3. Вавилов Д. В. Моделирование накатных мелкомодульных передач с заданными показателями качества // Вестник СибГАУ. Вып. 4(21). 2008. С. 83–86.

4. Усаков В. И., Колбасина Н. А., Скорняков С. Н. Использование сплайнов для аппроксимации реальных поверхностей при проектировании зубчатых передач // Качество продукции машиностроения : тез. докл. науч.- практ. конф. / под ред. В. Ф. Тереньтева, В. И. Усакова ; КГТУ. Красноярск, 1998. С. 106–107.

5. Вавилов Д. В., Иптышев А. А., Усаков В. И. Моделирование накатывания мелкомодульных цилиндрических зубчатых передач с заданными показателями качества // Вестник СибГАУ. 2008. Вып. 21. С. 67–70.

D. V. Vavilov, M. M. Kolegova, A. A. Iptyshev, D. B. Eliseev

RESEARCH OF ROLLED SPUR GEARS KINEMATIC CHARACTERISTICS BY USING COMPUTER-AIDED SOFTWARE

In article is presented an analysis method of rolled spur gear kinematics and quality characteristic manage by using modern computer aided software.

Keywords: gear couple kinematics, simulation modeling, spur gear transmissions.

© Вавилов Д. В., Колегова М. М., Иптышев А. А., Елисеев Д. Б., 2011

УДК 532.5, 621.22

И.И.Вайнштейн, П.С.Литвинов

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ НЕСУЩЕГО СЛОЯ ГАЗОЖИДКОСТНОГО ПОДШИПНИКА СКОЛЬЖЕНИЯ

Построена математическая модель несущего слоя газожидкостного подиипника скольжения бесконечной длины. В линейном приближении по относительному эксцентриситету получены формулы для давления, скоростей, линии раздела слоев газа и жидкости, удельной подъемной силы и удельных моментов трения на шипе и втулке.

Ключевые слова: двухслойный поток, комбинированный подшипник скольжения.

В Красноярском государственном техническом университете разработаны конструкции радиальных комбинированных подшипников, у которых рабочий зазор состоит из несущего газового слоя и слоев смазки (А. с. 1042400 СССР, МКИ F 16 С 17 16. Комбинированный подшипник / А. С. Тюриков, С. Н. Шатохин, В. М. Грук. № 2586690; заявл. 3.09.78.). Эти конструкции отличаются повышенной несущей способностью, пониженной вибрационной активностью, надежностью в работе и долговечностью. Такие подшипники применяются в целях улучшения качества и условий эксплуатации оборудования, например для вентиляции отсеков надводных и подводных кораблей, что позволяет значительно снизить шум и вибрацию.

Математическая постановка задачи. При построении математической модели несущего газового слоя жидкостного подшипника делается предположение о постоянстве плотности и вязкости газа и выполнении уравнения состояния

$$\frac{P}{\rho^{\kappa}} = \text{const},\tag{1}$$

где *P* – давление; *р* – плотность.

С учетом малости относительной толщины смазочного пространства получены соответствующие уравнения Рейнольдса для давления, являющиеся основополагающими для расчета основных характеристик таких подшипников [1;2].

Рассмотрим бесконечный двухслойный (i = 1, 2) цилиндрический подшипник. Центр шипа радиуса R_1 в точке O_1 , центр втулки радиуса R_2 в O_2 . Пусть шип и втулка вращаются с угловыми скоростями ω_1 и ω_2 соответственно. Первая среда (i = 1) - газ примыкает к шипу, вторая (i = 2) - жидкость - к втулке (рис. 1). Движение можно считать плоским между двумя эксцентрично расположенными окружностями. Рассматривается установившееся течение.

Двухслойный поток в смазочном слое представляет собой совместное движение двух несмешивающихся сред – жидкости и газа, контактирующих по некоторой линии (линии раздела) Г.

Для каждого слоя запишем уравнения Навье-Стокса

$$\rho_i \frac{dV^{(i)}}{dt} = -\operatorname{grad} P^{(i)} + \frac{\mu_i}{2} \Delta \vec{V}^{(i)} + \left(\frac{\mu_i}{3} + \mu_i'\right) \operatorname{grad} \operatorname{div} \vec{V}^{(i)}$$
(2)

и неразрывности

$$\operatorname{div}\left(\rho_{i}\vec{V}^{(i)}\right)=0,$$
(3)

где $\vec{V}^{(i)}$ – вектор относительной скорости движения частицы жидкости; $p^{(i)}$ – давление; μ_i – коэффициент вязкости; ρ_i – плотности сред; μ'_i – второй коэффициент вязкости. Для жидкого слоя последнее слагаемое в (2) отсутствует.

При постановке граничных условий будем следовать работам [3; 4].

На поверхности шипа и втулки – условие прилипания:

$$\vec{V}^{(1)} = \vec{V}_{\text{шипа}}, \quad \vec{V}^{(2)} = \vec{V}_{\text{втулки}}.$$
 (4)

На линии раздела
$$\Gamma : F(x, y) = 0$$
:
 $\vec{V}^{(1)} = \vec{V}^{(2)}, \quad \vec{V}^{(i)} \cdot \vec{\nabla}F = 0,$
 $\mathbf{P}^{(1)} \cdot \vec{n} - \mathbf{P}^{(2)} \cdot \vec{n} = 2\sigma H \vec{n} + \nabla_{\Gamma}\sigma,$ (5)

где $\mathbf{P}^{(i)}$ – тензор напряжений в *i*-м слое; H – средняя кривизна поверхности раздела сред; \vec{n} – единичный вектор нормали к линии Γ , направленный во вторую область; $\nabla_{\Gamma} = \nabla - \vec{n}(\vec{n} \cdot \nabla)$ – векторный дифференциальный оператор (поверхностный градиент); σ – коэффициент поверхностного натяжения.

