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cram. Takum 00pa3om, mocae0BaTeNbHOCTD P, ¢ Tabmnu-
ueit ymuoxenus I, oOpasyer rpymmy, usomopduyo G.
HenocpencTteBeHHoi mpoBepKod  HaxoAUM, dYTO
o(G)=1{1,2,4} . Tpynna G, opsiIOK KOTOpo# paseH 2'°,
SIBIISIETCS. MAKCUMAJIBHOM TPYITION, YIOBJIETBOPSIOINIEH yc-
JIOBHSM TeopeMbl. Teopema Joka3aHa.

Cneocmsue 1. Ilycte (10)°= e, (20)*=¢, (21)*=e. Torma
moJyuum, uto |G| =8 .

Cneocmeue 2. Tlycts (10)°=e, (210)*= e. Toraa momydum,
yro |G |=16.

Creocmeue 3. Tlycts (210)*=e. Torma omydanm, uto | G | = 32.

Creocmsue 4. Tyctn (10 =e. Toraa nomy4anm, uro | G | = 64.

Takum 00pa3om, MPOUILTFOCTPHUPOBAHHBIH B CTAThE MPH-
Mep TMoKa3bIBaeT 3((EeKTUBHOCTh MOJIEITHUPOBAHHUS ITEPHO-
JUYECKUX TPYIII IPU MOMOIIM YKa3aHHOT'O BHIIIE aJITOpUT-
Ma B 3aJja4ax pacro3HaBaHUs TPYIII IO UX CIIEKTPY.
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COMBINATORIAL OPTIMIZATION IN FOUNDRY PRODUCTION PLANNING

The mathematical model of foundry production capacity planning is suggested in the paper. The model is produced
in terms of pseudo-Boolean optimization theory. Different search optimization methods were used to solve the obtained

problem.

Keywords: combinatorial optimization, pseudo-Boolean function, heuristic algorithm, foundry.

Production capacity optimization. One of the actual
problems in modern industry is production capacity
optimization under irregular orders from numerous partners.
Along with the mass serial production these orders may have
small serial or single nature. The majority of orders are
irregular, i. e. they cannot be planned beforehand but
nevertheless they are profitable enough or the enterprise. It
requires solving production scheduling problems many times
in casual points of time.

So it is necessary to have means for including new small
orders in capacity intervals of existing mass serial ones.
Moreover, it is necessary to consider time of equipment
revamping for small serial order since it takes significantly
more part of execution time than in mass serial production.

Existing of small serial and single orders requires
practically permanent process of production capacity
planning. Construction of production capacity program for
industrial enterprise and its subdivisions is laborious and
logically intricate problem. Consider it by the example of
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foundry practice. Below we design an optimization model for
production capacity and apply combinatorial methods to
solve it.

Pseudo-Boolean optimization problems. Unconstrained
pseudo-Boolean optimization is an issue studied enough by
now. Algorithms that have been designed and investigated
in the area of unconstrained pseudo-Boolean optimization
are applied successfully for solving various problems.
Particularly, they are local optimization methods [1-3] and
stochastic and regular algorithms based on local search for
special function classes [4—6]. Moreover, there are a number
of algorithms for functions optimization given in explicit form:
Hammer’s basic algorithm that was introduced in [7] and
simplified in [8]; algorithms for optimization of quadratic
functions [9-11], etc. Universal optimization methods are
also used successfully: genetic algorithms, simulated
annealing, tabu search [12; 13].

If there are constraints on the binary variables, one of
the ways to take into account it as is well known is
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construction and optimization of a generalized penalty
function. Shortcoming of this approach is existence of a large
number of local optima of the generalized function what will
be shown below. If an accessible region is a connected one
then this issue could be partly eliminated, for example, by
using local search with a stronger system of neighborhoods.
Extension of search neighborhood reduces the number of
local optima which locate mainly not far one from another in
this case. If an accessible region is unconnected then using
penalty functions and unconstrained optimization methods
get complicated because the accessible region is usually too
small with the respect to optimization space. That makes
difficult searching a feasible solution.

In this work heuristic procedures of boundary point search
are considered for a constrained pseudo-Boolean optimization
problem. Experimental investigation of the algorithms are
described, recommendations for their apply are given.

Search algorithms for pseudo-Boolean optimization.
Basic definitions. Consider some definitions that are
necessary for describing optimization algorithm work [14].

A pseudo-Boolean function is called a real function of
binary variables: f:B) —>R', where B,={0,1},

B} =B, xB,xAxB,.

Points X', X* € B are called k-neighboring points if
they differ in k£ coordinate value, k =1,n. 1-neighboring
points are called simply neighboring.

The set O,(X), k=0,n, of all point of B, that are
k-neighboring toa point X, is called a k-th level of the point X.

