 

 
It’s not complicated to indicate that integral (44)  
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Let’s calculate the circulation integral on Г1 using  
polar coordinates 0 cos ,x x R    0 sin :y y R    
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In the last expression R tends to zero ( 0R  ), and 
using mean-value one gets 
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Now from (45)  
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Let this time 
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Let’s calculate the circulation integral on Г1  
in this case. In polar coordinates 0 cos ,x x R    

0 sin :y y R    

 

1

2
1

Г 0

2

2
1 2

0

sin cos
cos

cos sin
sin

 cos sin .

u v R
R R

u v R d
R R

v R d





          

             

         

 



 

On conditions that 0R   one obtains from the last 
formula and (46):  

 
 

 

2 2 1
0 0

Г

2 2 2

1
( , )

2

          .

v x y u v dy

u v dx

     


     


 (48) 

Expressions (47) and (48) allow to calculate values 
,  u v  at any internal point of the domain enclosed by Г  

if the values ,  u v  on the contour are known. But 

,xz yzu v     therefore these two values are not known 

on Г, it known only the expression 0.xz yzl m     Hence 

formulas (47), (48) don’t allow to calculate the values of 
the stress tensor inside the domain and then don’t allow to 
solve the problem of the rod torsion. But as one will see 
later these formulas allow to resolve the elasto-plastic 
problem which is more complicated.  

Remark. The similar formulas can be obtained easily 
for the equations of anti-plane theory of elasticity, which 
is given in the section 7.  

Equations describing the torsion of a bar have a form 
(34). Let us assume in these equations  

, ,xz yzu v     

 1 2, ,
1

yxP Pl l v
       

then  

 1,x yu v    2.x yu v    (49) 

The conserved current for this system will be found in 
a form  

 
1 1 1

2 2 2

,

,

A u v

B u v

    

    
 (50) 

here , ,i i i    are fuctions of ,x y  only. 

Analogously to the previous clause, one can get 
1 1 1 1 1

2 2 2 2 2     

x x x

y

x y x x

y y y y

A B u u v v

u u v v
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   1 2
1 2 .x y y xu v u v        

One can obtain from here 
1 2 ,    1 2 ,    1 2 1 2

1 2 ,x y         

1 2 0,x y    1 2 0.x y    

After not complicated calculations  
2 1,    2 1,    

 1 2 1 2
1 2 ,x y          (51) 

1 1 0,x y    1 1 0.x y    

Hence, the conserved current looks like  

 
1

2

,

,

A u v

B u v

    

     
 (52) 

here  ,     is an arbitrary solution of Cauchy–Riemann 

equations; 1 , 2  are determined from the equation (52). 

For the current (52) a conservation law can be written 
as follows 

   1 2

Г

0.u v dy u v dx           

Acting much as the previous clause one can obtain  
finally 

   1 1 1 1 1 2
0 0

Г

1
( . ) ,

2
u x y u v dy u v dx         

   

   2 2 1 2 2 2
0 0

Г

1
( . ) .

2
v x y u v dy u v dx          

   

Remarks of the previous item are also correct for this 
problem. 

Conservation laws of the plane theory of elasticity.  
Let’s find some conservation laws for equations de-

scribing 2-dimensional resilience (35) as it is in the work 
[12]. The conserved current is looked for in a form 

   1 1 1 12 2 ,x y x yA u u v v                

2 2 2 2 ,x y x yB u u v v        

here , , , ,i i i i     some functions of , .x y  

From the relation 

 1 1 1 2.A B F F
x y

 
    

 
 (53) 

From (53) one can obtain 

 2 1 1,         

 2 1 ,      2 1 1,        (54) 

 2 12 ,       

  1 22 0,
x y

 
    

 
  

 1 2 0,
x y

 
 

 
 1 2 0,

x y

 
  
 

 (55) 

1 2 0.
x y

 
 

 
 

Making substitution of (54) into (55) one can get 

   
2 2 2

1 1 1
2 2

2 0,
x yx y

     
       

  
 

   
2 2 2

1 1 1
2 2

2 0,
x yx y

     
        

  
 

or 

   
2 2 2

1 1 1
2 2

2 0,
x yx y

     
       

  
 

   
2 2 2

1 1 1
2 2

2 0.
x yx y

     
        

  
 

It means that  1 1,   and  1 1,   are arbitrary solu-

tions of the equations (35) which are coupled by correla-
tions (55). This fact permits to construct an infinite sys-
tem of conservation laws on a base of the exact solutions 
of equations of elasticity.  