К каждому слою в полярной системе координат с центром в O_1 (центр шипа) запишем систему уравнений, которая получается из (2) и (3) после линеаризации по малому параметру $\frac{h}{R_1}$, $h = R_2 - R_1$, характерному для подшипников скольжения [1; 2]:

$$\mu_{i} \frac{\partial^{2} V_{\phi}^{(i)}}{\partial r^{2}} = \frac{1}{r} \frac{\partial P^{(i)}}{\partial \phi}, \quad \frac{\partial P^{(i)}}{\partial r} = 0,$$
$$\frac{\partial \left(\rho_{i} V_{r}^{(i)}\right)}{\partial r} + \frac{1}{r} \frac{\partial \left(\rho_{i} V_{\phi}^{(i)}\right)}{\partial \phi} = 0.$$
(6)

Перейдем от переменной r к переменной ζ : $r = R_1 + h\zeta$, $0 \le \zeta \le H_0(\phi)$,

$$H_0(\varphi) = 1 + \varepsilon \cos \varphi, \quad \varepsilon = \frac{e}{h}, \quad h = R_2 - R_1.$$

Уравнение линии раздела запишем в виде $r = R_1 + h\zeta_a(\phi)$.

Перейдем к безразмерным величинам:

$$\begin{split} V_{\varphi}^{(i)} &= V_0 \tilde{V}_{\varphi}^{(i)}, \quad V_r^{(i)} = V_0 \frac{h}{R_1} \tilde{V}_r^{(i)} = \omega_0 h \tilde{V}_r^{(i)}, \\ P^{(i)} &= P_a \frac{R_1^2}{h^2} \tilde{P}^{(i)}, \quad \rho^{(i)} = \rho_a \tilde{\rho}, \end{split}$$

где $V_0 = \omega_0 R_1$; $\omega_0 = \omega_1 + \omega_2$; P_a – атмосферное давление; ρ_a – плотность в состоянии покоя. С учетом малости $\frac{h}{R_1}$ перепишем уравнения (6) в безразмерных величинах:

$$\frac{\mu_{i}V_{0}}{P_{a}R_{1}}\frac{\partial^{2}\tilde{V}_{\phi}^{(i)}}{\partial\zeta^{2}} = \frac{\partial\tilde{P}^{(i)}}{\partial\phi}, \quad \frac{\partial\tilde{P}^{(i)}}{\partial\zeta} = 0,$$
$$\frac{\partial\left(\tilde{\rho}_{i}\tilde{V}_{r}^{(i)}\right)}{\partial\zeta} + \frac{\partial\left(\tilde{\rho}_{i}\tilde{V}_{\phi}^{(i)}\right)}{\partial\phi} = 0.$$

Рассмотрим граничные условия. Условие на шипе $(\zeta = 0)$:

$$\tilde{F}_{\phi}^{(1)} = \frac{\omega_1 R_1}{V_0}, \quad \tilde{V}_r^{(1)} = 0.$$
(7)

Условие на втулке $(\zeta = H_0(\phi))$:

$$\tilde{V}_{\varphi}^{(2)} = \frac{\omega_2 R_2}{V_0}, \quad \tilde{V}_r^{(2)} = \tilde{V}_{\varphi}^{(2)} \frac{dH_0}{d\varphi}.$$
(8)

Условие на линии раздела $(\zeta = \zeta_a)$:

$$\tilde{V}_{\varphi}^{(1)} = \tilde{V}_{\varphi}^{(2)} = \tilde{V}_{a}, \quad \tilde{V}_{r}^{(i)} = \tilde{V}_{\varphi}^{(i)} \frac{\partial \zeta_{a}}{\partial \varphi}.$$
(9)

Рассмотрим третье условие в (5). Запишем тензор напряжений

$$\mathbf{P}^{(i)} = 2\mu_i \mathbf{E}^{(i)} + \left(-P^{(i)} + \lambda' \mathrm{div} \vec{V}^{(i)}\right) \mathbf{I}.$$
 (10)

Для жидкого слоя последнее слагаемое в (10) равно нулю, так как div $\vec{V} = 0$. Для газового слоя $\lambda' = -\frac{2\mu}{3}$, $\mathbf{E}^{(i)}$ – тензоры скоростей деформации; **I** – единичный тензор. С учетом малости $\frac{h}{R}$

$$\mathbf{P}^{(i)} = \begin{pmatrix} -P_{a} \left(\frac{R_{1}}{h}\right)^{2} \tilde{P}^{(i)} & \frac{\mu_{i} \omega_{0} R_{1}}{h} \frac{\partial \tilde{V}_{\phi}^{(i)}}{\partial \zeta} \\ \frac{\mu_{i} \omega_{0} R_{1}}{h} \frac{\partial \tilde{V}_{\phi}^{(i)}}{\partial \zeta} & -P_{a} \left(\frac{R_{1}}{h}\right)^{2} \tilde{P}^{(i)} \end{pmatrix},$$
$$2\sigma H \vec{n} + \nabla_{\Gamma} \sigma = \begin{pmatrix} \frac{2\sigma}{R_{1}} \\ \frac{1}{r} \frac{\partial \sigma}{\partial \phi} \end{pmatrix},$$

