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categories. For example, the word traurig (sad) refers to 
the categories «Affect», «Negative emotion» and 
«Sadness». We analyzed all the monologues, calculated 
the number of words for each category and divided them 
by the total amount of words in each monologue. By this 
way we got 64 characteristics of 56 monologues. Our task 
was to investigate the dependency between these                     
64 features and the results of the subtest «Information», 
and to find several informative features out of 64 charac-
teristics.  

We combined 4 or 5 features together, trained the non-
parametric model and applied our method. As a result, the 
category «Affection» had the largest value of the first-
order partial derivative and was estimated as a more 
informative feature. «Positive emotions» and «Negative 
emotions» are subcategories of «Affection» and are also 
relevant according to our algorithm. However, «Anger» 
and «Optimism» do not have large values of ˆ

ixf  . The 
category «Cognitive mechanism» is estimated as 
irrelevant, however, the category «Cause» which is a 
subcategory of «Cognitive mechanism» is more 
important.  

Discussion and Future work. The goal of this work 
was to apply the method to the corpora. In each 
combination of the features the category of emotions was 
determined as the most informative feature. It means that 
there is a dependency between speaker’s general 
knowledge and the amount of emotional words which he 
uses in his speech. We could not find any references 
describing this dependency. Only in LEAS [6] emotional 
intelligence  is measured  linguistically, however, the cor- 

relation between them was not found. For our algorithm 
we used a small data set that also influenced the results. 
Also, these emotional words may be a subcategory of 
another category which was not analyzed. For example, 
they may create a group of frequently-used words, or they 
are formed from abstract words which show the level of 
intelligence in spoken utterances.  This research and the 
results are preliminary; in our future work we are going to 
further investigate this phenomenon, to find other 
linguistic features which reflect verbal intelligence and to 
collect more data for more precise estimations. 
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ESTIMATION OF RADIO SIGNAL QUALITY DEGRADATION BY MEANS 
OF NEURAL NETWORK AND NON-PARAMETRIC REGRESSION MODEL 

 
In this paper we present an approach which allows us to avoid expansive and time consuming subjective assess-

ments of audio quality degradation caused by different nature distortions while transmitting and receiving of stereo au-
dio signal through the radio channel. This approach is based on the basic version of PEAQ (Perceptual Evaluation of 
Audio Quality) originally developed mainly for audio codec estimation. The MOV (Model Output Variables) vector of 
the PEAQ method is mapped to the audio quality degradation scale using two different models: neural networks and 
non-parametric regression. The results of two independent approaches are compared. 
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The manufacturers of radio receivers and other radio 

equipment have to estimate the quality of the new product 
comparing to the existent equipment. Among other things 
the common listening comprehension of the perceived 
degradation with respect to the original (reference) audio 
signal has to be taken into consideration because humans 
with their own listening comprehension are supposed to 
be the main end-users of the designed equipment. Since 

any high-quality reliable subjective assessments are very 
expensive and time consuming it is strongly desired to 
have a tool for automatic perceptual evaluation of the 
audio quality degradation. This is a fundamental idea 
behind the PEAQ method, as specified in ITU-R BS.1387 
recommendation [1]. According to this recommendation 
the PEAQ measurement method is applicable to the most 
types of audio signal processing equipment, both digital 
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and analog. However, it is expected that many 
applications will focus on audio codecs. Test results 
obtained with the help of the PQevalAudio software, 
compliant with the basic model of PEAQ [2], disagree 
with the Mean Opinion Score (MOS) of the test persons. 
The Objective Difference Grade (ODG) of this software 
after appropriate linear rescaling is always significantly 
smaller than MOS. This implies that the PQevalAudio 
estimates the quality of the received (degraded) audio 
signal to be permanently lower than it seems to be for 
subjects from a test group. One of the obvious reasons is 
that the human requirements for audio files (signals) 
degraded by audio coding (recoding) are significantly 
higher than the requirements for files degraded by the 
entire radio transmitting-receiving process. 

The output of the software is not only the final ODG 
value, but also 10-dimensional Model Output Variables 
(MOV's) combined using a neural network to give the 
ODG value [2]. Our goal is to create a new model having 
MOV’s as the input variables and to train it on the basis 
of our test group subjective estimations to be able to use 
the whole algorithm for automatic perceptual evaluation 
of transmitted through the radio channel audio quality 
degradation. We have chosen two different approaches for 
MOS approximation: neural network [3] and non-
parametric regression model [4]. The performance of both 
algorithms on the test set is compared and the conclusions 
are presented in the corresponding section. 

Alignment of Reference and Received Audio 
Signals. All test audio files are divided into two unequal 
parts. The smaller one consists of artificially simulated 
audio signals degraded by the additionally applied noise 
signals of different types, which sound more or less real 
comparing to the radio noise. The second part of the test 
audio material was obtained under conditions maximally 
close to the real situation – the reference short audio files 
were captured from various Internet radio stations with 
acceptable quality which were aired at the same time 
(with a small time delay) in our local area. Degraded 
audio files were captured from the corresponding radio 
stations in different conditions: inside the buildings and 
outside, in the driving car. 

