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SPECIFICATIONS OF AN INFORMATION PROCESSING INVARIANT SYSTEM  
IN CONDITIONS OF NONCOHERENT RECEPTION AND INACCURATE  

DETERMINATION OF THRESHOLDS 
 
An information processing invariant system based on a linear detector in conditions of inaccurate determination of 

thresholds is considered. Quantitative estimation of noise immunity of such a system with its further comparison with  
noise immunity of an ordinary binary system with non-coherent reception is carried out. 
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The main requirement to an information processing 

system is undistorted transmission through communi-
cation channels with variable parameters.  

There are methods which are reduced to using of 
ARA, diversed reception, adaptive methods with a 
training signal, systems with feedback.  

These methods have both positive and negative 
characteristics. One of the drawbacks of the methods 
mentioned above is a difficulty in realization of 
transmission algorithms of signals with multilevel 
amplitude modulation.  

In the given paper the algorithm of multilevel 
amplitude modulated signals transmission through the 
channels with variable parameters is synthesized and 
quantitative estimation of the noise immunity in 
conditions of non-coherent reception is carried out. 

There is a communication channel restricted by the 
frequencies flow и fhigh. The state of the communication 
channel is defined by the stationary interval inside which 
the influence of multiplicative noise is described by the 
stability of the transmission coefficient k(t) on a certain 
frequency. 

The algorithm of reception is defined by the carrying 
frequency given as an average frequency of the channel, 
the amplitude of which is modulated by rectangular 
impulses. 

It is required to determine the technical characteristics 
of an invariant transmission system in conditions of 
imprecise definition of thresholds. 

Each transmitted block will contain the informative 
part and the sequence of training signals SPILOT. 

On the receiving side the training signals are averaged 
and used for modulation of the informative part of the 
block. 

At the same time due to the changing of 
communication channel parameters the information and 
training signals are interfered with the adaptive noise. 

To decrease the influence of adaptive noise of the 
communication channel the operation of averaging of the 
training signals in each block is used [1]. 

Let us carry out the analysis of noise immunity of the 
invariant system in fig. 1, where two processing channels 
are used. 

In the first channel, consisting of a synchronous 
detector (SD) and the first solving device (SD1) the 
estimation of the channel transmission coefficient and 

dispersion of normal noise is carried out. Later these data 
are used for calculating the threshold in conditions of 
invariants demodulation. 

 

 
 

Fig. 1. Extended structural scheme of an invariant system: 
LD is a linear detector; DAT is a digital – analogue transducer;  

SD1 is a solving device 1; SD is a synchronous detector;  
SD2 is a solving device 2 

 
In the second channel a non-coherent system with a 

linear detector (LD) and the second solving device (SD2) 
are used. In this channel reception signals are really 
demodulated. 

Let us estimate the quantitative indicators of the 
method offered. 

The principle of information section operation consists 
in the separation of the reception signals envelope 
together with the normal noise with the help of LD. The 
result of transformation into DAT further on is recorded 
in SD1. 

In SD1 the decision in favour of one or another 
invariant is made. 

As it is known [2], in the process of LD using the 
displacement of mathematic expectation appears. 
Mathematic expectation is calculated by the following 
formula [2]: 
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where mR is the quantity of mathematic expectation; σ2 is 
dispersion component of normal noise; I0 and I1             
are modified Bessel functions of zero and first order;            
α = k·INVl , where k is a coefficient of transmission of the 
channel; INVl  is l transmitted invariant. 
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The quantity of dispersion on the output of LD is 
calculated by the following formula [2]: 

 

2 2 2 2 2
2 2R R Rm m mσ = − = σ +α − .                (2) 

 

The variables in (2) are described above. 
To decide in favour of one or another invariant it is 

necessary to know the values of thresholds for each pair 
of invariants. 

To estimate thresholds it is necessary to calculate mR 
and σ2

R. 
It can be done with the help of section of channel 

parameters estimation (fig. 1) where calculation of 
quantities k and σ2 is made. 

Joint operation of the information section and the 
section of channel parameters estimation consists in 
reception and recording of values of amplitude modulated 
informative and training signals in SD1 and SD2 by a 
non-coherent receiver and calculating of invariant 
estimation on their basis. 

On the basis of the latter and the calculated thresholds 
a decision in favour of one or another invariant is made. 

Let us calculate the probability of erroneous reception 
in case of multilevel invariant amplitude modulated 
transmission of signals. The well-known approach is used 
to do this [3]: 
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where Рtr is the probability of transition of the first 
invariant into the second one and vice versa; Р1 is the 
probability of appearing of the first invariant; Р2 is the 
probability of appearing of the second invariant; the first 
integral is the probability of appearing of the second 
invariant, when the first one is sent; the second integral is 
the probability of appearing of the first invariant, when 
the second one is sent; zP  is a  threshold value necessary 
to calculate Рtr with known Р1  and Р2 .   