получаем на линии раздела

$$\tilde{P}^{(1)} = \tilde{P}^{(2)}, \quad \mu_1 \frac{\partial \tilde{V}_{\phi}^{(1)}}{\partial \zeta} = \mu_2 \frac{\partial \tilde{V}_{\phi}^{(2)}}{\partial \zeta}$$

Таким образом, приходим к следующей задаче: требуется найти функции $\tilde{V}_{\phi}^{(i)}(\zeta, \phi), \quad \tilde{V}_{r}^{(1)}(\zeta, \phi), \quad \tilde{P}^{(i)}(\zeta, \phi)$ и уравнение линии раздела $\zeta = \zeta_{a}(\phi)$ из уравнений

$$\frac{\partial^2 \tilde{V}_{\varphi}^{(i)}}{\partial \zeta^2} = \frac{1}{k_i} \frac{\partial \tilde{P}^{(i)}}{\partial \varphi}, \quad \frac{\partial \tilde{P}^{(i)}}{\partial \zeta} = 0,$$
$$\frac{\partial \left(\tilde{\rho}_i \tilde{V}_r^{(i)}\right)}{\partial \zeta} + \frac{\partial \left(\tilde{\rho}_i \tilde{V}_{\varphi}^{(i)}\right)}{\partial \varphi} = 0, \quad \left(k_i = \frac{\mu_i V_0}{P_a R_1}\right), \quad (11)$$

при следующих граничных условиях.

На шипе $(\zeta = 0)$:

$$\begin{split} \tilde{V}_{\varphi}^{(1)}\Big|_{\zeta=0} &= \frac{\omega_1 R_1}{V_0} = \frac{\omega_1}{\omega_1 + \omega_2},\\ \tilde{V}_r^{(1)}\Big|_{\zeta=0} &= 0, \end{split} \tag{12}$$

На втулке $(\zeta = H_0)$: $\tilde{V}_{\varphi}^{(2)}\Big|_{\zeta=H_0} = \frac{\omega_2 R_2}{V_0} = \frac{\omega_2}{\omega_1 + \omega_2}, \quad \tilde{V}_r^{(2)}\Big|_{\zeta=H_0} = \frac{\omega_2}{\omega_1 + \omega_2} \frac{\partial H_0}{\partial \varphi},$ (13) На линии раздела ($\zeta = \zeta_a$):

$$\tilde{V}_{\varphi}^{(1)}\Big|_{\zeta=\zeta_{a}} = \tilde{V}_{\varphi}^{(2)}\Big|_{\zeta=\zeta_{a}} = \tilde{V}_{a}, \quad \tilde{V}_{r}^{(i)}\Big|_{\zeta=\zeta_{a}} = \tilde{V}_{\varphi}^{(i)} \frac{\partial \zeta_{a}}{\partial \varphi}\Big|_{r=r}, \quad (14)$$

$$\tilde{P}^{(1)}\Big|_{\zeta=\zeta_{a}} = \tilde{P}^{(2)}\Big|_{\zeta=\zeta_{a}}, \quad \mu_{1} \frac{\partial \tilde{V}_{\phi}^{(1)}}{\partial \zeta}\Big|_{\zeta=\zeta_{a}} = \mu_{2} \frac{\partial \tilde{V}_{\phi}^{(2)}}{\partial \zeta}\Big|_{\zeta=\zeta_{a}}.$$
 (15)

Здесь \tilde{V}_{a} – неизвестная безразмерная скорость. С учетом, что $\tilde{P}^{(i)}$ не зависит от ζ (11), первое уравнение в (11) является обыкновенным дифференциальным уравнением по ζ . Можно выписать его решение, удовлетворяющее условиям (12), (13) и (14):

$$\tilde{V}_{\phi}^{(1)} = \frac{1}{2k_{1}} \frac{\partial \tilde{P}^{(1)}}{\partial \phi} \zeta (\zeta - \zeta_{a}) + \frac{\omega_{1} (\zeta_{a} - \zeta)}{\zeta_{a} (\omega_{1} + \omega_{2})} + \frac{\tilde{V}_{a} \zeta}{\zeta_{a}}, \quad (16)$$

$$\tilde{V}_{\phi}^{(2)} = \frac{1}{2k_{2}} \frac{\partial \tilde{P}^{(2)}}{\partial \phi} (H_{0} - \zeta) (\zeta_{a} - \zeta) + \frac{\omega_{2} (\zeta - \zeta_{a})}{(\omega_{1} + \omega_{2}) (H_{0} - \zeta_{a})} + \frac{\tilde{V}_{a} (H_{0} - \zeta)}{H_{0} - \zeta_{a}}. \quad (17)$$

