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The solution of elasto-plastic problems is one of the most complicated and actual problems of solid mechanics. Tra-
ditionally, these problems are solved by the methods of complex analysis, calculus of variations or semi-inverse meth-
ods. Unfortunately, all these methods can be applied to a limited number of problems only.

In this paper, a technique of conservation laws is used. This technique allows constructing analytical formulas to
determine the elasto-plastic boundary for a wide class of problems. As a result, the elasto-plastic boundaries were con-
structed for twisted straight rods with cross sections limited by piecewise smooth contour, for flexible consoles with
constant cross-sections, as well as for anti-plane problems. Computer programs for construction of elasto-plastic
boundaries for twisted straight rods were written using obtained technique.

In this work, the elasto-plastic boundary arising during the torsion of a straight beam of arbitrary cross section,
which is limited by a piecewise smooth contour is constructed,; and the elasto-plastic boundaries for the problems of a
consol bending and anti-plane deformation are found. The plan of the paper is the following. In the first section the
basic equations of elasticity and boundary problems are considered; in the second section the basic equations of the
theory of ideal plasticity of von Mises are given, in the third section the conditions on the boundaries of the elastic and
plastic domains are formulated. The fourth section is devoted to torsion of elastic prismatic rods, the fifth one describes
elastic bending of bars, in the sixth section the plane problem of theory of elasticity is given. The seventh section covers
an anti-plane problem of elasticity theory; in the eighth section, conservation laws for the equations of elasticity are
constructed; in the ninth one, conservation laws of two-dimensional equations of plasticity are discussed. In the tenth
section an elasto-plastic boundary of a twisted straight rod is found; in the eleventh one an elasto-plastic boundary in
the bended console is given; and finally, in the twelfth section a method for the construction of elasto-plastic boundaries
for large areas is described.
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Bectauk Cubl’'AY
T. 16, Ne 2. C. 343-359

IHHOCTPOEHHE YIIPYT'O-IIVIACTHYECKHNX I'PAHUIL
C IOMOIIBIO 3AKOHOB COXPAHEHMUSA

C. U. Cenamos’, E. B. ®urommna, O. B. [omonoBa

Cubupckuii rocy1apcTBEHHBIN a3pOKOCMUYECKUN YHUBEPCUTET UMEHH akageMuka M. @. PemerneBa
Poccuiickas ®enepamms, 660037, r. KpacHospck, mpocn. uM. ra3. «KpacHospckuii pabounii», 31
*. . .
E-mail: sen@sibsau.ru

Pewenue ynpyzo-niacmuueckux 3a0ay — 00HA U3 CIONCHENMUX U AKMYATbHBIX NPOOIEM MEXAHUKU Oehopmupyemo-
20 meepooeo mena. Tpaouyuonno smu 3a0auu pewaiomces uiu memoodamu TOKII, sapuayuonnozo ucuucienus, ui
nonyobpamuvimu memodamu. K codcanenuio, 6ce amu memoovl Mo2ym 6vbimb NPUMEHEHbL TULUUb K 02PAHUYEHHOMY YUC-
a1y 3a0a4. B pabome ucnonvzyemcs mexnuka 3aKoH08 COXpaneHust. Imo no3eo0.sem nocmpoums aHaiumuieckue op-
MYabl 01 HAXOHCOEHUS YRPY20-NIaCmUieckol 2panuybl 015 WUpoKo2o Kiacca 3a0ad. B pesynsmame yoanoce nocmpo-
Umv ynpyeo-naacmuyeckue epanuybl. O CKPYYUBAeMbIX NPAMOIUHEUHbIX CIePICHel, cedeHue KOMOopblX 02PaHU4eHo
KYCOUYHO-2NIA0OKUM KOHMYPOM, O/ U32UOAeMbIX KOHCOJeli NOCMOSHHO20 CeYeHus, a makice Ol AHMUNIOCKUX 3a0ay.
Paspabomannas memoouxa no3eoauna HanNUCames KOMIbIomepHvle NPOSPamMmbl 0Jisk NOCMPOEHUs. YAPY20-NAACTUYECKUX
epanuy O CKPYHUBAEeMbIX NPAMOIUHENHbIX cmepdicHell. B npednazaemoti pabome nocmpoena ynpyeo-niacmudeckas
2panuya, BO3HUKAOWAS NPU KPY4eHUU NPAMOIUHENH020 OpYca NPpoU3BONIbHO20 CedeHuUsl, KOMOopoe 02PAHUYEHO KYCOUHO-
2NIAOKUM KOHMYPOM, 4 MAKdICe YNPY2o-Niacmuyeckds panuya ¢ 3a0a4ax oo uzeube KOHCoau u aHmuniockou degop-
mayuu. B nepeom pazdene cmamovi paccmMompeHvl OCHOGHbIE YPAGHEHUsL YUPY2OCIU U Kpdesble 3a0adl, 60 GMOpPOM —
O0amvl OCHOBHbLIE YpABHEHUs Mmeopuu uoedlvHou niacmuynocmu Muzeca, 6 mpemvem — cQOPMYIUPOBAHBI YCIO08USA
Ha 2paHuyax ynpyaux u niacmudeckux oonacmet, 8 yemeepmom — paccCMompero KpyieHue npusmamuyeckux yupyaux
cmepoicHel, 8 NAMOM — ONUCAH YRpYeull us2ub opycbes, 8 Wecmom — pacCMOmpena NaAoCKas 3a0aya meopuu ynpy2ocmi,
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6 CeObMOM — ONUCAHA AHMUNIOCKAS 3A0a4a Meopuu YAPY2OCMmu, 8 60CbMOM — NOCMPOCHbI 3AKOHbBI COXPAHCHUS.
01 yPASHEeHUTl Yynpy20Cmu, 6 0e6imom — PACCMOMPEHbL 3aKOHbL COXPAHEHUs. 08YMEPHLIX YPAGHEHU NIACMUYHOCTU,
6 0eCAMoM — HAUOEeHA YAPY2O-NIACMUYECKAs 2PAHUYA 8 CKPYHUBACMOM NPIMOTUHCHUHOM CINEPXCHE, 8 OOUNHAOYAMOM —
HatlOeHa Ynpyeo-niacmuieckds paHuya 8 uzeubaemol KOHCOMU, 8 08eHA0YAmom — NpedsiodceHd Memooura OJist no-
CMpOeHUst YNpYeo-niacmudeckux epanuy 01s oonacmeti 60IbUUX PAZMEPOS.

Kniouesvie cnosa: zaxonvl COXPAHEHUs, ynpyeo-niacmuyeckas cpanuya, movHoe pewerue, ynpycocnis, niacmud-

HOCmMb, ynpyso-niacmuiHocmeso.

