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SIMULATION OF THE MAGNETIC STRUCTURE UPON ORDERING E_, ORBITALS
TO THE QUASI-ONE- AND QUASI-TWO-DIMENSIONAL MAGNETS
BY QUANTUM MONTE CARLO METOD!'

The exchange mechanism influence on the electrons ordering on e_orbitals in a chain and in a two-dimensional
Heisenberg model with exchange anisotropy for a S = 1/2 spin is determined by a quantum Monte Carlo method. The
existence regions of a long-range quasi-one- and two-dimensional antiferromagnetic order with the special exchange
topology are determined. The plateau existence region in the field dependence of magnetization, as well as the wave
vector of the magnetic structure modulation with Q = 7/2 in the (magnetic field — exchange alternating) plane, is

determined.
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Magnetic materials with double orbital quasi-
degeneration are characterized not only by spin-dependent
interactions, but also by the dependence of the exchange
integral on the mutual position of the orbitals. The interplay
of spins with the charge-orbital ordering changes not only
magnetic properties, but also transport characteristics, for
example, gives rise to giant magnetoresistance in manganites.
The orbital ordering forms a quasi-low-dimensional structure
in KCuF, [1] and two-dimensional antiferromagnetic in
NH,CuCl, [2] at low temperatures.

When studying the ground state and low-temperature
effects in low-dimensional systems, one should remember that
the quantum fluctuations in a spin system are of significant
importance and, in the case of the strong interaction of spins
with orbitals through the exchange interaction, it must be taken
into account that the hopping integrals between the
neighboring 3d ions depends on both the orbital type and on
the mutual position of the sites, because the electron-density
distribution is not spherically symmetric.

The interrelation between the spin order and orbital
ordering is clearly illustrated in a Kugel’-Khomsky model
[1] for the Hamiltonian of perovskites (e_ions at the sites of
a simple cubic lattice), which is obtained from the multi-
electron Hamiltonian with the same exchange parameters
J = 4#/U, where ¢ is the hopping integral and U is the
Coulomb-repulsion parameter at the site between the
d,—d_,and dxz,yz_ dxzfy2 orbitals.

The physical origin of this peculiar situation is the strong
spatial anisotropy of the e, orbital wave functions. This type
of the orbital ordering provides the largest energy gain due
to the quantum spin fluctuations. An orbital flip modulates
strength of the neighboring exchange bond and causes the
existence of the strong antiferromagnetic exchange
interaction directed along the overlap of the orbitals with
strong space anisotropy of the exchange interactions that
are typical of the quasi-one-dimensional system under the
condition of the presence of a gap in an orbital excitation
spectrum.
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In addition to the ferro- and antiferromagnetic ordering
of the d,, , orbitals, the ordering of the d,, ,andd, ,
orbitals is also possible with account for the fact that the
hopping integral between these orbitals may substantially
differ due to the strong electron correlations. Strength of the
antiferromagnetic interaction is determined by a region of
the overlap of the 2p—3d orbitals and depends on the orbital
e, state ofan electron. The overlap integral between the d , 1
andp orbitalsis E_ (1, m, n)= /3/2 (P —m®)(pds), Where
(pds) is the overlap 1ntegra1 between the d and p orbitals and
(I, m, n) is the unit vector along the direction from a cation to
an anion. The overlap integral between d, , ey ,and p,
orbitals is expressed as £ (l m, n)=Il[n>— (l2 +m2)/2](pds)
[3]. Then, the hopping amphtude between adjacent copper
ions via the p orbital along the x axis is evaluated as l‘(,[i
E (1,0,0)E (-1,0, O)/(e —e)[3], Wheree and e, are the
energy levels “for the d and p orbitals, respectlvely, and E,
and £ L are the overlap integrals ofthe d ,  andp, orb1tals
andp andd,, , . orbitals, which will be denoted as d

The account for the Coulomb interaction between
electrons located both at a site and between different
orbitals will also lead to modification of exchange
parameters and alteration of the J /J, relation between
them. Below we consider a model with one electron (hole)
on the e_orbital with an exchange interaction between them
specified by a parameter. This model is applicable to
perovskites containing Mn*", Ni**, Cu?* and Fe*" ions in
octahedral environment.