9. Conservation Laws of Two-dimensional  
Equations of Plasticity. Let us consider the following 
equations of two-dimensional plane theory of plasticity 
which can be obtained with ease from the equation of the 
section 2: 

 2 cos 2 sin 2 0,k
x x y

   
       

 (56) 

 2 sin 2 cos 2 0.k
y x y

   
       

 (57) 

Here σ is a hydrostatic pressure,  1, ,
4

x


      1, x  

is an angle between the main direction of the stress tensor 
and the axis Ox. 

Let’s find conservation laws of a system (86), (57)  
in the form  ,C C    for which equality 

0
C D

x y

 
 

 
  

or owing to Green’s formula  

 
Г

0Ddx Cdy   (58) 

is correct on account of  system, i. e. relation  

 0
C C D D

x x y y

      
   

      
 (59) 

has to be performed for all its solutions in a domain  
bounded by the smooth contour Г. 

Let’s determine a system of plasticity in a normal  
matrix form [5]: 

 

cos 2 2

sin 2 sin 2 0.
1 cos 2

2 sin 2 sin 2

k
yx

x k y

                    
                  

 (60) 
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Multiplying this system by the vector ,
C C  

   
 one 

can get the following equation  

 

cos 2 1

sin 2 2 sin 2

2 cos 2
          0.

sin 2 sin 2

C C C C

x x k y

C k C

y

                     
            

 (61) 

Comparing the equations (60) and (61) it is possible to 
obtain two exppressions for the functions C and D: 

 

cos 2 1
,

sin 2 2 sin 2
2 cos 2

 .
sin 2 sin 2

D C C

k
D C k C

   
  

    
   

  
    

 (62) 

Let’s express the components ,
C D 
 

of the linear 

system (62) in an explicit form: 

 

2 sin 2 cos 2 0,

2 cos 2 sin 2 0.

C D C
k

D D C
k

          
          

 (63) 

It is possible to remark that by substitution 

 , ,C y      , ,D x    the system (63) coincides 

with a linearized plasticity system 

 
 
 

2 cos 2 sin 2 0,

2 sin 2 cos 2 0.

y k y x

x k y x

  

  

    

   
 (64) 

This fact permits to use all the proprieties of this sys-
tem during the conservation laws construction.  

Thus, the linearization of the plasticity system is 
achieved without the requirement of the non being zero to 
Jacobian. 

Further using the substitution 

2 ,k      2 ,k      

the system (63) comes to equations:  

 

tg 0,

ctg 0.

D C

D C

 
  

 
 

  
 

 (65) 

If insert new independent functions ,   

 
tg ,

ctg ,

D C

D C

   
   

 (66) 

it is possible to obtain the system 

 
 

 

1
 tg 0,

2

1
ctg 0.

2


    




    


 (67) 

Finally, by setting cos     one can come to equation:  

 0.
4


    (68) 

And this is the well-known telegraph equation. 

Thereby the construction of conservation laws for the 
plasticity equations comes to solving of the linear systems 
for which a lot of methods of resolution of equations and 
boundary problems are developed. 

10. Elasto-plastic Boundary of a Twisted Straight 
Rod. Let’s consider an elasto-plastic torsion of a straight 
rod which cross-section is bounded by a convex contour Г.  

If the twisting moment is rather significant, a plastic 
domain P forms in the rod. This domain arises on the ex-
ternal contour Г. Suppose that the plastic domain is cov-
ered completely by the contour. In this case in the cross-
section two domains appear, a plastic one P and an elastic 
one F. L is a boundary of these domains (fig. 4). 

 

 
 

Fig. 4. Cross-section of the Twisted Rod 
 
There are a lot of works devoted to solution of the 

problem of the stressed state of an elasto-plastic rod, but 
most of them are based on some assumptions concerning 
the form of boundary L which is not known in advance.  
A novel method of the determination of unknown bound-
ary is proposed by B. D. Annin [1]. This method is based 
on contact transformations and it permits to define the 
boundary between elastic and plastic domains in the rods 
with oval cross-section. This problem one can find in [1] 
and in the bibliography cited there.  