Introduction. Solution of elasto-plastic problems is
one of the most complicated and actual problems of solid
mechanics. It is determined by the fact that elasto-plastic
boundary is not known in advance and should be defined
during the solution of a problem. The elasto-plastic prob-
lems were considered by many well-known mechanicians.
One can find a good review in works of B. D. Annin and
G. P. Cherepanov [1], L. A. Galin [2; 3]. For the moment,
a common approach for solving such problems has not
been worked out yet. There are only a few single solu-
tions for different special cases. As classical results one
should consider an exact solution for the problem
of elasto-plastic torsion of a rod with oval cross-section
constructed by V. V. Sokolovsky, as well as solution of
L. A. Galin for the problem of straining of a plane with
circular hole.

An interesting theoretical result was obtained by B. D.
Annin [1]. He proved the unique existence for the prob-
lem of elasto-plastic torsion of the rod with oval cross-
section.

For solving of the elasto-plastic problem the methods
of complex analysis, calculus of variations or semi-
inverse methods were applied. In this paper, for construc-
tion of the elasto-plastic boundary the conservation laws
were used. The conservation laws were applied in works
[4-6] for the solving of the problem of 2-dimensional
ideal plasticity; they allowed to obtain analytical solutions
of Cauchy and Riemann problems. In following works of
one of the co-authors of the present article the conserva-
tion laws were used for solving of some elasto-plastic
problems [7; 8]. The obtained method allowed to write an
algorithm (computer programs) for construction of elasto-
plastic boundaries of twisted straight rods. For these pro-
grams the certificates of State registration are got [9; 10].

In present paper the elasto-plastic boundary for the
problem of torsion of a straight beam of arbitrary cross-
section, which is limited by a piecewise smooth contour is
constructed; and the elasto-plastic boundaries for the
problems of a consol bending and anti-plane deformation
are found. For convenience, the article is divided into
sections. In the first section the basic equations of elastic-
ity and boundary problems are considered; in the second
section the basic equations of the theory of ideal plasticity
of von Mises are given; in the third section the conditions
on the boundaries of the elastic and plastic domains are
formulated. The fourth section is devoted to torsion of
elastic prismatic rods; the fifth one describes elastic bend-
ing of bars; in the sixth section the plane problem of the-
ory of elasticity is given. The seventh section covers an
anti-plane problem of elasticity theory; in the eighth sec-
tion, conservation laws for the equations of elasticity are
constructed; in the ninth one, conservation laws of two-
dimensional equations of plasticity are discussed. In the
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tenth section an elasto-plastic boundary of a twisted
straight rod is found; in the eleventh one an elasto-plastic
boundary in the bended console is given; and finally, in
the twelfth section a method for the construction of
elasto-plastic boundaries for large areas is described.

1. The Basic Equations of Elasticity and Boundary
Problems. Let’s consider steady-state equations of linear
isotropic elasticity.

The equilibrium equations look like:

a& at_xy+a’t_)fz+)( =0,
ox Oy oz

ot., Oo, Ort,

L4y =0, (1)
ox Oy oz

0 ot, 0

A L F )
Ox oy 0Oz

here ¢,,06,,0,,1,,, T,,, T,, are components of a stress

tensor, X, Y, Z are components of an external force af-

fected to a unit of volume. The components of a stress
tensor related to components of a strain tensor by means
of Hook’s law:

C, =Ae+2ue,, o, =Ahe+2ue,, o, =re+2ue,,

(2
Ty = 2].18)@,, T, =2UE,,, T, = 2].18},2.
ou Ov Oow Ou ov
Here E=—+—+—, x = &, =—>
ox o0y Oz Ox 7oy
€, :@, 2e, =6_u @, 2g,, :a—u+@, 2e., :8_u+
0z Yooy ox 0z Ox oz

ow .
+6—, and A, u are constants of Lamé, u,v,w are com-
v

ponents of a vector of deformations, ¢_,€ ,€.,€.,&_,¢

x2Cy>2CzoCxy2Cxz>%yz
are components of a strain tensor.

Taking into account (2), equations of theory of elastic-
ity can be written using displacements:

Oe
A —+uAu =0,
( +u)6x+u u

(k+u)2—;+uAv:O, 3)

Oe
A —+uAw =0,
( +u)az+p w

here A is the Laplace operator.



Mamemamuxka, mexanuxa, ungopmamuxa

On account of (2) the components of a stress tensor
are in accord with the compatibility equations along with
the equilibrium equations (1). The compatibility equations
here are written in case of absence of external forces:

o°0 0’0
(1+v)Acx+6x—2=O, (1+v)Ac},+ay—2:0,
(I+v)Ac +@=0, (1+v)Ar,, + o6 =0, 4
°o ¥ oxdy
2 2
(l+v)A‘cXZ+ o6 =0, (1+V)A‘Eyz+ o0 =0,
X0z 0y0z

0=0,+0,+0,, v isa Poisson’s ratio.

Problems for elasticity equations are usually pose ei-
ther using displacements (in this case one have to solve
equations (3)) or using stresses (in that case one solves
equations (1)—(3)).

If a problem is written using stresses, one should add
boundary conditions to equations (1), (3):

X=ol+t,m+1.n,

Y=r1,l+0c,m+1,n, 5)

Z=1,l+1,m+c,n,
here [, m, n are direction cosines of an external normal
line to the boundary surface at point under study,

X, Y, Z are components of a vector of superficial forces
affected to a unit of area.

If the problem is written in displacements then on
a boundary S these displacements are specified:

wly=u, vij=v, wl,=w, (6)

here u, v, ware certain functions on S.

Remark. There are others problems in the theory of
elasticity, but they are not adduced in this article.

2. The Basic Equations of the Theory of Plasticity
of Mises. For steady-state equations of the theory of plas-
ticity of Mises one should add the plasticity law of Mises
to the equilibrium equations (1). This law looks like:

1Y 1Y 1Y
(Gx——ﬁj +(cy ——9) +(GZ ——9) +

3 3 3 @)

+Zriy+2'tiz+21:iz =2k,

here k is a yield point under simple shear.
In the case of plane deformation the plasticity law (7)
can be reduce to form:

(0,0, ) +422, =4k>. ®)

In plastic domain, the components of deviator of the
strain tensor relate to the components of tensor of a strain
rate with correlations

o, —%Gsz =Ae,, o, —%GzSy =Ae,,

0.~ Y0=5.=Ae. 1, =Ac,, )
Ty, = Aeyz, 1, =Ae,,

here A is a nonnegative function obtained from (7):
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ou'! B ou® B ou’

L =—, 6, =—, e, =
ox 7 oy 0z

1 2
2e :61—%6”

ou'  ou’
X PN eXZ A + A
Yooy ox 0z

, (10)
X

ou’  ou’
2e, =—+—,
oz 0Oy

12
here u ,u ,u3

are components of the vector of strain rate.