This study is aimed to determination of the effect of the
exchange interaction between e, electrons on the ordering
of dm,zz,yz and dxzfy2 orbitals in a Mott insulator and
estimation of a region of the parameters, at which the magnetic
order dimensionality changes from quasi-two-dimensional
to quasi-one-dimensional antiferromagnetic. It is known that
low-dimensional systems with alternating exchange imitating
the spin Peierls transition are in a more stable state and have
an energy gain of E/J ~ 8, where 8 =J,  —J_ .. The
interaction of the electrons on the e, orbitals with various
octahedron oscillation modes forms orbital ordering. The
most widespread type of the orbital ordering is associated
with the alternating of the d,, ,and d,, , orbitals whose
schematic arrangement has the form $<—>$<—> The exchange
altenating in the spin Peierls quasi-two-dimensional
antiferromagnetic gives rise to dissappearing long range
order and to the formation of a singlet state. Possible the
alteration of exchange along of one direction of lattice as a
result of orbital ordering causes the instability AF order.

Let us determine change of the magnetic properties
and the magnetic order type at the formation of orbital
ordering.

1D Model. Let us consider the quasi-one-dimensional
models with the symmetric alternating exchange (fig. 1, b)
described by the Hamiltonian:

H==Y[(J+8)8;S1+J S S;u2 +

i
3Siea |- D H; S}

+(J =8)8;4281:3 S,
and with the asymmetric alternating exchan ge(fig. 1, ¢):

()
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H==[(J+28)8;S1 +J S 11842 +

1

+(J =8)5;4251+3 +JSI'+3SI+4] -2 H; Si.
where J~ t2 .p is theexchange interactions between electrons
located at the nearest d,,—d, ,, d , i dxzf d,—d, 1
orbitals, there are J(1 £+ 8) J(l + 28) J(J <0),6— avalue ofthe
alternating exchange; H is the external magnetic field. When
the ratio of the hopping integrals is written as 7 /t 3/4
and 1, /t,; = /3/2, the exchange interactions between
electrons on thed, andd,, orbitals differ by a factor of
almost: JW/J 0. 56 J /J —O 75.

)

dsze

Fig. 1. lllustration of the orbital ordering d, , and a’xzfy2 for Neel
AFM with homogeneous distribution of an exchange interaction
(a), with the symmetric alternating exchange (eq. (1)) (b) and

with the asymmetric alternating exchange (eq. (2)) (c¢) on a chain

As a calculation method, we take the quantum Monte
Carlo method unifying two algorithms, worldlines and
continuous time [4]. The continuous time world-line Monte
Carlo approach is based on expansion of a statistical
evolution operator exp(—H/T) by exchange interaction
strength. The world-line configuration of spins flips under
the action of operators of the creation and annihilation of a
spin state in imaginary time and real space [4; 5]. For the
spins S = 1/2 located at the sites of the chain L =400 with the
nonuniform exchange distribution and periodic boundary
conditions in the Trotter direction and on the chain are used.
The calculation method was described in detail in [6]. The
following quantities are calculated in the framework of this
method: the magnetization m =2<S7 >, spin-spin correlation
function < § #(0)S #(r) >, correlation radius, static
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susceptibility c = m/H in the external magnetic field directed
along the quantization axis, staggered magnetization ms,
energy E, a magnetic structure factor

S@=1 T, eSO ). )

The exchange alternating in the spin Peierls chain induces
a gap in the spectrum of the triplet excitations and gives rise
to a finite correlation radius in the ground state. Using the
calculated dependences of the magnetization and spin
correlation functions on the external magnetic field, we
determine the critical fields H_corresponding to the formation
of the long-range magnetic order and the gap in the triplet-
excitation spectrum. The calculations provide a linear
dependence of A ~ 23 the gap on the exchange alternating
and are in good agreement with the limiting case for one
dimer, H, = g§J(1 + 8) = 2J. The thermodynamic
characteristics — the specific heat and susceptibility -decrease
according to the exponential law below this temperature.