PQevalAudio software assumes two input audio 
signals (reference and degraded) to be time and gain 
aligned. Therefore, all the files are aligned even before 
the subjective assessment stage to be more accurate, when 
finding the dependency between MOS and MOV's. 

Variable Delay Compensation. The reference and 
degraded files transmitted through the radio channel have 
not only a constant delay between each other, but also a 
variable delay changing through the entire audio signal. 
The constant delay is calculated as a maximum value of 
the cross-correlation function. The variable delay 
compensation is an increasingly complex process. Both 
reference and degraded stereo files are first converted into 
monaural ones and then divided into blocks of chosen 
length. For each pair of blocks the mean delay is found. 
This vector is then digitally filtered by the use of the 
normalized symmetric Hanning window. The result delay 
vector is then linearly interpolated for each sample and 

the final dynamic shift is performed by the cubic 
interpolation. 

Usually the variable delay seems to have close to 
linear dependency from the time. However, sometimes 
due to the strong sudden noise or other distortions there 
are areas of the variable delay graph, where the curve 
seems to be almost randomly changing. In this case it is 
recommended to approximate linearly such «unreliable» 
areas using the left «trustful» data (see Fig. 1). 

 

 
 

Fig. 1. Variable delay between reference and degraded  
files with and without approximation 

 
In some specific cases the graph of the variable delay 

seems to change randomly. It is statistically estimated that 
in this case it is preferable to ignore the variable delay 
vector. The recognition of such case is automatically 
performed according to the acceptance threshold 0.1,                
i. e. the number of «reliable» data should not be less than 
10 % of all block delays data. The smaller threshold 
would lead to the increasing of the average difference 
between files. 

Gain Alignment. As a first step the reference and 
degraded stereo audio signals are converted into the 
monaural files. This should take into account, that the 
most of the receivers switch the audio to mono in the case 
of poor radio signal. Therefore, processing on the stereo 
signal may lead to a wrong gain calculation because of the 
reference and degraded files difference, caused even only 
by the switching to monaural signal, which can be quite 
pure itself. 

The gain itself is calculated as the absolute value 
average of all samples of the monaural files. The sample 
values of the file yielding a higher gain are linearly 
reduced according to the gain difference. Then, the 
proportional normalization is applied for both files. 

Subjective Assessments. Aligned files have to be 
estimated by the candidates from our test group. They 
should listen at first the reference and corresponding 
degraded audio files and then estimate the degradation of 
the second file with respect to the reference one. In our 
case each candidate has estimated 58 pairs of files, giving 
for every pair one value from the interval [0, 10] accord-
ing to Table. 

All pairs of files and appropriate MOS values are di-
vided into two sets: training set used for model creation 
and the test set (10 pairs from 58). The data from the test 
set are not used for modeling to be honest in evaluating of 
approximation results. 
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Subjective estimation scale 
 

Grade Subjective impression 
0 Program content is not/almost not understandable 
2 Program content is in common understandable, 

irritative noise 
4 Program content is mostly good understandable, es-

pecially when concentrating 
6 Noise is (always) audible, also at the usual loudness 
8 Reception distortion is audible when concentrating 

or at the high loudness 
10 Reception distortion is inaudible even concentrating 

or at the high loudness 
 
Neural Network Training. The modified approach 

for neural network training [5] by means of the genetic 
algorithm [6] is used. Genetic algorithms are global 
optimization stochastic algorithms which do not need the 
knowledge about the function and its derivatives. Only 
the values of the optimized function in the generated 
points are required for optimization [7; 8]. 

In our approach the genetic algorithm is applied two 
times within each iteration. Firstly it is used to optimize 
the weights of all neural nets in the current generation. 
The optimum in our case is the minimal value of the mean 
squared error (MSE) between the neural network output 
and the corresponding MOS values from a training set. 
Secondly the genetic algorithm is used to determine the 
new generation of the neural nets. In order to apply the 
optimization algorithm to a network structure its binary 
representation is used. The training is iterated until the 
stop conditions are satisfied or the break is performed 
manually. 

Non-parametric regression model. Non-parametric 
kernel regression of a static object allows us to build a 
model of this object without any knowledge about the 
structure of the dependency between input (MOV’s) and 
output (MOS) variables. This model can be presented in 
the form of a next function: 
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where ( )  is a kernel function; pc – smoothness 

parameters, 1,p n ; [ ], [ ]x i y i  – input and output 

variables from the training set, 1,i s . 
The kernel function should satisfy certain 

requirements [9] and in our case is chosen to be the 
following function: 
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The only unknown parameters of the algorithm are 
smoothness parameters pc  which should be trained on the 
base of the available data, minimizing Mean Square Error 
(MSE): 
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To minimize this error one could use any optimization 
methods, especially stochastic methods aiming to find a 
global minimum, e. g. genetic algorithm. It is also 
possible to chose one single value of c  and calculate all 
the smoothness parameters in the form of 

(max [ ] min [ ])p p pii
c c x i x i  . The parameter c  should 

be decreased from a fixed value (for instance, 0,5c  ) 
with a fixed small step until the value of the MSE starts to 
increase. To get a better result the found values of 

pc should be adapted. We did a post-adaptation in our 
work manually; however, one could prefer a certain 
optimization method. 