3. Conditions on the Boundaries of the Elastic and
Plastic domains. Determination of a boundary separating
elastic and plastic domains is one of the most difficult
problems of the solid mechanics. The boundary is not
known in advance and is defined during the elasto-plastic
problem solving. In some cases a shape of the boundary
can be guessed by general considerations.

Assume that an elastic state of a medium continuously
changes over to a yield state. In this case close to elasto-
plastic boundary and on each side of it the Hook’s law is
applies. This fact leads to the continuity of all components
of the stress tensor and strain tensor, on the elasto-plastic
boundary.

4. Torsion of Elastic Prismatic Rods. Let’s consider
an elastic prismatic rod with a cross-section of a variable
form. It’s lateral surface is free from efforts, face planes
have forces equivalent to rotational moment M.

Let the coordinate origin is placed in an arbitrary point
of the face plane and axis z is parallel to generatrix of the
rod. The boundary conditions (3) will look like:

o, l+1,m=0,
Tyl+o,m=0, (11
Tl+1,m=0,

and on the face planes of therod (z=0, z=1)
” T,.dxdy =0, ” T,.dxdy =0,
Q Q

” G, dxdy =0, ” xc,dxdy =0, (12)
Q Q

” yo,dxdy =0,

Q
[[(xt,. =yt )dxdy = M, (13)
Q

here o is the area of a cross-section. As is the convention
in the theory of torsion:

(14

and the remaining components of the stress tensor are in
accord with equilibrium equations (1) which are the fol-
lowing form taking into account (14):

6,=0,=1,, =0,

a‘sz — 0) 8‘Eyz — O,
Ox oz
15)
arxz a‘c)’z an _
Ox oy Oz
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Compatibility equations (4) will look like

d’c, od%c, od%c, o'c

Z Z Z

ox? oy o2 Ox0Oy B

5 =

0,

o*c

Z

(1+v)At,, +

=0, (16)

X

o*c

Z

=0.
0y0z

(1+V)A‘L‘yz +

From the equations (16) one can get
6, =Azy+Bzx+Dx+Ey+Fz+H, 17
here 4, B, D, E, F, H are arbitrary constants.
By substituting (17) into (13) on gets that ¢, =0 in
all alternate cross-sections of the rod. Therefore equations
(15), (16) are reduced to the following:

or,
% T g ()
Ox Oy
At,, =0, At =0. (19)

Let’s transform the equations (18), (19). For this pur-
pose we’ll derive the equation (18) on x and subtract from
it the first equation (19):

j 0.

0 [&yz o

al o
Now we’ll derive the equation (18) on y and subtract

20
& o (20)
from it the second equation (19).

0
i aTXZ _ Tyz — (21)
ox\ oy Ox
It follows from (19) and (20)
o,
Te Te g, 22)
oy Ox

here C is an arbitrary constant.

A system (18), (19) may be replaced be equations (18)
and (22).

As from (12) one can get

ou ow ov ow
T, =U —+— |, T, =u| —+—|, 23
* u(@z 8xj ” u(@z 6yj 3)
then
or,, Ot O(ou ov
| Bt [t (24)
oy  Ox oz\ 0y Ox
It is known that 1fou_ov is the third component
2\ 0y Ox
of the vector rot(u,v,w). We’ll obtain
ot
ot,, _%e gy oo, ’ (25)
oy ox oz

oo, . . .
here % is the angle of a torsion per unit length of fiber
z

of the rod. This angle is called twist and is denoted 6.
From (25) and (22) one gets
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om
C=-2 =
H 0z

=-2u6. (26)

We obtained finally that the problem of torsion of
elastic prismatic rod comes to integration the following
equations

ot T
L N e
oy  Ox dy  Ox
with boundary conditions
Tl+1,m=0. (28)

As the equations (27) come to Poisson’s equation then
it is the base of numerous examples of solving the prob-
lem of torsion of elastic prismatic rods.

This fact leads to analogies which permit to reduce the
problem (27), (28) to others mechanical problems which
solution is described by the same equations. Here are
some of them: membrane analogy, some fluid-flow
analogies, electrodynamic analogy. One can introduce a
term torsional hardness C =M /6.

It is considered, the bigger a torsional hardness the
better a rod resists to the torsion.

It was shown that among all the prismatic rods with
the same area of lateral face, the biggest torsional hard-
ness belongs to a rod with a circular cross-section.

Moreover, it is proved that among all the prismatic
rods with multiply connected cross-section of the defined
area and the defined total area of holes, the rod with ring-
shaped cross-section which is bounded by two concentric
circles has the highest torsional hardness. These and other
problems of the theory of torsion of elastic bodies one can
findin [11].

Saint-Venant noted an interesting fact: the maximum
tangential stress as a rule is achieved upon the lateral face
of a rod in the points the closest to a center of gravity of a
cross-section.

5. Elastic Bending of Bars. Let’s consider a prismatic
rod bending by two equal and opposite moments M in one
of the principal plane (fig. 1).

The coordinate origin is in the centre of gravity of a
cross-section, the plane xz is in the main plane of bend-
ing. One gets the following elementary solution of the
equations (1) in case of absence of body forces:

_ Ex

R b
here R is a radius of curvature of the bended rod; £ is
Young’s modulus of stretch and compression.

Let’s consider a common case of bending of a console
with the constant cross-section, which is under the action
of a force P applied to an end and which is parallel to one
of a main axes of the cross-section (fig. 2).

Let’s suppose that in console case, stresses allocate in
a distance z from the fixed end in the same way as (29):

P(I-z)x
—

Let’s suppose now that in every point of the cross-
sections tangential stresses 7., and 1, affected and the

(¢

- (¢

y:G =T

X xy:’E

xz =T

(29)

(¢

z

(30)

other components of the stress tensor ©,,0,,17,, are

equal to zero.
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)

z
5
X
Fig. 1. Bending of a Bar
I:l -
i
x P
x
Fig. 2. Bending of a Console
By such suppositions, in case of absence of volume o o p
forces one gets from the equations (1) ¥ Y .,
oy  ox I(1+v)
a“'-xz 6T}’Z asz 8ryz Px
=0, =0, =T 1) here Cis a constant. It is possible to show that C =0 [11].
oz oz Ox Oy

It is follows from (31) that tangent stresses do not de-
pend on z, and they are the same for every cross-section.
The compatibility equations come to following:

P
l(1+v)’

=0.

(32)

Tz T yz

One gets in the same way as in the previous para-
graph:

i aT.VZ _arxz _ P
vl ax oy ) I(1+v)
(33)
i 6sz _ a’tyz _
ox\ oy ox )

It is obtained from the formulas (33)
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Then equations of the bending of console look like:

o, Ot _ Px
ox oy L
Y (34)
ot,, B o, by
oy  Ox I(1+v)

One should add a boundary condition to these equa-
tions which is the following on the frontier of the contour

T l+1,m=0.