A point set W(X°, XY ={X°, X", K, X'} B is
called a path between points X° and X' iffor Vi=1,...,1
the point X' is a neighboring to X',

A set Ac B is called a connected set if for
VX’ X' e A thepath W(X° X')c A4 exists.

A point X eBy, for which

F(X)< f(X), VX €0,(X"), is called a local minimum of
pseudo-Boolean function f.

A pseudo-Boolean function that has an unique local
minimum is called an unimodal on B, function.

An unimodal function fis called monotonic on B; if
VX €0, (X" ), k=1Lm [S(XT)<F(XY), VX O (X)NO,(XY),

Problem statement. Consider the problem of the following
form

C(X)—> max , (1)
where C(X) is amonotonicallyxierfccr%asing from X° pseudo-
Boolean function, S — B, is a certain subspace of the binary
variable space; it is determined by a given constraint system,
for example:

A (X)<H,, j=Lm. 2)

In the general case a set of feasible solutions S is an
unconnected set.

One of ways to take into account constraints in
conditional problems is construction a generalized penalty
function that is solved by known search methods: local
search, genetic algorithms, simulated annealing, etc.
Shortcoming of this approach is loss of the monotonicity
property for an object function. By addition of even simple
(for example, linear) constraints the generalized function
becomes a polymodal nonmonotonic function with
exponential number of local maxima.
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Properties of a feasible set. A point y ¢ A isa boundary
point of the set A if there exist X € O,(Y) for which X ¢ A .

Apoint ¥ € O,(X")N A is called a limiting point of the
set A with the basic point X°eA if for
VX eO M O,,(X°) X A holds.

A constraint that determines a subspace of the binary
variable space is called active if the optimal solution of the
conditional problem does not coincide with the optimal
solution of the appropriate problem without taking the
constraint into account.

If the object function is a monotonic unimodal function
and the constraint is active then the optimal solution of the
problem (1) is a point that belongs to the subset of limiting
points of the feasible set S with the basic point X° in which
the object function takes the lowest value:

C(X")=min C(X).
XeB)

Properties of feasible sets are considered detailed in [15; 16].

Heuristic algorithms for boundery point search. For any
heuristic of boundery point search we will consider a pair of
algorithms — primary and dual. A primary algorithm starts
search from the feasible area and moves in a path of increasing
of the objective function until it finds a limiting point of
feasible area. Otherwise, a dual algorithm keeps search in the
unfeasible area in a path of decreasing of the objective
function until it finds some available solution.

Total scheme of primary search algorithm:

1.Put X, =X’ i=1.

2. In accordance with a rule we choose
X, €0.(X")NO,(X,)NS . Ifthere are no such point then
go to 3; else ; = +1 and repeat the step.

3. X, =4,

opt i+l

Total pscheme of dual search algorithm:

1.Put X, €0,(X°),i=1.

2. In accordance with a rule we choose
X, €0, (X )NO/(X,).If X,,, €S then go to 3; else
i =i+1 and repeat the step.

3. Xopl =X .

From these schemes we can see that a primary algorithm
finds a limiting point of the feasible area, but a dual algorithm
finds a boundary point which may be not a limiting one. So a
primary algorithm finds a better solution then dual in most
cases for problems with a connected set of feasible solutions.
If we will use a primary algorithm for a problem with a
unconnected feasible area then solution received in result
may be far from the optimal because feasible and unfeasible
solutions will rotate in a path of increasing of the objective
function. For these cases a dual algorithm is more usefull,
because this rotation does not play any role for it. For
improving the solution that given by the dual algorithm, it is
recommends to apply the corresponding primary algorithm.
Such improving is very significant in practice.

Boundary point search algorithms considered below
differs by only a rule of choise of a next point in step 2 of the
total schemes.

Search rules. Rule /. Random search of boundary points
(RSB).

Apoint X, is chosen by random way. Each point in the
next step can be chosen with equal probabilities. For real-
world problems these probabilities can be not equal but they
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are calculated in the basis of problem specific before search
starts.

Rule 2. Greedy algorithm.

A point X, is chosen acordance with the condition

MX,,) =max M(X),
J

where X’/ € 0,(X°)NO,(X,)n S for a primary algorithm
and X' €0, I(XO) N0, (X ) for a dual one.

The function A(X) is chosen from the specific problem,
for example:

— the objective function M X)=C(X);

— specific value MX)=C(X)/A(X) (for only
constraint) and so on.

Rule 3. Adaptive random search of boundary points
(ARSB).

A point X, , is chosen by random way in accordance
with a probability vector

P = (plia p;a ooy p,l]) P
where J is the number of points from which choice is made.
K(X’)

Z x(Xf
where X’/ €0,(X°)n O (X,)n S foraprimary algorithm
and X' €0, I(XO) N0, (X ) for a dual one.
ARSB is an addition to the greedy algorithm.
Rule 4. Modificated random search of boundary points
(MRSB).
A point X,

p - :15‘]’

is chosen in accordance with the condition
MX,,,) =maxMX"),

i+l

where X" are points chosen in accordance with the rule 1,
r =1, R ; R isan algorithm parameter.