In the present work the stress state is defined in all in-
ternal points of the rod by means of conservation laws, 
and formulas for analytical calculations of these stresses 
are proposed in the case of a piecewise-smooth directed 
boundary of the cross-section. The conservation laws is 
used for a long time in a fruitful way for solving of vari-
ous mathematical and mechanical problems. A summary 
of results and solved problems in different domains of 
mechanics can be found in [4; 5; 7]. 

Problem Definition  
Let ,xz yz   are single non-zero components of the 

stress tensor. In the elastic domain they satisfy the equi-
librium equation 

 0yzxz

x y


 

 
 (69) 

and the equations 

 ,xz G y
x

      
 .yz G x

y

 
     

 (70) 

Here function  ,x y  determines a deplanation 

warpingof the cross-section,   is a constant, G is a 
Young modulus by shear.   
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Let’s introduce the stress function φ as following 

 ,xz y


 


 yz x


  


 (71) 

then to determine of φ  in the elastic domain one can get 
the equation  

 
2 2

2 2
,a

x y

   
 

 
 (72) 

here 2a G    is non-zero constant. 
In the plastic domain the components ,xz yz   along 

with the equilibrium equation satisfy the plasticity condi-
tion 

 2 2 1.xz yz     (73) 

Here, to simplify the further calculations, the plasticity 
constant equals to one. 

By introducing the stress function in this equation one 
can get 

 
22

1.
x y

           
 (74) 

Boundary Conditions. Let the lateral surface be free 

from stresses. It means that 0
l





on the contour Г. Here 

 1 2,l l l


 is a tangent vector to the contour Г. It follows 

that const   among the contour. As Г is a simply con-

nected contour then 0   on it. 

Finally one gets the following problem. 
It is necessary to resolve the following equation in the 

domain bounded by the curve L: 

 
2 2

2 2
.a

x y

   
 

 
 (75) 

In the domain bounded by curves L and Г, i. e. in the 
plastic domain, the function φ  satisfies the equation 

 
22

1.
x y

           
 (76) 

The following conditions apply on the contour Г for 
the function φ 

 φ = 0, (77) 

 0
l





 or 1 2 0l l

x y

 
 

 
, (78) 

on the frontier L the function φ is continued. 
It is necessary to find  φ in elastic and plastic domains 

and to determine a frontier L. 
Let’s introduce the denotation x u  , y v  . Then 

equations (75), (76) come to 

 1 0.x yF u v a     (79) 

 2 2 1.u v   (80) 

Owing to the denotation the following equality occurs:  

 2 0.y xF u v    (81) 

Definition. A vector (A, B) is a conserved current for 
the system of the equations (79), (81) if there is the fol-
lowing correlation 

 1 1 2 2 0.x yA B F F         (82) 

Here 1 2,   are some linear differential operators. 

It means that for functions A and B the conservation is 
correct law for all solutions of the system (79), (81): 

 0.x yA B     (83) 

The conservation law (83) owing to the equations 
(79), (77) look like 

0x u x v x y u y v yA A u A v B B u B v       

or taking into account x yu a v   and ,y xu v  

0.x u v x y u x v yA A a A v B B v B v       

From the last expression follows that functions A and 
B satisfy the equations  

 0,x u yA A a B    (84) 

 0,v uB A   0.v uA B   (85) 

(84), (85) are Cauchy–Riemann equations.  
Let’s consider a domain D with the boundary Г on 

condition that plastic domain P comprises completely the 
elastic domain F. Let Г be a smooth directed contour, i. e. 
continuously differentiable without singular points. 

It follows from the conservation law 

   0.x y
D

A B dxdy      (86) 

From (86), using Green’s formula one can obtain  

 
Г

0.Ady Bdx   (87) 

Our objective is to find a domain F belonging with its 

boundary to the domain D where inequality 2 2 1u v   
applies. 

Let ,A u v    B v u      then 

 ,x x x xA u v v     (88) 

 .y y y y y yB v v u u         (89) 

According to the conservation law (83) one can get the 
equation 

 
0,

x y x x x x

y y y y y

A B u u v v

v v u u

      

      
 (90) 

which contains conditions on functions α, β and γ. 