Далее интегрируем уравнение неразрывности, третье в (11), по $\,\zeta\,$ от 0 до $\,\zeta_{\rm a}\,$ и от $\,\zeta_{\rm a}\,$ до $H_{\rm 0}$. Получаем

$$\begin{split} & \int_{0}^{\zeta_{a}} \frac{\partial \left(\tilde{\rho}_{1} \tilde{V}_{r}^{(1)}\right)}{\partial \zeta} d\zeta + \int_{0}^{\zeta_{a}} \frac{\partial \left(\tilde{\rho}_{1} \tilde{V}_{\phi}^{(1)}\right)}{\partial \phi} d\zeta = \\ & = \tilde{V}_{r}^{(1)} \tilde{\rho}_{1} \Big|_{\zeta=\zeta_{a}} - \tilde{V}_{r}^{(1)} \tilde{\rho}_{1} \Big|_{\zeta=0} - \tilde{V}_{\phi}^{(1)} \tilde{\rho}_{1} \Big|_{\zeta=\zeta_{a}} \frac{\partial \zeta_{a}}{\partial \phi} + \\ & \quad + \frac{\partial}{\partial \phi} \int_{0}^{\zeta_{a}} \tilde{V}_{\phi}^{(1)} \tilde{\rho}_{1} d\zeta = 0. \end{split}$$

Сучетом (12-14)

$$\frac{\partial}{\partial \varphi} \int_{0}^{\zeta_{a}} \tilde{V}_{\varphi}^{(1)} \tilde{\rho}_{1} d\zeta = 0; \quad \int_{0}^{\zeta_{a}} \tilde{V}_{\varphi}^{(1)} \tilde{\rho}_{1} d\zeta = \text{const.}$$
(18)

И аналогично (после интегрирования от ζ_a до H_0) получаем

$$\begin{split} \tilde{V}_{r}^{(2)}\Big|_{\zeta=H_{0}} & -\tilde{V}_{r}^{(2)}\Big|_{\zeta=\zeta_{a}} +\tilde{V}_{\phi}^{(2)}\Big|_{\zeta=\zeta_{a}} \times \\ \times \frac{\partial \zeta_{a}}{\partial \phi} & -\tilde{V}_{\phi}^{(2)}\Big|_{\zeta=H_{0}} \cdot \frac{\partial H_{0}}{\partial \phi} + \frac{\partial}{\partial \phi} \int_{\zeta_{a}}^{H_{0}} \tilde{V}_{\phi}^{(2)} d\zeta = 0 \end{split}$$

и с учетом (13), (14) и постоянства плотности во втором слое

$$\frac{\partial}{\partial \varphi} \int_{\zeta_a}^{H_0} \tilde{V}_{\varphi}^{(2)} d\zeta = 0; \quad \int_{\zeta_a}^{H_0} \tilde{V}_{\varphi}^{(2)} d\zeta = \text{const.}$$
(19)

Подставляем найденные выражения для $ilde{V}^{(1)}_{_{0}}$ и $ilde{V}^{(2)}_{_{0}}$ в (18), (19) и после интегрирования получаем

$$-\frac{1}{12k_1}\frac{\partial\tilde{P}^{(1)}}{\partial\varphi}\zeta_a^3 + \frac{\omega_1\zeta_a}{2(\omega_1+\omega_2)} + \frac{\tilde{V}_a\,\zeta_a}{2} = \frac{C_1}{\tilde{\rho}_1},\qquad(20)$$

$$-\frac{1}{12k_{2}}\frac{\partial\tilde{P}^{(2)}}{\partial\varphi}\left(H_{0}-\zeta_{a}\right)^{3}+\frac{\omega_{2}\left(H_{0}-\zeta_{a}\right)}{2\left(\omega_{1}+\omega_{2}\right)}+\frac{\tilde{V}_{a}\left(H_{0}-\zeta_{a}\right)}{2}=C_{2}.$$
(21)

Далее удовлетворяем второму условию (15), учитывая (16, 17):

$$\mu_{1}\left(\frac{1}{2k_{1}}\frac{\partial\tilde{P}^{(1)}}{\partial\varphi}\zeta_{a}-\frac{\omega_{1}}{\zeta_{a}(\omega_{1}+\omega_{2})}+\frac{\tilde{V}_{a}}{\zeta_{a}}\right) =$$

$$=\mu_{2}\left(-\frac{1}{2k_{2}}\frac{\partial\tilde{P}^{(2)}}{\partial\varphi}(H_{0}-\zeta_{a})++\frac{\omega_{2}}{(H_{0}-\zeta_{a})(\omega_{1}+\omega_{2})}-\frac{\tilde{V}_{a}}{H_{0}-\zeta_{a}}\right).$$
(22)

Так как $\tilde{P}^{(1)}$ и $\tilde{P}^{(2)}$ зависят только от φ и на линии раздела совпадают, то функцию давления можно искать в виде одной функции $\tilde{P}(\phi)$, не зависящей от номера среды. В уравнениях (20)-(22) проведем следующие замены:

$$\begin{split} \tilde{P}^{(1)} &= \tilde{P}^{(2)} = \tilde{P} = \frac{h^2}{R_1^2} P, \quad \zeta_a = \delta H_0, \quad \tilde{V}_a = V_a, \\ V_0 &= \left(\omega_1 + \omega_2\right) R_1, \quad \Omega_i = \frac{\omega_i R_i}{V_0}, \quad \gamma_i = \frac{6\mu_i R_1 V_0}{P_a h^2}. \end{split}$$