The quantity zP is defined with the help of the best 
bias estimation by minimizing Рtr by zP. With unknown  
Р1 and Р2 let us choose Р1 = Р2 = 0.5. 

As we can see from the expression (3), it is necessary 
to know the analytical expression W1(z) and W2(z). 

For coherent reception the calculation of quantities 
W1(z) and W2(z) is known and is shown in [1]. The same 
approach can also be used in case of non-coherent 
reception. 

Thus the quantity of estimation of the invariant in 
such a system is calculated as follows: 
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where INVl  is l transmitted invariant; ξ(i) is i  value of 
Relay noise; k is the coefficient of communication 
channel transmission; in the denominator: SPILOT is the 
value of the training signal; η(m, j) is j value of Relay 
noise in m realization of signal SPILOT; N is the number of 

readings taken by the envelope INVl or SPILOT; L is the 
number of training signals. 

Without loss of generality let us take SPILOT = 1, as 
SPILOT > 0, and we can divide the values of invariants INVl 
and root-mean-square deviation into SPILOT. 

When SPILOT = 1 we obtain the following analytical 
expression: 
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To calculate Рtr it is necessary to know mathematic 
expectations and dispersion of the numerator and the 
denominator of the expression (4). 

To calculate it let us use the following approach. 
Mathematic expectation of the numerator (4) will be: 
 

num Rm m N= ⋅ .                            (5) 
 

Dispersion of the numerator (4) will be: 
 

2
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where mR and σ2
R are calculated in accordance with the 

expressions (1) и (2). Mathematic expectation of the 
denominator (4) after transformation will be as follows: 

 

2den Rm m N= ⋅ ,                            (7) 
 

where mR2 is calculated in accordance with (1) by α = k, 
as SPILOT  = 1 is used instead of INVl. 

Dispersion of the denominator (4) will be: 
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where σ2
R2 is calculated in accordance with (2) by α = k, 

where mR2  is used instead of mR. 
Then the expression of density of the probability of 

the estimation of the invariant will be [4]: 
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where 1 numDσ = ; 2 denDσ = ; m1 = mnum; m2 = mden. 
The calculation of Рtr is carried out quantitatively by 

approximation of the formula (9). 
In the systems with AM and non-coherent reception 

the analogue of the probability of the pairwise transition 
is the probability of error Рer, which is calculated by the 
know formulas [3]. 

The probability of the pairwise transition and the 
probability of error are calculated for the similar h – 
noise-to-signal ratio which is calculated by the formula    
h = k · INV1/ σR. 

Threshold zP are calculated by minimization of Рtr in 
formula (3). For k = 1 and INV1 = 1, INV2 = 2, 3, 4, 5, 6 
the calculations result in zP = 1,23; 1,49; 1,77; 2,07; 2,36. 

For k = 0,7 and INV1 = 1, INV2 = 2, 3, 4, 5, 6 the 
calculations result in zP = 1,14; 1,30; 1,50; 1,68; 1,92. 



Mathematics, mechanics, computer science 
 

 6

The results of modulation are shown in fig. 2 and fig. 3, 
from which we can see that the peculiarity of any 
invariant system based on the principle of invariant 
relative amplitude modulation is that amplitude 
modulated signals formed by INVl and SPILOT are 
transmitted through the channel. 

 
 

 
 

Fig. 2. Results of modulation: 
1 – the probability of pairwise transition of one invariant into 

another under the following given conditions: k = 1; INV1 = 1;  
INV2 = 2, 3, …, 6 and non-coherent reception; 2 – the probability  

of error in classical amplitude modulation and non-coherent 
reception; 3 – the probability of the pairwise transition of one 
invariant into another under the following given conditions:  
k = 1; INV1 = 1; INV2 = 2, 3, …, 11 and coherent reception 
 
As a rule the transmission of these signals on the basis 

of classical algorithms provides low noise immunity of 
information processing [3]. 

Only after processing of these signals in accordance 
with the quotient algorithm using expression (4), we 
obtain the invariant estimation which is really a number 
but not a signal. 

As we can see from fig. 2 and fig. 3 the probability of 
the pairwise transition of one invariant into another in 
conditions of great noise-to-signal ratio is defined by the 
values (10–30–10–40). In recalculation of the shown above 
quantities the probability of erroneous reception of                 
a single symbol in classical systems is within the limits 
(10–6–10–10). 