A greedy algorithm is a regular algorithm [17], so it finds
equivalent solutions under restart from a certain point. Other
algorithms can be started several times and the best solution
can be selected from the found solutions. An average run
time of a greedy algorithm and ARSB is significant larger
than for others because they look over all points of the next
level in each step in distinction from RSB and MRSB which
looks over only one and R points correspondingly in each
step in a dual scheme.

Further we consider applying the described algorithms
for one of real-world problems with large dimension and
unconnected set of feasible solutions.

Foundry branches production capacity optimization.
Production of different kinds is produces in foundry branches
(FB). There is specialization in every FB by a kind of
production which can be produced by its foundry machines
(FM). There is a quantity of orders for production. To each
order there corresponds the volume, a kind of production
and term of performance. The kind of production is
characterized by productivity for change (only 3 changes in
day). Replacement made on FM production demands its
recustomizing borrowing one change. It is necessary to load
thus FB capacities the orders were carried out all, production
was made in more regular intervals in time, and the number of
recustomizings of FM equipment was minimal.

Input data:

I is a number of days for planning;
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J is anumber of FB;

K, isanumber of FMinj-thFB, j =1,/ ;

L 1s anumber of orders for production that produces on
FM (and corresponding number of production kinds);

V, is productivity of /-th kind of production for change
onFM, /=1,L;

T, is term of performance of /-th order (for production of
[-thkind)on FM, [/ =1,L

W, is volume of /-th order (for production of /-th kind) on
M, [=1,L;

z,, characterizes specialization of FB:

o

a is the factor of rigidity of restriction on demand of
uniformity of production a days, 0 < o < 1.

Variables:

For the model construction introduce the following binary
variables:

1, FM of j-th FB can make production of /-th kind,
0, otherwise;

Y= {yl_’,‘kz} € B; s
X ={x;,} By,
where B, ={0,1}, B! = B,x B, x Ax B, is a set of binary
variables.
1, production of /-th kind is made
Yy =9  ini-th day on k-th FM of j-th FB,

0, otherwise;

1, production of /-th kind is started to make
in i-th day on k-th FM of j-th FB,

0, otherwise;

ik

Total dimension of a binary vector Y (and X) is

J
n=I-L-) K,
j=l
Remarks:
1 xz/kl z/kl v’ ]’k l
2. Xy = Viu (1= y—l,_/kl) Vi, j,k,l (yo,sz =0 Vj,k,1).(3)

Optimization model:
1. The objective function and the main constraints:
C(X) > min,

AWM =W, =1L,

(4)
)

AW za-W, i=11 ae(O,l),W'=ZL:WZ/I, (6)

where

J’o_sz =0 Vj,k,l.
2. The additional constraints:

L
Zyzjkl <1 (sz/kl Sl) i=
=1

j=1J, k=
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L7,

yl/k1<zzl(xz;u—zﬂ) i= =LJ, k= LK, I=1,

Model properties:

1. There are two spaces of binary variables (denote their
by B* and B") corresponding to vectors X and Y. For each
point Y e B" a unique point X € B* corresponds,
components of which are determined by relation (3). Several
points Y € B" (with different value of constraint function)
can correspond to the point X € B*.

2. The objective function (4) is linear and unimodal
monotonic in space B* with the minimum point
X°=(0,...,0). In space B" the objective function is a
quadratic and unimodal nonmonotonic one with a minimum
point Y° =(0, ..., 0).

3. The constraint function (5) and (6) in space B’ are
quadratic and unimodal monotonic pseudo-Boolean
functions with a minimum point Y° = (0, ..., 0) . In space B X
the constraint functions unequivocally are not certain.

4. The feasible set in spaces B* and B is limited from

J

above by / Z K, -th level of the minimum point ( X ¢ and

Y%) accordiﬁgl to the constraint (7). In space B’ this level
corresponds to the case when production is produced on
each BM every day.

5. The feasible set is an unconnected set in general case
(in space B").

Thus the problem solution is defined completely by the
variables Y, but it does not hold for the variables X. But the
objective function from X has good constructive properties
so that optimum search on X is more efficient than on Y. As
the constraint function (5), (6) from X are not defined, we
should find values of these functions from the corresponding
point Y. There exist perhaps several such points

X5VY.,Y,,..7,.