The ordered arrangement of the orbital pairs described
by Hamiltonian (eq. (2)) gives rise to the appearance of the
plateau m = 1/2 on the magnetization curve m(H) at a critical
external field /  as shown in fig. 2, a. The magnetic structure
factor determined from the spin-spin correlation function has
the main maximum and a number of satellites. The magnetic
field aligns the spins of the kinks along the field and stabilizes
the long-range ferromagnetic order, which does not coincide
with the shortrange order calculated by chain-averaging of
the spin-spin correlation function in the first coordination
sphere (fig. 2, b). As the magnetic field increases, the
modulation of the magnetic structure with the wave vector
g = /2 is observed near the magnetic field / ~ H . The
arrangement of the spins in the chain in the plateau region
H <H<H _canbe represented as 11T\ 111 . Thelinear
dependence m(H) for low external fields (see fig. 2, a) indicates
the absence of the gap in the spectrum of triplet spin
excitations and the magnetic state is a quantum spin liquid
with the finite correlation radius.

The ordering of orbital pairs in the magnetic field
provides three types of the magnetic order: short-range
antiferromagnetic order, ferromagnetic order, and modulated
ferromagnetic order with the wave vector is equal to 0= 7/2,
depending on the relation of the magnetic field and exchange
alternating. Figure 3 shows the regions of these phases in
the (magnetic field, exchange alternating) plane.

The decrease in the energy of the antiferromagnetic chain
with the nonuniform periodic distribution of exchange is
caused by the decrease in the effective chain length owing
to a change in the correlation radius. In particular, in the
limiting cases, the energies per spin in the infinite
antiferromagnetic chain and dimerare £, =-2In2+0.5~
~—0.443 3Jand E,= -0.75J, respectively. As a result, the
energy of the alternating chain depends on the wave vector
of the exchange modulation; i. e., the larger the number of
the spins coupled by the strong exchange, the lower the
change in the energy of the chain after the exchange
alternating. The unit cell contains two and four spins in a
spin Peierls magnet and in a magnet with orbital ordering,
respectively. Figure 4 shows the Monte Carlo calculations
ofthe relative energy change as a function of the exchange-
alternating magnitude.
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Fig. 2. Field dependences of the magnetization m (a) and spin—
spin correlation functions <S#(0)S “(»)> ?(b) at the distance
r=1(,3,5) and r=31 (2,4, 6) for 5=0.2 (1), 0.4 (2),
and 0.6 (3). The symbol sizes correspond to the errors
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Fig. 3. Phase diagram of the magnet with the orbital ordering
of pairs containing the regions with the short-range
antiferromagnetic order (AF), ferromagnetic order (FM),
and modulated ferromagnetic order (FM mod) with the plateau
m(H) = 1/2 in the field region H (1) — H ,(2) in the (magnetic
field, exchange alternating) plane. For the model with the
symmetric alternating exchange (eq. (1)) are the critical fields
H (1, 2), and asymmetric alternating exchange (eq. (2))
are H (3, 4, 5, 6). The critical fields H (5, 6) correspond
to the singlet-triplet transition in a four-spin
cluster and are calculated with & — 1 by exact
diagonalization method in this cluster
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Using the typical parameters of the hopping integrals
from the cation to anionz,, =2eV,z,, =0.5€V,and? 2
s 1.5 eV, charge gape —e,=3¢V, ‘and U=6 eV, we
estimate the gain in the exchange energy asAE_~0.05 and
0.017 eV for the J <>« ordering of pairs of orbitals and for
thed,-d,—d, ,—d, ,ordering, respectively. Owing to
the competltlon between the Coulomb and exchange
interactions between the electrons on the neighboring
orbitals, a certain orbital order with the structure wave vector
O =m/2 can be induced. In magnets with narrow optical bands
and weak dispersion of the optical oscillation mode and the
electron-phonon coupling constant ~ gfm;l near the band
edge, the exchange mechanism possibly gives rise to change
in the magnetic and orbital orders with decreasing the
temperature.
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Fig. 4. The dependence of the change normalized energy state
AE(B)/E(5 = 0) = (E(d) — E(6 = 0))/E(d = 0) from the alternating
exchange for the ordering of the orbitals (1) (eq. (2)) and (2)

