УДК 519.673, 519.245

Л. А. Козинкин

МЕТОД ПРЯМОГО СТАТИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ В ЗАДАЧЕ ТОМСОНА*

Представлены минимальные и равновесные конфигурации систем зарядов на сфере, найденные с помощью метода Монте-Карло. Приведен анализ впервые полученных в ходе работы результатов.

Ключевые слова: задача Томсона, метод прямого статистического моделирования.

На рубеже XIX–XX вв. при изучении планетарной модели атома английским физиком Дж. Томсоном была сформулирована следующая задача: необходимо определить, какие конфигурации N одинаковых зарядов на сфере и в каких количествах дают минимум потенциальной энергии системы.

Математически эта задача сводится к поиску величины

$$W_{N} = \inf_{y^{(1)}, \dots, y^{(N)} \in S^{2}} W(y^{(1)}, \dots, y^{(N)}),$$
$$W(y^{(1)}, \dots, y^{(N)}) = \sum_{\substack{i, j = 1 \\ i, j \neq i}}^{N} \frac{1}{|y^{(i)} - y^{(j)}|}.$$

Еще сам Томсон проводил физические эксперименты по нахождению таких конфигураций для небольшого количества зарядов. Решающее значение для решения этой задачи уже в середине XX в. имела теория приближения функций П. Л. Чебышева, на основе которой частные случаи (при N = 2, 3, 4, 6, 12) были исследованы аналитически. Соответствующие конфигурации приведены в таблице на светло-сером фоне.

Дальнейшие исследования привели лишь к частичным результатам для случая N = 120 в 4-мерном пространстве (заряды составляют правильный многогранник, имеющий соответствующее число вершин) и N = 196560 в 24-мерном пространстве (заряды расположены на концах минимальных векторов решетки Лича).

Также существуют конфигурации, полученные экспериментальным путем, но не доказанные математически (они выделены в таблице темным фоном).

В данной статье для решения задачи Томсона использовался метод прямого статистического моделирования. Была разработана компьютерная модель, основанная на кинематике движения зарядов по поверхности сферы и их взаимодействия между собой.

Первая реализация модели выполнена в среде Borland C++ Builder. Она проводила итеративный поиск решения задачи Томсона для заданного количества зарядов. За каждую итерацию рассчитывались силы взаимодействия зарядов друг с другом, и на основе их результирующей выполнялся одновременный пропорциональный сдвиг зарядов. Благодаря классам визуализации и системе отображения результатов математически доказанные случаи были подтверждены экспериментально.

Следующая реализация модели разработана в среде Visual Studio с применением библиотек MPI в связи с необходимостью статистического исследования полученных конфигураций. Это существенно увеличило производительность моделирования за счет использования распределенных по локальной сети вычислений.

Таким образом, для каждого числа N генерируется 500 000 случайных начальных конфигураций на сфере и для каждой такой конфигурации рассчитывается около 100 000 итераций по времени. Такой подход позволяет с высокой вероятностью сделать заключение о минимальности потенциальной энергии той или иной системы зарядов, а также найти равновесные конфигурации (рис. 1–8).

Исследования разработанной модели позволили найти ряд неизвестных конфигураций в задаче Томсона. Результаты компьютерного моделирования некоторых систем зарядов получены впервые и приведены в таблице на белом фоне.

Число	Потенциальная	Характеристика конфигурации
зарядов	энергия	
2	1	Полюса сферы
3	2√3	Правильный треугольник на экваторе
4	3√6	Правильный тетраэдр
5	12,949 381 8	Два заряда на полюсах, три заряда образуют правильный треугольник на экваторе
5	12,967	Правильная пирамида
6	$3 + 12\sqrt{2}$	Правильный октаэдр
7	28,905 956 3	Два заряда на полюсах, пять зарядов образуют правильный пятиугольник на экваторе
8	39,350 574 5	Антипризма
9	51,520	Заряды образуют три пирамиды с прямоугольниками в основаниях, которые в свою очередь обра-
		зуют друг с другом правильную треугольную призму

Исследованные конфигурации систем зарядов

^{*}Работа поддержана Российским фондом фундаментальных исследований (грант № 08-01-00312).