6. A Plane Problem of Elasticity Theory. In this sec-
tion the equations of a plane problem of elasticity theory
in displacements are given and some boundary problems
are posed.

For a plane problem the following conditions are
valid:
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u :u(x,y), v=v(x,y), w=0.
Then from (3) one gets

2 2 2 2
F=(oen)| S5 i o SE e 250
ox~  0Ox0Oy ox~ oy
2 2 2 2 (33)
o= s 2o 230220
0x0y 0Oy ox~ 0oy
The boundary conditions (5) look like
ou Ov ou
cl+t m=|(A+p)| —+— [+p— |+
o {( u)(éx GyJ u@x}
w[@_“ﬂ]m:},
oy Ox
(36)

ou Ov
_+_
oy

ol 2o

7. An Anti-plane Problem of Elasticity Theory.
Let’s consider equations (1), (2) when u=v=0,

w=m(x, y). This case corresponds to so-called anti-

ou Ov
JR— + R
ox Oy

o
hS

plane elastic state.
Equations (1) come to
ot
e =Lz 20, x=v =0,
ox oy
and compatibility conditions for deformations come to
equation

0,1, —0,1,, =0.
Let the elastic body be affected by only its dead

weigh, then if the axis Oz is up-directed one receives
z=—pg , here p is a constant density.

Finally equations describing elastic state on condition
that the deformation is anti-plane look as follow

Tz
Pe T g0,
Ox oy
(37)
Erxz -—1,=0.
o T oy

8. Conservation Laws for the Equations of Elastic-
ity. Conservation laws are the fundamental laws of nature,
they were determined in the beginning of the XXth cen-
tury. A concept of the conservation laws appeared later
after researches of E. Noether and her followings. The
wide application of these laws to solving and investiga-
tions of some differential equations is relative to the last
quarter of the XXth century. But significance and useful-
ness of this concept is not properly understood by major-
ity of researchers even nowadays.

In this work the simplest definition of the conservation
laws is given. For more details see [11] and cited litera-
ture there.

Let’'s F; =0, F, =0 is a system of two differential

equations for two sought functions u =u(x,y).
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Definition. Conserved current for the system £ =0,
F, =0, isavector (4,B) which is

94+l ponF 4,5,
x Oy

(38)

here II, are some differentiation operators. It is assumed

that both of them are not equal to zero simultaneously.
Let’s find conservation laws for equations from the
sections 4-7.
1. The equations describing the elastic torsion (27) in
convenient denotation look as follows

ou Ov
—+—=u,+v, =0,
ox Oy 7
(39)
ou Ov
———=u,—-v, =aq,
o o, 7
here u =71, ;v=1 ;00 =-2p0.
Let
A:alu+[31v+yl, B=a2u+[32v+y2, (40)

where o,B’,y" are arbitrary functions of x,y .
From (38) with respect to (40) and (39) one obtains

1 1 1 1 1 2 2
autou, +Bv+Bv +y. taiutatu, +

2 2 2 1 2
PPy, +yy =a (ux+vy)+ot (uy—vx—a).

Here and further, subscript signifies a corresponding
variable derivative.
One can get hence

2
a,

1 _p2 qpl 2 1,2
a =p°, p=-a", v, +y, =-0a
1, 2 _ 1, R2 _
a,+a, =0, B, +p; =0.
Or after simple conversion

az :_Bla Bz :alj

2 1 1

Ty +7, =—a’a, o, —p), =0, 1)
B +o, =0.
Therefore, a conserved current look as follows
A= oclu+[3]v+yl,
(42)

B=—Blu+a'v+y?,
here (al,ﬁl) is a solution of the Cauchy—Riemann sys-

tem; y', y* are determined from the equation (41).

With respect to (42) the conservation law may be de-
fined in the following form

j(alu +Bv+y! )dy—(—ﬁlu +alv+y? )dx =0, (43)
r
where I is an arbitrary piecewise smooth closed contour.
Let (xy,,) a point inside the domain bounded by T'.

One can choose
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1_ X~%
(x‘x0)2+(y‘y<>)2
(44)
Bl - _ y_yO .
(x—x0)2+(y—y0)2
Let T'; is a circle (x—xo )2 +(y—y0)2 = R? (fig. 3).

Fig. 3. A Circle I'y

It’s not complicated to indicate that integral (44)

J(alu+[31v+yl)dy—(—Blu+alv+y2)dx =
' (45)

—I (oclu +Blv+y! )dy —(—Blu +alv+y? )dx.
N
Let’s calculate the circulation integral on I'; using
polar coordinates x —x, = Rcos0, y—y, =Rsin0:

j((xlu+B1v+y1)dy—(—Blu-i—(xlv-i—yz)dx=

I&

sin 0
——v+y

cos0

JRCOSG+

cos 0

d
5

g
g

v+y szin9:|d9 =
u+y1Rcose+y2Rsin6Jd6 =

d6+Rf(y cose+y sme)de
0

In the last expression R tends to zero (R — 0), and
using mean-value one gets

[[(oduBly+y! )y —(-Blu+alvey®)dx =2mu (. 30).

I

Now from (45)
u(-x()3y0) =
= Zij(alu +plv+y! )dy - (—Blu +alv+y? )dx. (46)
T
r

Let this time

ol = Y=Y —a,
(x=x)" + (=2
(47)
X=X
Bl — . 0 > :'32.
(x=x)" + (=)

Let’s calculate the circulation integral on T
in this case. In polar coordinates x—x,=Rcos6,
Y=y, =Rsin0:

2n .
I: j{[smeu COsev+yl}Rcose+
r, o0 R
+{—Coseu+Smev+y2}Rsin6}de:

= Zf[v+ R(y1 cosB+ 77 sin B)Jde.
0

On conditions that R — 0 one obtains from the last
formula and (46):

I(a2u+B2v+y1)dy—

1
V(xosyO) :g
T

(48)
- (—Bzu +olv+y? )dx.

Expressions (47) and (48) allow to calculate values
u, v at any internal point of the domain enclosed by I

if the values u, v on the contour are known. But

u=t,,v="1, therefore these two values are not known

on I, it known only the expression t,,/+7 ,m =0. Hence

formulas (47), (48) don’t allow to calculate the values of
the stress tensor inside the domain and then don’t allow to
solve the problem of the rod torsion. But as one will see
later these formulas allow to resolve the elasto-plastic
problem which is more complicated.

Remark. The similar formulas can be obtained easily
for the equations of anti-plane theory of elasticity, which
is given in the section 7.