 

0,

0,

0.

x y

x y

ya

  
   
    

 (91) 

Let’s consider two solutions of the system (90) 
The first one is  

   
0

1 2 2
0 0

,
x x

x x y y
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0
1 2 2

0 0

,
y y

x x y y


 

  
  (92) 

   
0

1 2 2
0 0

,y
x x

x x y y


 

  
 

then 

 0
1

0

arctg .
y y

a
x x


   


 (93) 

Respectively, the second one is  

   
0

2 2 2
0 0

,
y y

x x y y


 

  
 

 
   

0
2 2 2

0 0

,
x x

x x y y


 

  
  (94) 

   
0

2 2 2
0 0

,y
y y

a
x x y y


  

  
 

then     2 2
2 0 0ln .

2

a
x x y y        

Let’s note the equation (87) for the functions A and B 

 

   
Г Г

2 1

1 2Г Г

2 1

1 2Г Г

2 1

1 2Г

Г

            

          

Ady Bdx u v dy v u dx

l l
vdy udx dx

l l

l l
dy dx dx

l y l x

l l
vdy dx

l l

dx d
y

         

   
           

   

    
               

   
       

   


   



 

 

 





 

 

 




 

Г

            0.

Г

y dx
x

udy v dx

 
   

      









 (95) 

Let’s decompose the boundary Г into parts, i. e. Г =  
= Г1 + Г2 + Г3 + Г4; Г3 is a circle (x – x0)

2 + (y – y0)
2 = R2 

(fig. 5). 
 

 
 

Fig. 5. Boundary Г 
In this case 

 
Г Г

Ady Bdx udy v dx           

 

 

   

 

1 2

3

4

Г Г

Г

Г

  

       0.

udy v dx udy

v dx udy v dx

udy v dx

        

          

      

 





 





 (96) 

Obviously,  
2 4Г Г

udy v dx udy          – (αv +  

+ γ)dx = 0. Taking into account this condition the equa-
tion (93) looks like  

    
3 1Г Г

.udy v dx udy v dx               (97) 

Let’s calculate an integral 
1Г

,  Г1 is a circle of the  

radius R. 
Let 

   
0

1 2 2
0 0

,
x x

x x y y


   

  
  

 
   

0
1 2 2

0 0

,
y y

x x y y


    

  
 (98) 

0
1

0

arctg .
y y

a
x x


     


 

Introduce the polar coordinate system  

 0

0

cos
,

sin

x x R

y y R

  
   

 (99) 

then 

sin
,

cos

dx R d

dy R d

  
   

 

 
cos

,
R


   

sin
,

R


    .a     (100) 

As a result with 0R   one obtains 

    
1

0 0
Г

, .udy v dx u x y        (101) 

Analogically using 2 ,    2 ,    2    

    
1

0 0
Г

, .udy v dx u x y        (102) 

Finally one can get from (82) 

    
3

1 1 1 0 0
Г

, ,udy v dx u x y        (103) 

    
3

2 2 2 0 0
Г

, .udy v dx u x y        (104) 

Let’s determine the curve 3Г  in parametric form: 

   ,x f t    ,y t   0 ,t T   (105) 

 ' ,f t   ' t  are derivatives of the functions  f t  and 

 t  respectively.  
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Hen functions  0 0, ,u x y   0 0,v x y  from (98), (102) 

are found from the formulas 

 
        

     

   
 

 
        

     

        

2 2
0

0 0
2 2

0 0 0

0

0

2 2
0

0 0 2 2
0 0 0

2 2
0 0

' '1
,

                ' arctg ;

' '1
,

   ' ln .
2

T

T

f t x f t t
u x y

f t x t y

t y
af t dt

f t x

t y f t t
v x y

f t x t y

a
f t f t x t y dt

         
 

  
          

     






 (106) 

The solutions (102) and (103) were used respectively 
to obtain these relations. 

Let’s calculate now a value of the expression 

 2 2u v  (107) 

in a point  0 0, .x y  The points where (107) is greater than 

or equal to one belong to the plastic domain, the points 
where the expression (107) is less than one belong to the 
elastic domain. 