(eq. (1)), the spin Peierls 1D model (3), and power

law approximation functions AE(S)/E(xn = 0) = 45

with he parameters (3) 4 =0.67 (2) and o = 1.50(4)

and (1) 4 =0.15(1) and o = 1 (orbital ordering).
The errors correspond to the symbol sizes

Thus, in a quasi-low-dimensional magnet with one
electron (hole) on the e, orbital and competing Coulomb and
exchange interactions, the appearance of the orbital order
with the structure wave vector Q= /2 or the softening of the
elastic oscillation mode near this vector is possible. The
regions of existence of a plateau and of the modulated
ferromagnet with the special exchange topology in the
(magnetic field, exchange alternating) plane are determined.

2D Model. Let us consider a model with antiferromagnetic
exchange alternation and a stripe structure for a spin S=1/2.
The Hamiltonian has the following form:

H== 3 [(148)0°8 0 St +

i,j,o
oo o o
K (S, S, o1 TS, St jr)

+Jaa Sa
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where J(1 +90),J(1 —0),J(J < 0) are the exchange interactions
between electrons located at the nearest d, ,— d, ,, dxzf -
— dxzfyz, d, ,—d,,orbitals; Histhe external magnetlc ﬁeld
n=J=—J*W/J = is the exchange anisotropy value; K <0
is the interchain exchange value fixed in our calculations as
K/J=1/16. The ratio of the hopping integrals are 7 /1, = 3/4
and 7, /tBB =1/4. The exchange interactions between
electrons on the d, ,andd,,6 _ . orbitalsareJ /J
=0.56 and J /JBB = O 063 Thls problem was solved by the
described quantum Monte Carlo method. In the calculations
a square lattice with L =40; 48; 60; 72 and periodic boundary
conditions in the Trotter direction and on the lattice are used.
From 40 000 to 60 000 Monte Carlo steps (MCS) per site are
spent to reach equilibrium and another 80 000...100 000 MCS
are used for the averaging. The root mean square errors of
the computed quantities lie in the range of 0: 1 %t0 0: 6 %.

We consider two types of the orbital ordering that
illustrated in fig. 5. The d, ,—d, , orbitals overlap gives rise
to the strong antiferromagnetic exchange and space
anisotropy of the exchange interactions in a lattice, which
differ in more than an order of magnitude. The magnetic
properties of such a system are similar to those of a quasi-
one-dimensional antiferromagnet. Alternation of pairs of the
d,—d,.d, 1 dxzfy2 orbitals induces stripes along the
[01] direction and alteration of the exchange interactions
along the[10] direction, as one can see in fig. 5, ¢, d. The magnetic
properties of systems with the two types of orbital ordering
have been analyzed on the basis of a spin-spin correlation
function, staggered magnetization m, a magnetic structure
factor (eq. (3)), energy and specfic heat Ck,/N=dE /dT.