Система уравнений (20), (21), (22) с учетом уравнения состояния (1) примет следующий вид:

$$\frac{dP(\varphi)}{d\varphi} = \frac{\gamma_1}{\delta^2(\varphi)H_0^2(\varphi)} \times \times \left(V_a(\varphi) + \Omega_1 + \frac{C_1}{P^{\frac{1}{\kappa}}(\varphi)\delta(\varphi)H_0(\varphi)} \right), \quad (23)$$

$$\frac{dI'(\varphi)}{d\varphi} = \frac{I_2}{\left(1 - \delta(\varphi)\right)^2 H_0^2(\varphi)} \times \left(V_a(\varphi) + \Omega_2 + \frac{C_2}{(1 - \delta(\varphi))H_0(\varphi)}\right), \quad (24)$$

$$3\frac{dP(\varphi)}{d\varphi} = \frac{\gamma_1}{\delta(\varphi)H_0^2(\varphi)} (\Omega_1 - V_a(\varphi)) + \frac{\gamma_2}{(1 - \delta(\varphi))H_0^2(\varphi)} (\Omega_2 - V_a(\varphi)).$$
(25)

Здесь C_1 и C_2 пока неизвестные постоянные.

Уравнение (23) является аналогом уравнения Рейнольдса для газового подшипника, у которого газовый слой находится между шипом и линией раздела (от 0 до $\delta(\varphi)H_0(\varphi)$). Уравнение (24) является уравнением Рейнольдса для жидкостного подшипника, у которого жидкостный слой расположен между линией раздела и втулкой (от $\delta(\phi)H_0(\phi)$ до $H_0(\phi)$). Уравнение (25) характеризует поле скоростей и тензоры напряжений при переходе через неизвестную границу раздела сред.

Выведем дополнительные условия. Первое условие периодичность давления

$$P(\varphi + 2\pi) = P(\varphi). \tag{26}$$

Для получения других условий можно считать, что масса газа и жидкости, содержащихся в смазочном слое,

остается постоянной. В случае газового слоя масса его равна массе покоя, если давление в газовом слое можно считать постоянным и равным атмосферному давлению P_a , что характерно для полноохватывающих подшипников бесконечной длины, когда смазочный слой полностью изолирован от внешней среды [1].

Пусть m_i — масса *i*-го слоя, M_i — масса смазочного слоя полностью заполненного *i*-й средой. Найдем массу газового слоя m_1 с учетом уравнения состояния (1) и массу газа M_1 для случая газового подшипника в состоянии покоя:

$$m_{1} = \int_{0}^{2\pi} d\phi \int_{R_{1}}^{R_{1}+h\zeta_{a}} \rho r dr = \int_{0}^{2\pi} d\phi \int_{R_{1}}^{R_{1}+h\zeta_{a}} \left(\frac{P_{a}P(\phi)}{C}\right)^{\frac{1}{\kappa}} r dr \approx$$
$$\approx hR_{1} \left(\frac{P_{a}}{C}\right)^{\frac{1}{\kappa}^{2}\pi} \int_{0}^{R} P^{\frac{1}{\kappa}}(\phi)\zeta_{a}(\phi)d\phi,$$
$$M_{1} = \pi \left(R_{2}^{2}-R_{1}^{2}\right)\rho_{a} \approx 2\pi R_{1}h\rho_{a}.$$

Учитывая, что $\rho_a = \left(\frac{P_a}{C}\right)^{\frac{1}{\kappa}}$ (из уравнения состояния), получаем

$$\frac{m_1}{M_1} = \frac{hR_1\left(\frac{P_a}{C}\right)^{\frac{1}{\kappa}\int_0^{\pi}} P^{\frac{1}{\kappa}}(\varphi)\zeta_a d\varphi}{2\pi R_1 h\rho_a} = \frac{\int_0^{2\pi} P^{\frac{1}{\kappa}}(\varphi)\zeta_a d\varphi}{2\pi} = \frac{\rho_a S_1}{\rho_a S} = \frac{S_1}{S} = k (0 < k < 1),$$

где *S*₁ – площадь газового слоя; *S* – площадь всего смазочного слоя. Отсюда

$$\int_{0}^{2\pi} P^{\frac{1}{\kappa}}(\varphi) \zeta_{a}(\varphi) d\varphi = \int_{0}^{2\pi} P^{\frac{1}{\kappa}}(\varphi) \delta(\varphi) H_{0}(\varphi) d\varphi = 2\pi k.$$
(27)

Поступая аналогично для жидкостного слоя, получаем

$$\int_{0}^{\pi} \zeta_{a}(\phi) d\phi = \int_{0}^{2\pi} \delta(\phi) H_{0}(\phi) d\phi = 2\pi k.$$
 (28)

Таким образом, приходим к следующей задаче. Требуется найти решение системы уравнений (23)–(25) относительно трех неизвестных функций $P(\phi)$, $V_a(\phi)$, $\delta(\phi)$ и двух констант C_1 и C_2 , при дополнительных условиях (26)–(28).

Решение задачи разложением в ряды по относительному эксцентриситету. Рассматривается система (23)–(28). Слабое влияние температуры на вязкость газов дает возможность считать, что процесс, протекающий в смазочном пространстве подшипника, изотермический ($\kappa = 1$).