LY,

Not at all points the solution may be feasible but in other
not. As the constraint functions are monotonic here then for
a certain X we should choose such Y that belongs to the
most possible level (with the most values of the functions):

Y=arg max | X
Yy, h=1LH\i, k.l
where ¥, =(y,,,, - ’yIJKA,L)'
One of the algorithms of this transformation is presented
below.
Algorithm 1 of transformation Xto V-
1.Put N, =0, j:LJ_,kzl,IL_; i=1.

2. For j=1,J, k=LK, , [=1,L do:if x;, =1 then
Ny =1.

3.For j=1,J, k=
Y =1 else y =0.

4.1f i< then i=i+1 and to 2.

At the same time the solution Y received from the found
best vector X, by this way may corresponds to situation
when a quantity of let out production is more higher than the
requisite value (it does not contradict to the constructed
model but this can influence uniformity of capacities loading
which is optimized at the next stage). So when the first stage

h
Yijkl

LK,, I=1,L do: if N, =/ then

of search has ended, we should define Y, by the rule
Xy > XYY,
Y .= i bt
o = gt [ ,Zklz Yo J
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In this case the transformation algorithm has some
differences from the previous.
Algorithm 2 of transformation X'to Y:

1.Put N, =0, ]—1ik EL .
la.Put yW:O, =17, LJ, k=LK, I=1L;
i=1.

2. For j=1,J, k=1 K, I=1LL do: if x;, =1 then
N, =1.

3. For j=1,J, k:T =/ and
A (Y)<W, then y,, =1. ’

4.1f i< then i =i+1 and to 2.

Here the condition 4 (Y) < W, is added in the step 3,
and the step 1a is added also for possibility of this calculation.
There is no necessity in this transformation during the search.
It is necessary only to determine the result ¥, .

Optimization algorithms. The dual algorithms RSB,
greedy and MRSB have been used for solving the problem.
The algorithm ARSB has not been considered for this problem
because of its excessive large run time by frequent start. One
start of ARSB can very rarely give a solution which is better
then the solution given by the greedy algorithm. The start
point of search is the point of the unconstraint minimum of
the objective function X° =(0, ..., 0). A found solution has
been improved by the corresponding primary algorithm.

Moreover, the problem has been solved by the genetic
algorithm (GA). To realize GA we have chosen a scheme that
effective worked for multiple solving other combinatorial
optimization problems.

Results of the experiments shows that the most effective
algorithms (by precision and run time) from the considered
ones for this problem are the greedy algorithm and MRSB.
The other algorithms under hard constraints on the variables
do not find any accesible solution at all. It is a sequel of
problem specific: a large amount of different constraints and,
as a result, a comparative small accesible regin.

The average results of solving 10 problems of month
planning capacity loading are presented in the table. The
average values of input data:

[=31,J=3,K =12aK =9aK =7aL=36aa=Oa5a

v, e[40,50], W, €[20, 25 000].

Herewith the total dimension of the binary vector is
n =31248.

The number of algorithm starts L has been chosen so
that the run time nearly equals to the run time of one start of
the greedy algorithm. In this case the run time equals to
T~8-10°.

MRSB is a more flexible procedure in compare with the
greedy algorithm as the first one allows selecting the
parameters L and R that influence on algorithm run time and
solution precision. The greedy algorithm does not allow that
possibility and run time may be overmuch large under high
dimensions. What about their efficience, precision of the
found solutions differs unessentually under nearly
equivalent run time.

The optimization model for foundry production capacity
planning is designed. It corresponds to the conditional
pseudo-Boolean optimization problem with an unconnected
feasible set and it is solved by the series of heuristic search
algorithms. The algorithms of boundary point search show

[=1,L do: if N,
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high efficiency for solving the pseudo-Boolean optimization
problem with an unconnected accessible region. The most
efficient algorithms for the considered problem are the dual
algorithms MRSB and greedy one.
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Comparative results

Algorithm Number of starts L Found solution Cgy
RSB 2 000 Not found
Greedy 1 49
MRSB, R=1 000 12 47
MRSB, R=100 60 52
MRSB, R=10 200 Not found
GA* - Not found

Note.* GA parameters: tournament selection with the tournament value 5, population value 100, the largest number of generations

8 000, mutation probability 0,000 1.

H. C. Macuu

KOMBUHATOPHASA OITUMU3ALIUSA JIA IINTAHUPOBAHUSA 3AT'PY3KHU
JUTEMHOI'O ITIPOU3BOJICTBA

Ipeonazaemcs mamemamuueckasi MOOeib NAAHUPOBAHUS 3A2PY3KU TUMEUH020 npou3600cmea. Modens npedcmagie-
HA 6 MepMUHAX Meopuu Ncee00by1eotl ONMUMUZAYUY, 8 KaYeCmae Memo008 peuleHus NOLy4eHHOU 3a0a4u UCNONIb306d-

JIUCL PpA3IUYHbLE NOUCKOBbLE Memoowl onmumusayuu.
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