Alternation of exchange along one of the lattice
directions enhances the quantum fluctuations, which results
in reducing spin on site in the limit of 5...9 % in the range of
parameters 0 < 8 < 0 : 4 and decreasing Neel temperature.
Normalized Neel temperature is well fitted by the linear
function 7,(8)/7,(0) = 1 — 0.63 for a series of anisotropy
parameters (insert in fig. 6). Monte Carlo simulation of
thermodynamic characteristic at larger & and interpolation of
linear function 7,(5)/T,(0) indicate to stability of AF order as
compared to disordered spin state. Similar effect of reduction
of spin arises from the exchange anisotropy. Staggered
magnetization and Neel temperature of AF having the stripe
structure rises at increasing anisotropy as shown in fig. 6.
The dependence of 7, (n) versus exchange anisotropy is better
interpolated by a power function 7,(n).J = 1/4n"° than a
logarithmic law. It differ from behavior anisotropic Heisenberg
antiferromagnetic with S= 1/2 on a square lattice that reveals
the logarithmic dependence 7,(n)\J=2/In(11/n).

We have determined the basic magnetic properties of a
two-dimensional magnet with the orbital ordering presented
in fig. 5, b. As a consequence of low dimensionality of a
system, the quantum spin fluctuations may cause orbital
correlations and the ordering ofthe d, ,—d, , orbitals. In this
case, spin interactions are quasi-one-dimensional along a
chain and favor the rise of exchange energy, which is
proportional to E/J = 0.44(1 + §). Ising-like anisotropy
suppresses the quantum spin fluctuations and decreases an
absolute energy value from E/J=0.44 t0 0.25 with an increase
in the exchange anisotropy. With the growth of the exchange
alternation along the [10] direction, energy of a 2D system
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decreases due to a decrease in the interchain interaction.
Figure 7 illustrates energy of a 2D magnet calculated for
several lattice sizes. The intersection of energies of the 1D
and 2D magnets with the arrangement of bonds in a lattice as
in fig. 5, ¢, d determines a region of stability of the 2D magnetic
ordering with a stripe structure. A phase boundary separating
the region of existence of a magnets with the d, ,—d, , and
d,,—d,_,orbital ordering is given in fig. 8.

The quasi-one-dimensional AF ordering becomes stable
at6>0.2;n1=0,0 >O 34;n—>1. The ratio of exchanges in
KCuF, is J(d, o d, yz)/J( ) ~ 0 : 78 that
corresponds to 8 0.22. Exchange an1sotropy is small for the
cubic crystal and according to our results the ordering of the
d, ,—d, , orbitals is more preferably. Orthorhombic distortion
of a structure in NH,CuCl, induces distortion of a crystal
field and the intra- atom1c Coulomb interaction U, between
electrons on the orbital. The change in distance and angle of
a bond between the nearest cations modifies the overlap of
integral of the wave functions of the d, , and d,  orbitals.
As aresult, the ratio of amplitudes of the hopplng 1ntegrals
may vary in the wide range 0.1 <z /t,, < 1, because the
hopping integral is ¢ = E2/(ep — e, + U,). The exchange
interaction between electrons on the dZX de2 orbitals
decreasesand theratioof exchanges.J(d ,—d,,)

11l

d,,(@andd, ,

2

2—2

x2 2

b
Fig.5.d,,

K exchanges in a square lattice; the J — exchange is related to the overlap of d

grows, that corresponds to the decreasing of an alternation
parameter. As a consequence, the exchange interaction
causes rearrangement of the @, ;and d,  orbitals and lead
to strong decreasing Neel temperature 1n NH CuCl..

Thus, we study the exchange mechanlsm effect on the
ordering of electrons on e, orbitals in a square lattice by the
Heisenberg model with exchange anisotropy. The ordering
of pairsof the d, ,—d, ., d , 1 -d 22 orbitals provides the
two-dimensional antiferromagnetic state with a stripe
structure. In the quasi-two-dimensional model with the
alternating exchange the regions of the stable
antiferromagnetic order in (alternating exchange-exchange
anisotropy) plane are determined. The critical parameters of
the alternating exchange and exchange anisotropy, at which
the quasi-one-dimensional state becomes unstable are
calculated.