Окончание таблицы

Число	Потенциальная	Vonarronuerure reuthur pouru
зарядов	энергия	ларактеристика конфитурации
10	65,433 899 0	Два заряда на полюсах, остальные заряды образуют антипризму, равноудаленную основаниями от
		полюсов
11	81,192 901 6	Конфигурация, как в предыдущем случае, отличающаяся только асимметрией за счет добавления
		одиннадцатого заряда между основанием антипризмы и зарядом на одном из полюсов
12	$6 + 15\sqrt{10} - $	Правильный икосаэдр
	$2\sqrt{5}$ +15 $\sqrt{10}$ +	
	2√5)	
13	117,706	Предположительно деформированный икосаэдр
14	138,612 686 2	Два заряда на полюсах, остальные образуют шестиугольную антипризму с основаниями, равноуда-
		ленными от полюсов
15	161,340 484 6	Конфигурация, как в предыдущем случае, но деформированная за счет пятнадцатого заряда, раз-
		местившегося рядом с одним из полюсов
16	185,823	Предположительно деформированная двумя зарядами конфигурация N = 14
16	185,841	Равновесная конфигурация с антипризматическими основаниями северного и южного полюсов
17	212,101	Конфигурация, образованная двумя правильными пирамидами, с пятиугольниками в основании, верши-
		нами на полюсах и квадратами, повернутыми на 45° и соединенными друг с другом, на экваторе
18	240,169	Антипризматически расположенные правильные пирамиды с квадратом в основании и одинаково
		ориентированные пирамиды с неправильными одинаковыми прямоугольниками в основании на эк-
		ваторе
19	270,179	Правильная пирамида с правильным шестиугольником в основании, расположенная на одном по-
		люсе параллельно квадрату на другом
20	301.763	Более устойчивая, чем долекаэлр, конфигурация

N = 4

N = 5 (равновесная конфигурация)

N = 5 (конфигурация с минимальной энергией)

Таким образом, были исследованы системы зарядов, обладающие минимальной потенциальной энергией. Большой интерес также представляют равновесные конфигурации, являющиеся локальными минимумами, а также вероятности распределения зарядов в той или иной конфигурации.

L. A. Kozinkin

DIRECT STATISTICAL SIMULATION METHOD IN THOMSON'S PROBLEM

In the article the author presents results of search of minimal and stable arrangements of points on a sphere with the help of Monte Carlo method. Analysis of new arrangements is carried out.

Keywords: Thomson's problem, direct statistical simulation method.

© Козинкин Л. А., 2010

УДК 621.396.6/0751

Е. И. Кротова

МЕТОД ОЦЕНКИ ВЛИЯНИЯ АДДИТИВНЫХ ПОМЕХ НА ВХОДЕ ПРИЕМНИКА СИГНАЛОВ С ПОМОЩЬЮ ИДЕНТИФИКАЦИИ ВИДОВ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ

Рассмотрен метод оценки влияния помех с различными законами распределения на входе приемника телекоммуникационной системы по комбинированному параметру идентификации на сигнал с модуляцией минимальным частотным сдвигом.

Ключевые слова: информация, закон распределения, идентификация, помехи.

Система связи должна быть спроектирована так, чтобы она могла наилучшим образом противостоять действию помех. Для этого необходимо знать характеристики этих помех и анализировать их влияние на информационный сигнал.

В качестве основных параметров, характеризующих качество связи, используются отношение сигнал/шум, коэффициент вариации и т. п. В современных системах связи применяются сигналы, обеспечивающие высокую помехоустойчивость, к которым, в частности, относятся сигналы с манипуляцией минимальным частотным сдвигом (ЧМн). При индексе модуляции, равном 0,5, ЧМн-сигналы имеют большее сосредоточение энергии в центральной области спектра, что обеспечивает высокую помехоустойчивость к несосредоточенным помехам.