On the base of the formulas (103), (104) the programs 
were developed; they permit to construct plastic and elas-
tic domains in a twisted rod with indicated accuracy.  

The solutions obtained using the programs coincident 
rather well with the known solutions. 

In this journal one can find some examples of calcula-
tion of elasto-plastic boundaries for some cross-section of 
the rolling section. These results belong to A. V. Kondrin 
and to the authors of the article. The article [13] gives 
examples of the calculation of elastic – plastic rods bor-
ders for rolling profile. 

11. Elasto-plastic Boundary in the Bended Consol. 
Let’s consider a consol with the permanent cross-section 
bounded by the contour Г. The consol is under the con-
centrated force P on a free end in parallels to principal 
axes (fig. 6). 

 

Let the component z  of the stress tensor is distrib-

uted along the consol as in the case of pure bending 

 
.z

p i z x

l


    

Let components of the stress tensor are 

0.x y xy       

Then the residual components of the stress tensor sat-
isfy the equations  

 0,yzxz

z z


 

 
 .yzxz px

x x l


  

 
 (108) 

Usually the equations (108) replace by two compati-
bility equations  

 
,

1xz
p

l v
  


  0,yz   

here   is the Laplacian, v  is a Poisson’s ratio. This sys-
tem is usually resolved by semi-inverse Saint-Venant 
method. 

Let’s rewrite the system (108) in terms of the vector of 
deformations (u; v; w). A boundary problem will be posed 
and resolved using conservation laws. 

Using the formulas (2) which connect components  
of the stress tensor and strain tensor one can get 

 

 

1

2

 2 0,  2 0,

      2 ,

0,  ,

             ,

x y

z

xy xz

yz

u v

x y

p l zw

z l

u v u w

y x z x

v w

z y

 
           

 


        


                       

  
        

 (109) 

here λ, μ are Lamé coeffisients, 1 2, ,
u v w

x y z

  
     

  
 

are sought functions of  x, y.  

 

 
 

Fig. 6. Elasto-plastic Boundary in the Cross-section of the Consol 
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From the first, the second and the third equation one 
can get 

1 1 ,
u

A xz B x
x


 


 2 2 ,

v
A xz B x

y


 


 

 3 3 ,
w

A xz B x
z


 


 (110) 

here constants ,i iA B  can be evaluated with ease per 

, , , .p l   

From the equations (110) one can get 

 
2

3
3 , ,

2

A xz
w B xz x y    

   
3 3

3 3
1 / , ,

2 x
A z B z

u z U x y       


 

   2 / , ,yv V x y      

here , ,U V are sought functions. 

From the relation 0xy   one gets 

   1 2/ / 0.xy y xy x
u v

y z U x V
y x

 
           

 
 

Relations 

 1 1 1/ ,x xx x
u

z U A xz B x
x


       


  

 2 2 2/y yy y
v

z U A xz B x
y


      


 

are substituted in the previous equation; the result is  

   1 2 .xx yy
Px

A x A x
l

         

Suppose that the lateral surface of the beam if free 
from the stresses. It means that 

 2 1 0,xz yzn n     (111) 

here  1 2,n n  are an external normal line to the contour Г. 

Suppose also that the plastic flow begins from the exter-
nal side of the lateral surface of the beam. In this case the 
plasticity condition of Von Mises looks like  

 2 2 2 ,xz yz k     (112) 

here k  is a constant of plasticity. Solving the system 
(111), (112) one can get 

1 ,xz n k    2 .yz n k    

Choosing the upper sign in these relations, one can 
pose the following problem. 

It is necessary to resolve the equation 

 ,xx yy ax    (113) 

under the following conditions on Г: 

 

2
1

1 2
,x

A x
n k
 

  
  


 

 2 2 .y

n k A xy
  


 (114) 

Remark. There are two domains in the cross-section of 
the beam, a plastic one and an elastic one. If the following 
condition satisfies in a point of the cross-section  

2 2 1,xz yz     

Then the point falls into the elastic domain. The other 
points including the boundary of the contour Г belong  
to the plastic domain.  
 The relation of a form  

 0,x yA B     (115) 

is called a conservation law of (115) for the equation 
(113) if the equation (115) is correct for all solutions of 
the equation (113). Let the conserved current looks like  