We have analyzed the exchange mechanism of the
ordering of electrons on the e, orbitals in the quasi-low-
dimensional magnets using the Heisenberg model with the
special exchange topology. The gain in the exchange energy
for the orthogonal ordering of orbitals pairs JJ<><> and
forthed,—d —d, 1 dxzfy2 ordering has estimated. We
have found the exchange parameters associated with the
relation of the exchange interaction of electrons on the
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Fig. 6. Neel temperature 7', /J of the quasi-two-dimensional AF at 8 = 0.3 (1) and fitting function T, /J = n"'%/4 (solid line)
as a function of exchange anisotropy (a). Insert: normalized Neel temperature 7, (8) = T, (0) versus alternating exchange at
n =0.25 (1); 0.5 (2); 0.75 (3). Magnetization on the site s calculated by MC at 7/TN = 0.2; L = 60 versus exchange anisotropy (b)
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d,,—d,,and dxziy2 — dxziy2 orbitals and exchange
anisotropy, at which the ordering of pairs of the d, ,— d, ,,
d -d orbitals forms the two-dimensional

x2 - y2 x2 - y2_ | . |
antiferromagnetic state with a stripe structure. In a quasi-

low-dimensional magnet with one electron (hole) on the e,
orbital and competing Coulomb and exchange interactions,
the appearance of the orbital order with the structure wave
vector O =m/2 or the softening of the elastic oscillation mode
near this vector is possible. The phase diagram of the
modulated quase-one-dimensional ferromagnet is
determined. This diagram has a plateau m(H) = 1/2 on the
magnetization curve in the (magnetic field, exchange
alternating) plane. The region of the existence of an quasi-
two-dimensional antiferromagnetic in the plane of alternation
— anisotropy of exchange have been calculated. Quantum
reduction of spin on site for quasi-two-dimensional
antiferromagnetic with stripe structure versus exchange
anisotropy has been estimated.
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Fig. 7. Energy of a quasi-two-dimensional antiferromagnetic
E, (see fig. 5, d) and a quasi-one-dimensional antiferromagnetic
with the strong intrachain J(1 + J) exchange normalized
to the energy of the £ antiferromagnetic with the exchange
ratio K/J = 1/16 for n = 0.25; L = 40(1); 48(2); 60(3);
72(4) calculated at 7/T, = 0.2 as a function of the exchange
alternation. Maximum error bar denoted by square
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C. C. Amutecaun, A. . MocksuH, H. 1. IIuckyHoBa

BBIYUMCJIEHUE MATHUTHOM CTPYKTYPBI ITPA YIIOPSIJIOYEHUN
E, OPBUTAJIEN B KBASUOJHOMEPHBIX Y KBA3HIBYMEPHBIX
MATI'HETUKAX KBAHTOBBIM METOAOM MOHTE-KAPIO

Hccenedosano enusinue 0OMEHHO20 MEXAHUIMA HA YROPAOOUEHUe DNIeKMPOHO8 HA e OpOUMATIAX 8 YeNOUKax u 8 0gymep-
Hoti moOenu [ etlizenbepea ¢ 0OMmennouU anusomponueti 015 cnuna S = 1/2 keanmoevim memooom Monme-Kapno. Onpede-
JIeHbL 001acmU CYujecmeo8aHust OAIbHE20 K8A3U0OHOMEPHO20 U K8AZUOBYMEPHO20 AHMUPDEPPOMASHUMHO20 NOPAOKA CO
cneyuansHotl mononozuli oomena. Hailoeno niamo namaznuueHHoCmu 6 KpUeoU HaMasHUYEeHHOCIU OM ROJISL U 60JHOGO
BEKMOP MOOYIAYUU MASHUMHOU cmpyKmypbl ¢ Q = p /2 Ha RIOCKOCMU «MACHUMHOE NOJIe — AlbMEPHUPOSAHUE OOMEHAN.

Knroueswvie crosa: albmepHupoeaHue O6M€Ha, 0p6umaﬂbHoe umaZHumHoeynopﬂdoueHue, cmpaﬁnbl.