В предположении малого относительного эксцентриситета ϵ решения ищем в виде степенных рядов по ϵ :

$$\delta(\varphi) = \sum_{n=0}^{\infty} \varepsilon^n \delta_n(\varphi), \ P(\varphi) = \sum_{n=0}^{\infty} \varepsilon^n P_n(\varphi),$$
$$V_a(\varphi) = \sum_{n=0}^{\infty} \varepsilon^n V_{an}(\varphi), \ C_1 = \sum_{n=0}^{\infty} \varepsilon^n C_{1n}, \ C_2 = \sum_{n=0}^{\infty} \varepsilon^n C_{2n}.$$
(29)

Запишем дополнительные условия на $\delta_n(\phi)$, $P_n(\phi)$, $V_{an}(\phi)$, C_{1n} , C_{2n} .

$$P_n(\varphi) = P_n(\varphi + 2\pi),$$

$$\int_{0}^{2\pi} \delta H_0 d\varphi = \int_{0}^{2\pi} \delta (1 + \varepsilon \cos \varphi) d\varphi = \sum_{n=0}^{\infty} a_n \varepsilon^n =$$

$$= 2\pi k, \quad a_0 = 2\pi k, \quad a_n = 0, \quad \Pi \mu \quad n \ge 1, \quad (30)$$

$$\int_{0}^{2\pi} P\delta H_{0}d\phi = \int_{0}^{2\pi} P\delta(1+\varepsilon\cos\phi)d\phi = \sum_{n=0}^{\infty} b_{n}\varepsilon^{n} =$$
$$= 2\pi k, \quad b_{0} = 2\pi k, \quad b_{n} = 0, \quad \text{при} \quad n \ge 1.$$
(31)

Найдем нулевое и первое приближения решения. В нулевом приближении система (23)–(25) и дополнительные условия (26)–(28) примут следующий вид (достаточно в системе положить $\varepsilon = 0$):

$$\frac{dP_0}{d\phi} = \frac{\gamma_1}{\delta_0^2} \left(V_{a0} + \Omega_1 + \frac{C_{10}}{P_0 \delta_0} \right),$$
$$\frac{dP_0}{d\phi} = \frac{\gamma_2}{\left(1 - \delta_0\right)^2} \left(V_{a0} + \Omega_2 + \frac{C_{20}}{\left(1 - \delta_0\right)} \right), \tag{32}$$

$$3\frac{dP_0}{d\phi} = \frac{\gamma_1}{\delta_0} \left(\Omega_1 - V_{a0}\right) + \frac{\gamma_2}{\left(1 - \delta_0\right)^2} \left(\Omega_2 - V_{a0}\right), \quad (33)$$

$$P_{0}(\varphi + 2\pi) = P_{0}(\varphi), \quad \int_{0}^{2\pi} \delta_{0} d\varphi = \int_{0}^{2\pi} P_{0} \delta_{0} d\varphi = 2\pi k. \quad (34)$$

Нулевое приближение, при $\varepsilon = 0$, соответствует течению между двумя концентрическими окружностями. Исходя из симметрии заключаем, что δ_0 , V_{a0} не зависят от φ . Тогда (с учетом периодичности)

$$\frac{dP_0}{d\phi} = C_3, P_0 = C_3\phi + C_4,$$

 $C_3 = 0, P_0 = C_4, P_0$ не зависит от ϕ .

Далее из (30), (31) следует, что $\delta_0 = k$, $P_0 = 1$.

Находим V_{a0} , C_{10} , C_{20} . Подставляем найденные $\delta_0 = k$ и $P_0 = 1$ в систему (32, 33). Получаем систему трех линейных уравнений относительно V_{a0} , C_{10} , C_{20} , из которой

$$V_{a0} = \frac{A_2}{A}, \quad C_{10} = -k\frac{B_1}{A}, \quad C_{20} = -(1-k)\frac{B_2}{A}, \quad (35)$$

$$A = \gamma_1(1-k) + \gamma_2 k, \quad A_2 = \gamma_1 \Omega_1(1-k) + \gamma_2 k \Omega_2,$$

$$B_1 = 2\gamma_1 \Omega_1(1-k) + \gamma_2 k, \quad B_2 = 2\gamma_2 \Omega_2 k + \gamma_1(1-k).$$

Учитывая нулевое приближение, получаем систему для нахождения первых приближений

$$\frac{dP_{1}(\varphi)}{d\varphi} = \frac{\gamma_{1}}{k^{2}} \times \left\{ V_{a1}(\varphi) + \frac{C_{11}}{k} + \frac{B_{1}}{A} P(\varphi)_{1} + \frac{B_{1}}{kA} \delta_{1}(\varphi) + \frac{B_{1}}{A} \cos \varphi \right\}, \quad (36)$$

$$\frac{dP_{1}(\varphi)}{d\varphi} = \frac{\gamma_{2}}{(1-k)^{2}} \times \left\{ V_{a1}(\varphi) + \frac{C_{21}}{1-k} - \frac{B_{2}}{A(1-k)} \delta_{1}(\varphi) + \frac{B_{2}}{A} \cos \varphi \right\}, \quad (37)$$

$$3 \frac{dP_{1}(\varphi)}{d\varphi} = -\frac{\gamma_{1}\delta_{1}(\varphi)}{k^{2}} \left\{ \Omega_{1} - \frac{\gamma_{1}\Omega_{1}(1-k) + \gamma_{2}k\Omega_{2}}{A} \right\} + \frac{\gamma_{2}\delta_{1}(\varphi)}{(1-k)^{2}} \left\{ \Omega_{2} - \frac{\gamma_{1}\Omega_{1}(1-k) + \gamma_{2}k\Omega_{2}}{A} \right\} - (38)$$

$$-\frac{\gamma_{1}V_{a1}(\varphi)}{k} - \frac{\gamma_{2}V_{a1}(\varphi)}{1-k}, \qquad (37)$$

$$P_{1}(\varphi) = P_{1}(\varphi + 2\pi), \quad \int_{0}^{2\pi} \delta_{1}(\varphi)d\varphi = 0, \quad \int_{0}^{2\pi} P_{1}(\varphi)d\varphi = 0. \quad (39)$$