Equations describing the torsion of a bar have a form
(34). Let us assume in these equations

U=Ty,, V=T,

_ — _pJ) _
P%LW’P/ﬂHw—%»

U +v, =0, U

then
(49)

4

TV, =0

The conserved current for this system will be found in
a form

A=ad'u+Bv+ 1,
Pv+y (50)
B =0 u+B*v+y?,
here a',B’,y" are fuctions of x, y only.
Analogously to the previous clause, one can get
1 1 1 1 1
A+ B, =outau, +pv+pv, v, +

2 2 2 2 2
+ojutatu, +Bv+pry, +y) =
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= o (u,+v, —o )+ a? (1, -v, —o,).
One can obtain from here
ol =B, Bl =—a2, Yi ﬂé :—oclcol —(12(02,
oc}v +oci =0, BL +Bi =0.
After not complicated calculations

2 1 2 1
o :_Ba B =a,

yi +yi :—(xlwl —oczwz, 5D
al —ﬁly =0, B! +0L1y =0.
Hence, the conserved current looks like
A=ou+Bv+y', (52)

B:—Bu+ow+y2,
here (a, [3) is an arbitrary solution of Cauchy—Riemann

equations; ', y* are determined from the equation (52).

For the current (52) a conservation law can be written
as follows

I(otu+[3v+yl)dy—(—Bu+av+y2)dx=O.
T

Acting much as the previous clause one can obtain
finally

J(a1u+ﬁlv+yl)dy—(—Blu+a1v+y2)dx,

1
u(x9-yp) = %
r

v(xy.Yo) = ﬁj(oﬂu +p2v+y! )dy—(—Bzu +olv+y? )dx.
r

Remarks of the previous item are also correct for this
problem.

Conservation laws of the plane theory of elasticity.

Let’s find some conservation laws for equations de-
scribing 2-dimensional resilience (35) as it is in the work
[12]. The conserved current is looked for in a form

A=oy (A+2u)u, + Py, 4y, +(A+ 2u)81vy,
B=o,u, + Bz”y + Y,V +52vy,

here a,,B;,y;,9;, some functions of x, y.
From the relation

iA+£B o F 47,5 (53)
Ox oy
From (53) one can obtain
oy =B +(A+p)yy,
By =aup, v, =8 +(A+p)ay, (54)
82 :(}\‘-{-2“)'\{1’
(k+2u)%+a&:0,
ox oy
%+%:0, M%Jr%:o, (55)
ox Oy Ox Oy

o, , a5,

— =0.
ox Oy
Making substitution of (54) into (55) one can get
620c 2y 620L
A+2 At+p)+ =0,
( “)axz aa( “)“ay
%y, O a, %y
+(h+ +(A+2 ‘ =0,
" ox? ( M) Ox ( )

or

(k+2u)

0’B, 025 LA uazﬁlzo
o | oxdy G, ’
0%8, o°B, %8,
—Li(x +(A+2u =0.
“ax2 +( +“)axay (+ )ay

It means that (o,y,) and (B,,8,) are arbitrary solu-

tions of the equations (35) which are coupled by correla-
tions (55). This fact permits to construct an infinite sys-
tem of conservation laws on a base of the exact solutions
of equations of elasticity.

9. Conservation Laws of Two-dimensional
Equations of Plasticity. Let us consider the following
equations of two-dimensional plane theory of plasticity
which can be obtained with ease from the equation of the
section 2:

a—G—Zk — 0s29+—esm26 (56)
Ox X oy
0o ——2k| — 69 26—@cos 20 57
oy ax oy

Here o is a hydrostatic pressure, 6 = (1,x) —%, (Lx)

is an angle between the main direction of the stress tensor
and the axis Ox.
Let’s find conservation laws of a system (86), (57)

in the form C =C(o,0) for which equality

oC oD
—+—=0
ox Oy
or owing to Green’s formula
¢ Ddx—Cdy =0 (58)
is correct on account of system, i. e. relation
a_ca_6+_ac +8_Da_c+8_D@:0 (59)
0o ox 000x Oc oy 0O oy

has to be performed for all its solutions in a domain
bounded by the smooth contour I'.

Let’s determine a system of plasticity in a normal
matrix form [5]:

oo _cos26 2k do
ox | | sin20  sin20 || | (60)
a6 1 _cos26 || o6
ox 2k sin 20 sin20 /{ oy
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Multiplying this system by the vector (G_C’G_Cj one
0c 00

can get the following equation

20lo 20N (fCon 3¢ _1_Joo_
0o Ox 00 Ox \ 0o sin20 00 2ksin20 ) Oy 61)
_(G_C 2k +6_Ccos29j@:0.
0o sin20 00 sin26 ) oy

Comparing the equations (60) and (61) it is possible to
obtain two exppressions for the functions C and D:
oD  0Ccos20 oC 1
06 0o sin20 00 2ksin26
oD _ 0C 2k  OC cos2b
% dosin20 00 sin20

(62)

C o .
Let’s express the components —,— of the linear

system (62) in an explicit form:

£+ Zk(a—DsinZO +§00526j =0,
00 oo oo (63)
b _ Zk(a—Dcos 20 —Esin 29) =0.
00 do 0o
It is possible to remark that by substitution

C=-y(0,0), D=x(0c,0), the system (63) coincides
with a linearized plasticity system
Vo — 2k (—y, c0s 20+ x, sin 20) =0,

64
Xo —2k(y4 sin20+ x, c0s26) = 0. 9

This fact permits to use all the proprieties of this sys-
tem during the conservation laws construction.

Thus, the linearization of the plasticity system is
achieved without the requirement of the non being zero to
Jacobian.

Further using the substitution

E=0+2k0, n=0-2k0,
the system (63) comes to equations:
oD oC
s
g—? + Z—i ctgd =0.
If insert new independent functions @,y
¢o=D-1tg0C,
v =D +ctgbC,

tgb =0,
(65)

(66)

it is possible to obtain the system
op 1

ot 2

%+%ctg6(w—(p) =0.

tgb(y —9) =0,

(67)

Finally, by setting p = ¢cos0 one can come to equation:

p

4
And this is the well-known telegraph equation.

=0. (68)

Pen
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Thereby the construction of conservation laws for the
plasticity equations comes to solving of the linear systems
for which a lot of methods of resolution of equations and
boundary problems are developed.

10. Elasto-plastic Boundary of a Twisted Straight
Rod. Let’s consider an elasto-plastic torsion of a straight
rod which cross-section is bounded by a convex contour I'.

If the twisting moment is rather significant, a plastic
domain P forms in the rod. This domain arises on the ex-
ternal contour I'. Suppose that the plastic domain is cov-
ered completely by the contour. In this case in the cross-
section two domains appear, a plastic one P and an elastic
one F. L is a boundary of these domains (fig. 4).

