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RESEARCH OF THE SEMI-MARKOVIAN PROCESS IN CONDITIONS 

OF LIMITEDLY RARE CHANGES IN ITS STATE* 
 
In this work the SM-flow in conditions of limitedly rare changes in its states is considered.  In the proposed 

asymptotic condition there is a probable distribution of a number of events coming from the SM-flow in time t.  We have 
shown that this distribution can be multimodal. 

 
Keywords: SM-process, state of flow, limit rare changes of flow states, method of the additional variable, asymptotic 

analysis method. 
 
In this work the SM-process has been considered [1]; 

it is the general flow of flow models with homogeneous 
events. 

We shall give a definition of the Semi-Markovian (SM) 
process.  For this purpose we have considered a two-
dimensional homogeneous Markovian stochastic process 
{ξ (n), τ (n)} with a discrete time.  Here ξ (n) the ercodic 
Markov chain with a discrete time and matrix P = [pνk] 
accept the probabilities of transition for one step [2]; the 
process τ(n) accepts non-negative values from the 
continuous set. 

Then we determine the Markovian transition function 
F(ν, x, k, y) for the process {ξ(n), τ(n)}: 

 

( )
( ) ( ) ( ) ( ){ }

, ; ,

1 , 1 , .

F k x y

P n k n x n n y

ν =

= ξ + = τ + < ξ = ν τ =
 

 

We shall consider two-dimensional processes such as 
{ξ (n), τ (n)} for which the following equalities are 
correct: 

( ) ( ), ; , , ;F x k y F x kν = ν , 
 

that is  F(ν,  x,  k,  y) does not depend on the values of the  
y process  τ(n). 

Denote  
 

( ) ( )
( ) ( ) ( ){ }

, ;

1 , 1 .
kF k x A x

P n k n x n
νν = =

= ξ + = τ + < ξ = ν
           (1) 

 

Matrix A(x) with elements Aνk (x) can be called Semi-
Markovian. 

The stochastic process of homogeneous events: 
 

1 2 1... ...n nt t t t +< < < < <  
 

is called the Semi-Markovian process or SM, set by 
matrix A(x); if for moments tn the approaching of its 
events is correct, the  following equations are performed: 

 

( )1 1n nt t n+ = + τ + . 
 

In view of (1), thee transitive probability matrix of 
Markov’s chain ξ (n) is defined by equation: 

 

( )P A= ∞ . 
 

This chain for the Semi-Markovian process is called 
the embedded Markov chain. 

In general case, the elements of the Semi-Markovian 
matrix have a place in the multiplicative form which can 
be written as: 

( ) ( ) ( ) ( ){ }1 , 1kA x P n k n x nν = ξ + = τ + < ξ = ν =  

( ) ( ) ( ){ }
( ) ( ){ } ( )

1 , , 1

1 , ,k k

P n x n n k

P n k n G x pν ν

= τ + < ξ = ν ξ + = ×

× ξ + = ξ = ν =
 

where Gνk (x) – is the conditional distribution function of 
an interval length of the Semi-Markovian process in 
condition that at the beginning of this interval the 
embedded Markov chain has an accepted value ν, and at 
the end of it will accept value k.   

 
 
*This research has been carried out due to support of the Analytical Departmental Target Program: “The Development of 

Scientific Potential of the Higher School (2009–2010)” of the Federal Education Agency (Project № 4781).  
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Note, due to equation: 
 

( ) ( ) ,k k kA x G x pν ν ν=   (2) 
 

matrix A(x) can be written as a Hadamard produce: 
 

( ) ( )A x G x P= ∗                           (3) 
 

of two matrixes G(x) and P, and it is possible to suppose, 
that the Semi-Markovian process is set by two matrixes  
G(x) and P. 

The state of the semi-markovian process at the 
moment of time tn < t ≤ tn+1 is called state k of its 
embedded Markov chain, accepted at the beginning of 
interval (tn, tn + 1]. 

The research of the Semi-Markovian process will be 
will carried out in conditions of limit rare changes of 
(LRCS) flow conditions; i. e. the transition from one state 
of the embedded Markov chain to another is realized 
extremely rarely. 

The conditions of limit rare condition changes of the 
Semi-Markovian process are formalized by the following 
equation for matrix P(δ) transition probabilities of its 
embedded Markov chain: 

 

( )P I Qδ = + δ ⋅ ,                               (4) 
 

where δ  –  is some small parameter (δ → 0); I – is an 
identity diagonal matrix. 

Matrix Q with elements qνk is similar to a matrix with 
infinitesimal characteristics and has the same properties:  
k ≠ ν matrix elements qνk  > 0, and also is correct: 

 

0k
k

qν =∑ , k kk
k

q qν
≠ν

= −∑ . 
 

The Semi-Markovian matrix for the SM process in 
condition of LRCS: 

1.  k  = ν  
 

( ) ( ) ( ) ( ){ }
( ){ }

, 1 , 1

1 .
kk

kk kk

A x P n k n x n k

G x q

δ = ξ + = τ + < ξ = =

= + δ ⋅
 

 

2.  k  ≠ ν   
 

( ) ( ) ( ) ( ){ }
( )

, 1 , 1

.
k

k k

A x P n k n x n

G x q
ν

ν ν

δ = ξ + = τ + < ξ = ν =

= ⋅δ ⋅
 

 

On the other hand, in the multiplicate notation (3) of 
the Semi-Markovian matrix let’s    substitute (4) and get: 

 

( ) ( ) { },A x G x I Qδ = ∗ + δ ⋅ .                    (5) 
 

Let’s state m(t) – as the event number  of the Semi-
Markovian process, which appeares during t on the 
interval [0, t). 