Experimental results. As it was previously men-
tioned, linearly mapped ODG value to the interval        [0, 
10] tends to be significantly smaller than MOS of the 
candidates from a test group (the MSE = 5,428). 

The MSE of the difference between the output of the 
found neural network and MOS values calculated on the 
training data set is equal to MSE = 1,040 and calculated 
on the test data set is even smaller MSE = 0,971. The 
result approximation is at least much closer to the MOS, 
than linearly rescaled ODG software output. 

Non-parametric kernel regression model on the same 
training data has achieved a little bit worse results                
MSE = 1,091 comparing to neural network. However, on 
the not-overlapping test data set the non-parametric model 
performed even better (MSE = 0,910) than our neural 
network. Moreover, it was found out that 6 out of the               
10 sub-optimal smoothness parameters (according to              
10-dimensional MOV’s) are much larger than the scale of 
the data in the corresponding dimensions. This means that 
these 6 input variables do not play any role in the non-
parametric model and therefore could be omitted. We 
created a new non-parametric model on the base of the 
reduced data size (6 variables were ignored) with the 
same left smoothness parameters values (re-training of the 
parameters did not bring any improvement). The result 
model achieved MSE = 1,092 on the training set and  
MSE = 0,906 on the test set that is the smallest achieved 
error on this test set. 

The results of both algorithms, rescaled ODG value 
and the perceptual estimations of the candidates (MOS) 
for 10 values from a test set are presented in Fig. 2. The 
closer the approximation to MOS is, the better the model 
is. Non-parametric regression presented on the graph uses 
only 4-dimensional input data. 

Conclusion and Future Directions. Either the neural 
network or non-parametric regression model in 
combination with the PQevalAudio software can be used 
for the perceptual evaluation of the audio quality 
degradation, transmitted through the radio channel. The 
both approaches are obviously not as precise as the 



Кибернетика, системный анализ, приложения 
 

 36 

subjective assessments. However, they could be used for 
the mean opinion score approximation. 

 

 
 

Fig. 2. The algorithms comparison 
 

The non-parametric model has achieved slightly better 
results on the test set. The main advantage of this model is 
that we were able to exclude the insignificant features out 
of the model due to the huge values of the smoothness pa-
rameters. The input parameters left in the model are: 
«average block distortion», «distortion loudness», «noise-
to-mask ratio» and «windowed modulation difference». 
The input parameters which were excluded from a model: 
«average modulation differences», «bandwidths of the 
reference and test signal», «harmonic structure of the 
error» and «relatively disturbed frames». The accuracy of 
the MOS approximation can be improved by the use of 

described algorithms trained on the considerably greater 
amount of data and estimated by a higher number of 
people. 
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АЛГОРИТМЫ МЕТОДА УСРЕДНЕНИЯ КООРДИНАТ ПРИ ПОИСКЕ  
ГЛАВНЫХ МИНИМУМОВ МНОГОЭКСТРЕМАЛЬНЫХ ФУНКЦИЙ 

 
Построены алгоритмы поиска заданного количества главных минимумов многоэкстремальных функций 

многих непрерывных переменных при активном учете ограничений неравенств. В основе алгоритмов лежит 
разбиение заданной области поиска на подобласти, тяготеющие к требуемым главным минимумам, и после-
дующий поиск в каждой найденной подобласти условного глобального экстремума на основе алгоритмов ме-
тода усреднения координат. Разбиение на подобласти производится также на основе алгоритмов усреднения 
координат путем их последовательных запусков и исключением уже найденных подобластей с помощью до-
полнительных ограничений неравенств. На численных примерах продемонстрирована эффективность работы 
алгоритмов. 

 
Ключевые слова: глобальная оптимизация, главные минимумы. 
 
При решении проблемы многокритериальной оп-

тимизации часто основываются на одном из показате-
лей эффективности и минимизируют (или максимизи-
руют) его, а остальные показатели выдерживают не 
хуже заданных (так появляются дополнительные ог-
раничения неравенства). В ограничения неравенства 
входят также ресурсные и конструктивные ограниче-
ния. При такой оптимизации исследователя интересу-

ет не только положение глобального минимума вы-
бранного показателя эффективности, но и положение 
близлежащих (по величине минимизируемой функ-
ции) минимумов. Указанные минимумы назовем 
главными. 

В работе [1] предложен алгоритм поиска главных ми-
нимумов без ограничений неравенств, в [2, с. 139–143] 
были проведены испытания алгоритма на простейших 