     , , , ,x yA x y x y x y         

     1 1 1, , , .x yB x y x y x y        

One can obtain from (113) and (115) 

 
 

11 1 1 1 0.

yy x x xy x y x

xy y x yy y y y

a         

          
 (116) 

The relation (116) is correct for all solutions of the 
equation (113) therefore it is follows from (116)  

 0,x y    0,x y     1 0.x ya       (117) 

The conservation law (115) can be written using the 
Green’s formula: 

   1 0.x y x ydy dx            

Let’s consider two solutions of the equations (117). 
The first one is the following 

   
1 0

2 2
0 0

,
x x

x x y y


 

  
 

   
1 0

2 2
0 0

,
y y

x x y y


  

  
  

0,x   1 1 ,yxa    1 0

0

arctg .
y y

ax
x x

 
      

 

The second one looks like 

   
2 0

2 2
0 0

,
y y

x x y y


 

  
 

   
2 0

2 2
0 0

,
x x

x x y y


 

  
 

2 0,y   2 .xxa    

Using the conservation law and applying it to the con-
tour represented on the fig. 6 one can obtain on the anal-
ogy with the previous section 

   1
x y x ydy dx           

 
   2 2 2

0 0

x y

x x y y R

dy
   

        

 1 .x y dx      

Let’s calculate the second integral for the first and  
the second solutions of the equation (117). As a result  
the formulas for finding of  0 0, ,x x y   0 0,y x y  are 

obtained. 



 
 
 

Вестник СибГАУ. Том 16,  № 2 
 

 356

These formulas permit to find a stress state in any 
point  0 0,x y . It means that it is possible to determine for 

every point of the domain its belonging to either elastic or 
plastic zone.  

The expounded method allow to construct a boundary 
between an elastic and a plastic domains with any pre-
scribed accuracy using the computer. Preliminary calcula-
tions confirm this conclusion. 

12. Elasto-plastic Boundaries for Large Areas. In 
this section only domains with smooth convex boundaries 
are regarded. 

Let’s consider a domain bounded by the contour Г 
(fig. 7). 
 

 
 

Fig. 7. Domain with the Contour Г 
 

Let boundary conditions (5) applies on Г. They will 
look like 

 ,x xyl m X     ,xy yl m Y     (118) 

Moreover, suppose that the loadings (118) bring the 
entire boundary and the nearby points to the plastic state. 
Then it is possible to introduce variables ,     by the fol-
lowing way 

cos 2 ,x k     cos 2 ,y k    sin 2 .xy k    (119) 

In this case conditions (118) look like 

 cos 2 sin 2 ,k l k m X      

 sin 2 cos 2 .k l k m Y       

These conditions can be written as  

 
'
,X    

'
.Y   (120) 

Thus, one gets the Cauchy problem on the boundary Г 
in the plastic domain. Solving this problem using formu-
las of the section 9, one obtains two families of character-
istic curves (fig. 8). 
 

 
 

Fig. 8. Characteristic Curves 
 

For these curves one can construct an envelope curve 
L. This line is the sought elasto-plastic boundary. It is 
enough to solve an elastic problem inside the domain to 
resolve completely elasto-plastic problem. 

It is possible to set Cauchy problem for the system of 
plasticity (56), (57). 

Let on the contour curve Г denominated as SP there 
are starting data: 

 '
0 ,

SP
     '

0 .
SP

    (121) 

Let describe a characteristic curve 0: constPR    
from the point P and a characteristic curve 

0: constRS    from the point S. Then a solution of 
Cauchy problem is determined in a curvilinear triangle 

SPR  (fig. 9). 
 