Fig. 4. Cross-section of the Twisted Rod

There are a lot of works devoted to solution of the
problem of the stressed state of an elasto-plastic rod, but
most of them are based on some assumptions concerning
the form of boundary L which is not known in advance.
A novel method of the determination of unknown bound-
ary is proposed by B. D. Annin [1]. This method is based
on contact transformations and it permits to define the
boundary between elastic and plastic domains in the rods
with oval cross-section. This problem one can find in [1]
and in the bibliography cited there.

In the present work the stress state is defined in all in-
ternal points of the rod by means of conservation laws,
and formulas for analytical calculations of these stresses
are proposed in the case of a piecewise-smooth directed
boundary of the cross-section. The conservation laws is
used for a long time in a fruitful way for solving of vari-
ous mathematical and mechanical problems. A summary
of results and solved problems in different domains of
mechanics can be found in [4; 5; 7].

Problem Definition

Let 7,7, are single non-zero components of the

stress tensor. In the elastic domain they satisfy the equi-
librium equation

CLSIG (69)
Ox oy
and the equations
T =G9(a—w—yj T =G6[a—w+x]. (70)
o ox T oy

Here function Ow(x,y) determines a deplanation

warpingof the cross-section, 6 is a constant, G is a
Young modulus by shear.



Becmuux Cubl’'AY. Tom 16, Ne 2

Let’s introduce the stress function ¢ as following

) o)
= -, T z = —— 1
Fe o 7 ox 7n

then to determine of ¢ in the elastic domain one can get
the equation
¢ 0o
PRI
ox~ Oy
here a =-2G0O is non-zero constant.

In the plastic domain the components t,,,7,,

a, (72)

along

with the equilibrium equation satisfy the plasticity condi-
tion
2, 2
Te + 1, =L (73)

Here, to simplify the further calculations, the plasticity
constant equals to one.
By introducing the stress function in this equation one

can get
2 2
(6—(Pj + 8_(p =1.
Ox oy

Boundary Conditions. Let the lateral surface be free

(74)

0
from stresses. It means that 8_(; =0 on the contour I'. Here

I=(1,,1,) is a tangent vector to the contour I". It follows
that @ =const among the contour. As I is a simply con-
nected contour then @ =0 on it.

Finally one gets the following problem.
It is necessary to resolve the following equation in the
domain bounded by the curve L:
g 0
2+ 7= (75)
ox~ Oy
In the domain bounded by curves L and I, i. e. in the
plastic domain, the function ¢ satisfies the equation

2 2
(6_@) + 8_(p =1.
Ox oy

The following conditions apply on the contour I' for
the function ¢

(76)

=0, (77)
6_(p=0 or 6—(Pl1 +6—(Pl2 =0,
ol Ox Oy
on the frontier L the function ¢ is continued.
It is necessary to find ¢ in elastic and plastic domains
and to determine a frontier L.
Let’s introduce the denotationg, =u, ¢, =v. Then

(78)

equations (75), (76) come to

F=u+v,-a=0. (79)

u +v? =1. (80)

Owing to the denotation the following equality occurs:
Fy=u,—v, =0. (81)

Definition. A vector (4, B) is a conserved current for
the system of the equations (79), (81) if there is the fol-
lowing correlation

0,4+0,B=AF +A,F, =0. (82)

Here A;,A, are some linear differential operators.

It means that for functions 4 and B the conservation is
correct law for all solutions of the system (79), (81):

0,4+0,B=0. (83)

The conservation law (83) owing to the equations
(79), (77) look like

A +Au.+Av.+B,+Bu,+By, =0

or taking into account u, =a—v, and u, =v,,

A +A4,a+Av,+B,+Byv, +By, =0.

From the last expression follows that functions 4 and
B satisfy the equations

A, +4,a+B,=0,

B,—A4,=0, A4 +B,=0.

(84), (85) are Cauchy—Riemann equations.

Let’s consider a domain D with the boundary I' on
condition that plastic domain P comprises completely the
elastic domain F. Let I" be a smooth directed contour, i. e.
continuously differentiable without singular points.

It follows from the conservation law

”(axAmyB)dxdy =0.
D

(84)
(85)

(86)

From (86), using Green’s formula one can obtain

36 Ady — Bdx = 0. (87)
r
Our objective is to find a domain F belonging with its

boundary to the domain D where inequality u” +v* <1
applies.
Let A=ou+pv, B=av—Pu+y then

4, =ou+Bv+py,, (8%)

B, =o,v+ov, =B u—Pu,+7y,. (89)

According to the conservation law (83) one can get the
equation

A, +By =a,u+ou, +pv+pv, +

(90)
+o,v+ov, —Bu—PBu,+y, =0,
which contains conditions on functions a, f§ and y.
a,—B, =0,
B, +a, =0, 91)
aa+v, =0.

Let’s consider two solutions of the system (90)
The first one is

X=X,

T ) o)

E
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Y=W

P = , 92)
) ()
X=X,
YI = D)
’ (x_xo)2 +(Y_J’0)2
then
Y, =—a ~arctg%. (93)
0
Respectively, the second one is
Y=Xo
o, = ,
(x_xo)2 +(J’_J’o)2
X=X
B = : , (94)
U (rx) ()
Voo = Y=Yo
2y — s
’ (x_x0)2+(y_J’o)2

then v, = —%Jn((x—xo)2 +(y=0 )2)
Let’s note the equation (87) for the functions 4 and B
qSAdy—de = (j)(ocu+[3v)dy—(av—[3u+y)dx =
r

r
:(j}[—all—z+[3Jvdy—(all—l—BJudx—Cj>ydx =
r 1 2 r
-§

r( a2 +BJ6(Pd ( ~rax =

r

I —B]
2

a—(de

l ox

(95)
l
¢
—Qydx+ d + R x| =
¢y @s[ 2 -
:Cf)(xudy— ow+y)dx:0.
r
Let’s decompose the boundary I' into parts, i. e. I' =

=T, + T, + 3+ Ty Ty s a circle (x — x0)* + (v — yo)* = R
(fig. 5).

Fig. 5. Boundary I'

In this case

Cf)Ady—de = (f)(xudy—((xv+y)dx =
r r
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= (j)ocudy—(ocv+y)dx+ gS owudy —
I Iy
_(av+y)dx+q‘>0cudy—(ow+y)dx+ (96)
I3
+ gg audy —(ov+7)dx = 0.
Ty
Obviously, Cﬁ audy —(ov+7)dx + 4} oudy — (ov +
Iy T4
+ v)dx = 0. Taking into account this condition the equa-
tion (93) looks like
@ oudy —(ow + y)dx = —(j.) oudy —(ocv + y)dx.