However, in real situations it is impossible to 
determine the value of the transfer constant of 
communication channel accurately. The consequence of 
this would be inaccurate definition of the thresholds. The 
summand of the denominator Xj in formula (4) of 
evaluation of the invariant ISPR can be represented as: 
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where L is the number of averages; k is thetransfer 
constant of communication channel; η(m, j) is j-th reading 
of additive noise in the m-th realization of the training 
signal. 

 

 
 

Fig. 3. Results of modulation: 
1 – the probability of the pairwise transition of one invariant  
into another under the following given conditions: k = 0,7;   

INV1 =  1; INV2 = 2, 3, …, 6 and non-coherent reception; 2 – the 
probability of error in classical amplitude modulation and non-
coherent reception; 3 – the probability of the pairwise transition  

of one invariant into another under the following;given conditions:  
k = 0,7; INV1 = 1; INV2 = 2, 3, …, 11 and coherent reception;  

4 – the probability of pairwise transition at k = 0,7, and thresholds, 
calculated with k–; 5 – the probability of pairwise transition at  

k = 0,7, and thresholds, calculated with k+ 

 
Then expected Xj is equal to: 
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In addition, we have 
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where $k  is the evaluation of the transfer constant of 
communication channel; g  is the inverse of the function m; 
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(according to the theorem on asymptotic normality), 
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Then 
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 $3k k Dk− = − ,                              (21) 
 

$3k k Dk+ = + .                       (22) 
 

Fig. 3 shows the curves 4 and 5  corresponding to    
the curves of noise immunity at k– and k+, respectively.           
In this case $ 191.2 10Dk −= ⋅ , k– = 6.99999988⋅10–1 and            
k+ = 6,99999989⋅10–1. As it is evident from these curves, a 
decrease in immunity ISPR is observed. 

The invariant non-coherent system of information 
transmission is offered and its qualitative characteristics 
in conditions of inaccurate definition of thresholds are 
defined.  

The developed method can find application in the 
systems of information processing. 

In the author's opinion it is necessary to compare the 
noise immunity of the investigated invariant system with 
the noise immunity of similar invariant systems. That will 
be done in the subsequent papers. 
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MAGNETOELECTRIC EFFECT INDUCED BY ORBITAL ORDERING OF ELECTRONS 

 
Relationship between orbital order and the formation of the spontaneous magnetic moment, lattice constant, 

correlation function of orbital and spin moments between nearest neighbors have been investigated in terms of the 
continuous Potts model for set of electron-phonon parameters and spin-phonon interactions. A change in the 
permittivity and orbital correlation functions in the external magnetic field has been found.     

 
Keywords: permittivity, magnetoelectric effect, electron-lattice interaction, orbital and spin moment. 
 
The study of multiferroics with the coexistence of at 

least two of the three order parameters (magnetic, electric, 
and crystallographic) [1] is an urgent problem, for it 
describes the possibility of controlling the magnetic 
properties of a material by means of an electric-field and, 
vice versa, magnetic-field modulation of electric 
properties. In the future, multiferroics may find wide 
technical application in sensors and recording devices, 
reading and storing information. While the spintronic 
devices transform information by changing the 
magnetization to electric voltage; in multiferroics the 
correlation between the magnetic and electric subsystems 
manifests itself in the magnetoelectric effect [2; 3]. 

The CoxMn1–xS solid solutions can be attributed             
to the multiferroic class [4]. In the temperature ranges of 
T ≈ 110–120 K and T ≈ 230–260 K, the correlation 
between the magnetic and electric subsystems has been 
found [5]. The presence of this correlation is confirmed 
by sharp rise of the magnetization and the maximum in 
the relative variation of permittivity, measured in the 

external magnetic field and without it at a lowering 
temperature [6].  

Electron density redistribution inside a 3d-shell arising 
from electron transitions from eg to t2g levels; or due to 
the different electro negativities of cobalt and manganese 
ions can lead to changes the orbital occupancy at the            
t2g shell of Mn ions.  

An important feature is that magnetic exchange 
interaction depends on orbital occupancy. This means that 
even the sign could change. Therefore, it is possible that 
magnetic correlation at normal can be very different from 
that in the ordered phase, when the orbital order is 
accompanied by magnetic transition. The variation of the 
orbital occupancy may be caused shift in polarizability 
and in spin state of cation. 

The aim of this study is to investigate the physical 
properties of the CoxMn1-xS solid solutions typical of 
multiferroics, induced by spin-charge ordering, and to 
establish the interrelation between the magnetic, electric, 
and elastic subsystems. 