 
 

Fig. 9. Cauchy Problem 
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Thus it is necessary to find coordinates of a cross 
point R of the characteristic curves. If the coordinates of 
the point  ,R RR x y  and values 0 ,  0  of are known 

then it is possible to find values of functions σ, θ. 
One can calculate an integral over the closed contour 

SPR. Using the correlation (58) in the Stokes theorem for 
a plane [11], one can conclude that this integral is equal to 
zero: 

0 0: :

0.
SPR SP PR RS

Ddx Cdy
 

         

1. For the coordinate  Rx  one can get: 

.
SPR SPR

dy
Ddx Cdy D C dx

dx
    
    

Integrals 
0:PR 

 and 
0:RS 

 are integrated by parts:  

 ctg

  ,R

P

PR PR

x x

x x
PR PR

dy
D C dx D C dx

dx

dx x x d



      
 


     



 

 
 

 ctg

   .S

R

RS RS

x x
x x

RS RS

dy
D C dx D C dx

dx

dx x x d


      
 


     



 

 
 

Assuming 1,   0   one can get the boundary 

conditions for the system (65) in the form:  

 '1 ,
RS

    '0 .
PR

   (122) 

Under such assumption the final expression for the 
coordinate Rx  looks like: 

  0,R S

P R

x x x x

x x x x
SPR SP

Ddx Cdy Ddx Cdy x x
 
            

   ' .R S
SP

x Ddx Cdy x    (123) 

2. Similarly fort the coordinate Ry : 

.
SPR SPR

dx
Ddx Cdy D C dy

dy

 
   

 
   

Integrals 
0:PR 

 and 
0:RS 

  are integrated by parts:  

ctg
  

ctg ctg

  ,
ctg ctg

R

P

PR PR

PR PR

y y

y y PR

dy
D Cdy dxD C dy dy

dydx
dx

D C
dy dy

y
y d






    
 

  
  

   

   
       

 

 



 

tg

tg
RS RS

dx D C
D C dy dy

dy

   
     

   

.
tg tg tg

S

R

x x

x xRS RS

y
dy y d





    
        
   

Assuming tg ,    0   one can get the boundary 

conditions for the system (65) in the form:  

 
'

0tg ,
2RS


    '0 .

PR
   (124) 

Under such assumption the final expression for the 
coordinate Ry  looks like: 

  

  '

                      

0,
ctg tg

              .

R S

P R

SPR

y y y y

y y y ySP

R S
SP

Ddx Cdy

x y
Ddx Cdy

y Ddx Cdy y

 

 

 

 
    

 

  







 (125) 

It remains to resolve the problems (65), (122) and 
(65), (124). These problems can be redused to the 
equation (66). Namely, taking into account that fuctions 

,     are related with function ρ in the following way 

 
'

,
cos


 


  

'2
,

sin


 

 
 (126) 

one can obtain the problems  

     
2

'0 ,
4

  
 

 0

'
0cos ,

2

 
 

0

0






 (127) 

and 

   
2

'0 ,
4

  
 


 

0

'
0sin ,

2

 
   

0

0.






 (128) 

A general solution of the first problem (128) (for the 
coordinate Rx ) is the following function: 

     

   
0

0 0
1 0 0 0

'

0
0 0

, cos
2

1
     sin ,

2 2

I

I d




  
          

  
      

 

moreover  

   

   
0

0 0 01
1 0 0

0

0 0
1 0

0

1
cos

2 2

1
sin .

4 2

I

I d




   
     

   

    
      

  
 

The solution of the second problem (128) (for the 
coordinate Ry ) is the function: 

      0 0
2 0 0 0, sin

2
I

 
            

   
0

'

0
0 0

1
cos ,

2 2
I d





  
        

when  
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0

0 0 02
1 0 0

0

0 0
1 0

0

1
sin

2 2

1
cos .

4 2

I

I d




   
     

   

    
      

  
 

In all solutions the function 0I  is the Bessel function 

of the first kind of an imaginary argument  0 0 1,I   

 '
0 0 0.I   

The functions  ,   can be found using formulas 

(126). From the relation (66) one can obtain the compo-
nents of conservation laws: 

2 2tg ctg
sin cos ,

tg ctg
D

   
     

 
 

 sin cos .
g ctg

C
t

 
     

 
 

Substituting the obtained C and D in (123) and (124) 
one can get the coordinates of the point R. Thus Cauchy 
problem for the system of plasticity (56), (57) with 
starting data (121) is resolved completely.  

Conclusion. The small range of problems considered 
in this article, concerning  the construction of elasto-
plastic boundaries reveals good prospects of the 
application of conservation laws for the the boundary 
problems solving. By now, the authors have solved some 
other problems of solid mechanics and prepare them to 
publish.  

More results in the study of equations of elasticity and 
plasticity can be found in articles [14–17]. 
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