I3

)

I

Let’s calculate an integral (JS, I'y is a circle of the
I8
radius R.
Let

_ X=X

() ()

B Y=Y
(x_x0)2+(y_y<))2

Y

B

(9%)

B

Y=o
X=X,

Y=Y, =—a-arctg

Introduce the polar coordinate system

{

X=Xy, =Rcoso

y=Yo=Rsing’

{

_ cos (p

99)

then
dx =
dy =

Rsinpdo
Rcospd¢’
sin@

R
As aresult with R — 0 one obtains

. p=- (100)

. Y =—ag.

(f)omdy—(ow+y)dx:Tcu(xo,yo). (101)

I3
Analogically using o =a,, B=B,, Y=7,

(j)(xudy—(ow+y)dx:Tcu(xo,yo). (102)

I8}
Finally one can get from (82)

(ﬁaludy—(alv+yl)dx=nu(x0,y0), (103)

I3

Cj)oczudy—(azv+y2)dx:Tcu(xo,yo). (104)

I3
Let’s determine the curve I'y in parametric form:
x=f(t), y=
f'(t), ¢'(¢) are derivatives of the functions /() and

o(t), 0<<T, (105)

() respectively.
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Hen functions u(xy,,), v(x,¥,) from (98), (102)

are found from the formulas

u(xo,yo):%f[ (f(l‘)—xo)\/(fv(t))z+((p’(tz)2 +
0 \/(f(t)_’%) +(0(1)= )

+af'(t)arctg%}dt;

G0N @) o)
ol 7 0)-%) +(0()-50)

om0 -x) +((p(t)—y0)2)Jdt.

The solutions (102) and (103) were used respectively
to obtain these relations.
Let’s calculate now a value of the expression

(106)

u® +v? (107)

in a point (x,,, ). The points where (107) is greater than

or equal to one belong to the plastic domain, the points
where the expression (107) is less than one belong to the
elastic domain.

On the base of the formulas (103), (104) the programs
were developed; they permit to construct plastic and elas-
tic domains in a twisted rod with indicated accuracy.

The solutions obtained using the programs coincident
rather well with the known solutions.

In this journal one can find some examples of calcula-
tion of elasto-plastic boundaries for some cross-section of
the rolling section. These results belong to A. V. Kondrin
and to the authors of the article. The article [13] gives
examples of the calculation of elastic — plastic rods bor-
ders for rolling profile.

11. Elasto-plastic Boundary in the Bended Consol.
Let’s consider a consol with the permanent cross-section
bounded by the contour I'. The consol is under the con-
centrated force P on a free end in parallels to principal
axes (fig. 6).

Let the component o, of the stress tensor is distrib-
uted along the consol as in the case of pure bending

p (i -z ) X
o, =——"—"—.
/
Let components of the stress tensor are
6,=06,=0, =0

Then the residual components of the stress tensor sat-
isfy the equations

ot oty ot, Ot px

2oV, ey 2o

Oz 0z Oox ox

Usually the equations (108) replace by two compati-
bility equations

(108)

At =——PF At =0,

=T () T
here A is the Laplacian, v is a Poisson’s ratio. This sys-
tem is usually resolved by semi-inverse Saint-Venant
method.

Let’s rewrite the system (108) in terms of the vector of
deformations (u; v; w). A boundary problem will be posed
and resolved using conservation laws.

Using the formulas (2) which connect components
of the stress tensor and strain tensor one can get

c, =M—:+2ua—u=0, o, =Xa+2pQ=0,
ox ay

c, :k8+2ua—wz—
0Oz /

ou ov (814 6wj
Ty =M —+—|=0, 1. =p| —+—|=71,
v oy Ox 0z Ox

here A, p are Lamé coeffisients, € = 6_u+g+6_w’ T, T,
ox 0Oy oz

are sought functions of x, y.

W

=

Fig. 6. Elasto-plastic Boundary in the Cross-section of the Consol
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From the first, the second and the third equation one
can get

Qu_ Axz + Byx, »_ Ay xz+ B, x,
X oy

Z—W: Xz + Byx, (110)

Z

here constants A4.,B; can be evaluated with ease per

A1, p,l.
From the equations (110) one can get
Ao
=B +Byxz+o(x,y),
Az’ B2
u=_3% _ 322 +(rl/u—0)x)z+U(x,y),
c

v=(r2/u—my)+V(x,y),

here ®,U,V are sought functions.
From the relation t,, =0 one gets

Z—z+%=(rly/u—wxy)z+Uy+(rzx/u—o)xy)+Vx =0.

Relations

0
6_u:_(arlx /-0, )z+U, = Axz+Bx,
x

%:(arzy/u—myy)z+Uy = dyxz+ Byx

are substituted in the previous equation; the result is

P.
n(o,, +4x)+ u((oyy + Azx) = —Tx.

Suppose that the lateral surface of the beam if free
from the stresses. It means that

sznZ_Tyznl :Os (111)

here (n;,n,) are an external normal line to the contour I'.

Suppose also that the plastic flow begins from the exter-
nal side of the lateral surface of the beam. In this case the
plasticity condition of Von Mises looks like

T+, =k, (112)
here £ is a constant of plasticity. Solving the system
(111), (112) one can get

T =tmk, 1, =tnk

Xz

Choosing the upper sign in these relations, one can
pose the following problem.
It is necessary to resolve the equation

0, +0,, =ax, (113)
under the following conditions on I':
2
["lk ) Alzx ] k-4
o= "2 o = _M. (114)

y

n

Remark. There are two domains in the cross-section of
the beam, a plastic one and an elastic one. If the following
condition satisfies in a point of the cross-section

2 2
T + 715 {1,

Then the point falls into the elastic domain. The other
points including the boundary of the contour I' belong
to the plastic domain.

The relation of a form

0,4+0,B=0, (115)

is called a conservation law of (115) for the equation
(113) if the equation (115) is correct for all solutions of
the equation (113). Let the conserved current looks like

A=o(x,y)o,+B(x,y)o, +7(x,y),
B=a'(x,y)o, +p' (x.y)0, +v' (x,»).
One can obtain from (113) and (115)
(x(a—o)yy)+otx(ox +[3(DW +mey +7, +
(116)
1 1 1 1 1
too, +a,0,+fo, +Bo, +7,0.
The relation (116) is correct for all solutions of the
equation (113) therefore it is follows from (116)
ax_By:()’ Bx+ay:09 (la+“{x+Y;=0 (117)

The conservation law (115) can be written using the
Green’s formula:

J.—(oc(u)C +po, +y)dy +(—[3(0)C +om, + y' )dx =0.

Let’s consider two solutions of the equations (117).

The first one is the following
1 =%

a = s Blz_ s
(x=x )" +(y-x) (x—x) 2

Y, =0, a'xa = —yly, y!' = —ax-arctg

N —
= =
[
&=
N

The second one looks like
ol = Y=o B2 = X~ X
(x_xo)2+(y_y<>)2 (x_xo)2+()’—yo)2
2

yizO, oxa=-—y

i

X

Using the conservation law and applying it to the con-
tour represented on the fig. 6 one can obtain on the anal-
ogy with the previous section

J(ow)x +po, +y)dy—(—[3co]C +oo, +y1)dx =

-

(x=x0 ) +(y=y0 ) =R

(ow)x +Bo, + y)dy -

—(—Bcox +ao, +v' )dx.