Получено явное решение системы

$$P_{1}(\phi) = \frac{R}{Q^{2} + 1} (\sin \phi - Q \cos \phi),$$

$$C_{11} = 0, \quad C_{21} = 0,$$
(40)

$$V_{a1}(\phi) = \frac{R(1-k)(E(1-k)^{2} + 3\gamma_{2}B_{2}k)(\sin\phi - Q\cos\phi)}{\gamma_{2}(Q^{2}+1)(E(1-k) - AB_{2})} - \frac{EB_{2}(1-k)\cos\phi}{A(E(1-k) - AB_{2})},$$
(41)
$$\frac{AR(1-k)^{2}(3k\gamma + A(1-k))(\sin\phi - Q\cos\phi)}{A(E(1-k) - AB_{2})},$$

$$\delta_{1}(\phi) = \frac{AR(1-k) (3k\gamma_{2} + A(1-k))(\sin \phi - Q\cos \phi)}{\gamma_{2} (Q^{2} + 1)(E(1-k) - AB_{2})} - \frac{AB_{2} (1-k)\cos \phi}{E(1-k) - AB_{2}},$$
(42)

где

$$\begin{split} E &= \gamma_1 \gamma_2 \left(\Omega_2 - \Omega_1 \right), \ Q = -\frac{\gamma_1 B_1}{\alpha A k^2}, \ R = -\frac{\beta}{\alpha}, \\ \alpha &= -1 + \frac{\gamma_1 \left(1 - k \right) \left(E \left(1 - k \right)^2 + 3 \gamma_2 B_2 k \right)}{\gamma_2 \left(E \left(1 - k \right) - B_2 A \right) k^2} + \\ &+ \frac{\gamma_1 B_1 \left(1 - k \right)^2 \left(3 k \gamma_2 + A \left(1 - k \right) \right)}{\gamma_2 \left(E \left(1 - k \right) - B_2 A \right) k^3}, \\ \beta &= -\frac{\gamma_1 E B_2 \left(1 - k \right)}{A \left(E \left(1 - k \right) - A B_2 \right) k^2} - \\ &- \frac{\gamma_1 B_1 B_2 \left(1 - k \right)}{\left(E \left(1 - k \right) - A B_2 \right) k^3} + \frac{\gamma_1 B_1}{A k^2}. \end{split}$$

Таким образом, в линейном приближении

$$\begin{split} \delta(\phi) &\approx \delta_0 + \varepsilon \delta_1(\phi), \ V_a(\phi) \approx V_{a0} + \varepsilon V_{a1}(\phi), \\ P(\phi) &\approx P_0 + \varepsilon P_1(\phi), \ C_1 \approx C_{10}, \ C_2 \approx C_{20}. \end{split}$$

Используем найденные формулы распределения давления для определения интегральных характеристик газожидкостного подшипника.

Для проекций главного вектора сил давления на линию центров и направление, ей перпендикулярное, после интегрирования получаем

$$F_x = -R_1 P_a \int_{0}^{2\pi} P \cos \varphi d\varphi = P_a \frac{R_1 \varepsilon RQ}{Q^2 + 1} \pi, \qquad (43)$$

$$F_{y} = -R_{1}P_{a} \int_{0}^{2\pi} P \sin \varphi d\varphi = -P_{a} \frac{R_{1} \varepsilon R}{Q^{2} + 1} \pi.$$
(44)

Тогда удельная нагрузка определится формулой

$$S = \frac{\sqrt{F_x^2 + F_y^2}}{2P_a R_1} = \frac{1}{2} \frac{\varepsilon R \pi}{\sqrt{Q^2 + 1}}.$$
 (45)

Полагая в выражениях для R и Q(45) k = 1, что соответствует чисто газовому подшипнику, получим известную формулу для удельной нагрузки газового подшипника [1]

$$S = \frac{F}{2P_{\rm a}R_{\rm l}} = \frac{1}{2} \frac{\varepsilon \gamma_{\rm l} \pi}{\sqrt{\gamma_{\rm l}^2 + 1}}$$

Для удельных моментов трения S_{mi} на шипе и втулке также получены явные формулы:

$$S_{m1} = \frac{1}{2P_{a}} \int_{0}^{2\pi} \tau_{\omega}^{(1)} d\phi = \frac{1}{2P_{a}} \times \\ \times \int_{0}^{2\pi} \mu_{1} \omega_{0} \frac{R_{1}}{h} \frac{\partial \tilde{V}_{\phi}^{(1)}}{\partial \zeta} \bigg|_{\zeta=0} d\phi = \frac{\mu_{1} \omega_{0} R_{1} \left(V_{a0} - \Omega_{1} \right)}{P_{a} h k} \pi, \\ S_{m2} = \frac{1}{2P_{a}} \int_{0}^{2\pi} \tau_{\omega}^{(2)} d\phi = \frac{1}{2P_{a}} \times \\ \times \int_{0}^{2\pi} \mu_{2} \omega_{0} \frac{R_{1}}{h} \frac{\partial \tilde{V}_{\phi}^{(2)}}{\partial \zeta} \bigg|_{\zeta=H_{0}} d\phi = \frac{\mu_{2} \omega_{0} R_{1} \left(\Omega_{2} - V_{a0} \right)}{P_{a} h \left(1 - k \right)} \pi.$$