Let’s calculate the second integral for the first and
the second solutions of the equation (117). As a result

the formulas for finding of @, (xy,y,), ®,(x.¥,) are

obtained.

355
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These formulas permit to find a stress state in any
point (xy,y, ). It means that it is possible to determine for

every point of the domain its belonging to either elastic or
plastic zone.

The expounded method allow to construct a boundary
between an elastic and a plastic domains with any pre-
scribed accuracy using the computer. Preliminary calcula-
tions confirm this conclusion.

12. Elasto-plastic Boundaries for Large Areas. In
this section only domains with smooth convex boundaries
are regarded.

Let’s consider a domain bounded by the contour I'

(fig. 7).

i

Fig. 7. Domain with the Contour I

Let boundary conditions (5) applies on I'. They will
look like
GXZ+‘EX},m=}, rxyl+csym=?, (118)

Moreover, suppose that the loadings (118) bring the
entire boundary and the nearby points to the plastic state.
Then it is possible to introduce variables o, 6 by the fol-
lowing way

6, =06-kcos20, 6, =c+kcos20, 1, =ksin20. (119)

In this case conditions (118) look like

Y

£o

(G—kcos26)l+ksin26m = },
ksin 26/ + (o + k cos 20) m = Y.
These conditions can be written as
6=X, 0=Y. (120)

Thus, one gets the Cauchy problem on the boundary I"
in the plastic domain. Solving this problem using formu-
las of the section 9, one obtains two families of character-
istic curves (fig. 8).

Fig. 8. Characteristic Curves

For these curves one can construct an envelope curve
L. This line is the sought eclasto-plastic boundary. It is
enough to solve an elastic problem inside the domain to
resolve completely elasto-plastic problem.

It is possible to set Cauchy problem for the system of
plasticity (56), (57).

Let on the contour curve I' denominated as SP there
are starting data:

olg, =00, 6| =6, (121)

Let describe a characteristic curve PR :m, = const

from the point P and a characteristic curve
RS :&, =const from the point S. Then a solution of

Cauchy problem is determined in a curvilinear triangle
ASPR (fig. 9).

"o

Fig. 9. Cauchy Problem
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Thus it is necessary to find coordinates of a cross
point R of the characteristic curves. If the coordinates of

the point R(xg,y;) and values &;, m, of are known

then it is possible to find values of functions o, 6.

One can calculate an integral over the closed contour
SPR. Using the correlation (58) in the Stokes theorem for
a plane [11], one can conclude that this integral is equal to

Zero:
+

RS:E=E

I
e

[ Dax—cay=[ + |

SPR SP PRm=n

1. For the coordinate x, one can get:

[ Dax—cady = j[D Y i
SPR SPR dx

I and

PRn=ny

j(D—C%)d = j(D+Cctge)dx=
_ jw
(D C—Jd [ (D= Cetg)dx =

= ‘[(pdx xXQ _ ;i—fx—@
RS

Integrals are integrated by parts:

RSE=ty

| x—"’da
PR
RS

Assuming ¢=1, y=0 one can get the boundary

conditions for the system (65) in the form:
(p|RS =1, W|PR =0 (122)
Under such assumption the final expression for the
coordinate x, looks like:

| Ddx—Cdy = j (Ddx—Cdy)+xy[_* +xof 5 =0,
SPR "

Xg = I(Ddx—Cdy)+xS.
Sp

(123)

2. Similarly fort the coordinate yy:

[ Dax—cCdy = _[(DZ—;—Cde.

SPR SPR
Integrals I and I are integrated by parts:
PRm=n RS:£=5,

( )d dx dy—
j D+Cctg6 ‘[ Yy dy =
s —ctgd —ctgd
Y=YR P
_ Y + J' y_(ljdg,
ctgd v=vp PR o\ ctgb
dx D - Ctgb
J (Dd__cjdy J eg b=
RS Y rs ¢
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x=xg RS M tg

Assuming @ =1tgh, v =0 one can get the boundary

B I tge tg9

conditions for the system (65) in the form:
&
2

Under such assumption the final expression for the
coordinate y, looks like:

(P|RS =g . ’ W'PR =0 (124)

j Ddx—Cdy =
SPR
J_ g ECET e
= | (Ddx—Cdy)+ +— =0, (125)
sp ctgdl,,, 189l
Vg = J‘(Ddx—Cdy)+yS'.

SP

It remains to resolve the problems (65), (122) and
(65), (124). These problems can be redused to the
equation (66). Namely, taking into account that fuctions
¢, y are related with function p in the following way

p 2 op

= s Y=———, (126)
cosO sin0 0g
one can obtain the problems
% _P_y, p|é . COSH , % _y (127)
o&om 4 o¢ -
and
) L
TP P_g g =sinnS Pl g (128)
o&on 4 &=k 2 0g =

A general solution of the first problem (128) (for the
coordinate x; ) is the following function:

p =1 (&m) = Iy (VE=E0) (1= ) Joos =2 -

1"]
— (&) (n-

Mo

-
) ) sin So drt,
2
moreover

op _ 1 - -
=

1 j b)) i sin = d.
0

The solution of the second problem (128) (for the
coordinate yj ) is the function:

( (‘i_‘io)(n_ﬂo))sin%—;g()+

P=pP; (é,n) =1,

. ,
+;ﬁ[ ( (é EJO)( ))cos 2(:0 drt,
when
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aﬁ:lsinull( (&—&0)(71_‘10)) Pt

k& 2 2 £-&
n _ _
_%J.Il( (&—E)O)(n—r)) 2_;2 cos%dt.

Mo
In all solutions the function I, is the Bessel function

of the first kind of an imaginary argument /,(0)=1,
1,(0)=0.

The functions ¢,y can be found using formulas

(126). From the relation (66) one can obtain the compo-
nents of conservation laws:

D= Wigh+ gctgh =y sin” 0+ (pcos2 0,
tg0 + ctgh

v-9 .
C 120 7 cigh (w—o)sinOcosb.

Substituting the obtained C and D in (123) and (124)
one can get the coordinates of the point R. Thus Cauchy
problem for the system of plasticity (56), (57) with
starting data (121) is resolved completely.

Conclusion. The small range of problems considered
in this article, concerning the construction of elasto-
plastic boundaries reveals good prospects of the
application of conservation laws for the the boundary
problems solving. By now, the authors have solved some
other problems of solid mechanics and prepare them to
publish.

More results in the study of equations of elasticity and
plasticity can be found in articles [14—17].
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