Отношение подъемной силы комбинированного подшипника F к подъемной силе газового подшипника F_r в зависимости от k при следующих значениях: $\omega_1 = 260 \ c^{-1}$, $\omega_2 = 0 \ c^{-1}$ (втулка неподвижна), $R_1 = 3,4926 \ cm$, $R_2 = 3,5028 \ cm$, $h = R_2 - R_1 = 102 \ mmm m m$, $\mu_1 = 1,9 \cdot 10^{-10} \ {
m krc} \cdot {
m cm}^{-2} \cdot {
m c}$, $\mu_2 = 1,02 \cdot 10^{-3} \ {
m krc} \cdot {
m cm}^{-2} \cdot {
m c}$ показано на рис. 2. При любом 0 < k < 1 отношение подъемных сил больше единицы, причем при увеличении нии k оно уменьшается и стремится к единице. Это связано с увеличением доли газа и уменьшением доли жидкой смазки в смазочном пространстве.

Зависимость толщины несущего газового смазочного слоя газожидкостного подшипника от подъемной силы при тех же значениях параметров, что и на рис. 2, и k = 0,8 показана на рис. 3. Экспериментальные данные представлены точками, теоретические – прямой линией.

Рис. 3

Таким образом, нами построена математическая модель газожидкостного подшипника, обобщающая модели отдельно жидкостного и отдельно газового подшипника. В линейном приближении по относительному эксцентриситету получено решение задачи и выведены формулы основных числовых характеристик (удельной нагрузки, удельных моментов трения на шипе и втулке). Проведено сравнение полученных числовых характеристик рассматриваемой модели с экспериментальными данными действующего газожидкостного подшипника. Результаты показали достаточную их близость как в количественном, так и в качественном отношении.

Библиографические ссылки

1. Константинеску В. Н. Газовая смазка. М. : Машиностроение, 1968.

2. Лойцянский Л. Г. Механика жидкости и газа. М. : Наука, 1973.

 Пухначев В. В. Движение вязкой жидкости со свободными границами / Новосиб. гос. ун-т. Новосибирск, 1989.

4. Андреев В. К., Гапоненко Ю. А. Математическое моделирование конвективных течений / Краснояр. гос. ун-т. Красноярск, 2006.

I. I. Wainshtein, P. S. Litvinov

MATHEMATICAL MODEL OF A BEARING LAYER OF THE GAS-LIQUID BEARING OF SLIDING

In work the mathematical model of a bearing layer of the gas-liquid bearing of sliding of infinite length is constructed. In linear approach on the relative eccentricity formulas for pressure, speeds, lines of section of gas blankets and a liquid, specific elevating force and the specific moments of a friction on a thorn and the plug are received.

Keywords: the two-layer stream, the combined bearing of sliding.

© Вайнштейн И. И., Литвинов П. С., 2011

УДК 004.047:004.6

А.А.Евсюков

ДИНАМИЧЕСКОЕ ФОРМИРОВАНИЕ КАРТОГРАФИЧЕСКИХ СЛОЕВ В ИНФОРМАЦИОННО-АНАЛИТИЧЕСКИХ СИСТЕМАХ^{*}

Предложены алгоритмы динамического формирования картографических слоев на основе содержимого топографических слоев карты и многомерных данных OLAP-системы, результатов логического вывода экспертной системы или модулей расчетных методик. Для формирования новых слоев могут быть использованы таблицы агрегатов.

Ключевые слова: географические информационные системы, картографическая привязка многомерных данных, динамическое формирование картографических слоев.

Картографические слои являются основными элементами организации и отображения информации в ГИС. Слои определяют способы отображения наборов географических объектов на карте. При использовании тематических карт в информационно-аналитических системах информация об объектах слоя должна быть предварительно сформирована и сохранена в отдельных файлах. Пространственная информация (информация о расположении объектов) хранится в векторных файлах (с расширениями .shp, .mif и пр.), атрибутивная информация – в табличных файлах (с расширениями .dbf, .mid и пр.) [1; 2]. Данный вид представления картографических слоев назовем статическим. При использовании только статического представления в информационно-аналитической системе невозможно сформировать наполнение картографических слоев, изменять географическое положение и содержание объектов на карте. Для внесения изменений о территориальных объектах необходимо редактировать статические картографические слои, используя инструментарий ГИС.

При геомоделировании сложных процессов, включая картографическое представление результатов логического вывода экспертной системы, OLAP-анализа или расчетной методики, помимо использования статических картографических слоев предлагается использовать методы динамического формирования объектов слоя [3].

^{*}Работа выполнена при финансовой поддержке гранта ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (ГК № 02.740.11.0621) и гранта ККФПН и НТД (доп. согл. № 01/10 от 17 мая 2010 г.).