The process m(t) is non-Markovian, therefore it is 
necessary  to make it Markovian by a method of 
additional variables.  Let’s define the process: z(t) –  is the 
length of an interval from time moment t till the moment 
of approach for the next event in the considered SM-
process.  

However, the two-dimensional process {m(t), z(t)} is 
not Markovian, therefore let’s consider one more 

stochastic process s(t) with piecewise constant continuous 
realizations on the left, defined by equation: 

 

( ) ( )1s t n= ξ + , if 1n nt t t +< ≤ . 
 

This is on the interval (tn, tn+1] process, s(t) accepts 
and assures that value of the embedded Markov chain ξ(n) 
accepts the beginning of the following interval [1]. 

The three-dimensional stochastic process is thus 
defined as {s(t),  m(t),  z(t)} with two additional variables 
s(t) and z(t) – is Markovian with continuous time and with 
probability distribution: 

 

( ) { }, , , , ( ) , ( ) , ( )P s m z t P s t s m t m z t zδ = = = < ,   (6) 
 

it is simple to create a system of differential Kolmogorov 
equations: 

 

( ) ( ) ( )

( ) ( )
1

, , , , , , , , , ,0, ,

, 1,0, ,
,vk

P s m z t P s m z t P s m t
t z z

P m t
A z

z

∞

ν=

∂ δ ∂ δ ∂ δ
= − +

∂ ∂ ∂
∂ ν − δ

+
∂∑

 (7) 

 

at the set initial conditions: 
 

( ) ( )
( )

, 0, ,0, , , ,

, , , 0, 0, 1,

P s z R s z

P s m z m

δ = δ⎧⎪
⎨

δ =    ≥⎪⎩
                  (8) 

 

where function R(s, z, δ) – is the stationary distribution of 
the two-dimensional Markovian process {s(t),  z(t)}. 

Let’s denote the function:  
 

0
( , , , , ) ( , , , , ),jum

m
H s u z t e P s m z t

∞

=

δ = δ∑  (9) 

 

where 1j = −  – is an imaginary unit.  
For these functions it is possible to write down the 

following Cauchy problem from system (7) and initial 
condition (8): 

 

( ) ( ) ( )

( ) ( )

( ) ( )
1

, , , , , , , , , ,0, ,

, ,0, ,
, ,

, , ,0, , , .

ju
vk

H s u z t H s u z t H s u t
t z z

H u t
e A z

z
H s u z R s z

∞

ν=

∂ δ ∂ δ ∂ δ⎧
= − +⎪ ∂ ∂ ∂⎪

⎪ ∂ ν δ
+ δ⎨ ∂⎪

⎪ δ = δ
⎪
⎩

∑ (10) 

 

Let’s denote:  
 

( ) ( ) ( ){ }, , , 1, , , , , 2, , , , , ...H u z t H u z t H u z tδ = δ δ , 
 

also matrix A(z,  δ) with elements Akν(z,  δ), then from 
(10) we receive the following: 

 

( ) ( ) ( )

{ }
( ) ( )

, , , , , , ,0, ,

( , ) ,

, ,0, , ,

ju

H u z t H u z t H u t
t z z

e A z I

H u z R z

∂ δ ∂ δ ∂ δ⎧
= + ×⎪ ∂ ∂ ∂⎪⎪× δ −⎨

⎪
δ = δ⎪

⎪⎩

   (11) 
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where I  – is an identity matrix, and vector R (z,  δ), is 
defining the initial condition of problem (11) with 
components R (s,  z,  δ), as shown in [3], given by: 

 

( ) ( ) ( )( )1
0

, ( , )
z

R z r P A x dxδ = κ δ δ − δ∫ , 

 

where r  – is the stationary value probability distribution 
of the embedded Markov chain ξ(n); magnitude κ1(δ) – is 
defined by equation:  

 

( ) ( )1
1

rA E
κ δ =

δ
, 

 

where matrix A(δ)  is defined by equation: 
 

( ) ( )( )
0

( , )A P A x dx
∞

δ = δ − δ∫ . 

 

Asymptotic probability distribution of event numbers, 
the arrival of which is in the SM-process in time t is found 
in a condition of limit rare changes for the conditions of 
process. 

Let’s denote: 
 

( ) ( )
0

lim , , , , ,H u z t H u z t
δ→

δ = .                 (12) 
 

In problem (11), considering (12) we shall execute a 
limiting transition at δ → 0, then H (u, z, t) we will receive 
in the set of an independent Cauchy problems [3; 4]: 

 

( ) ( ) ( ) { }
( ) ( )

, , , , ,0,
( ) ,

, ,0 ,

juH u z t H u z t H u t
e A z I

t z z
H u z R z

⎧∂ ∂ ∂
= + −⎪

∂ ∂ ∂⎨
⎪ =⎩

 (13) 

 

where: 
 

( ) ( ) ( )
0 0

lim , lim ,P I A z A z
δ→ δ→

δ = δ = , ( )
0

lim A A
δ→

δ = , 

( )1 10
lim
δ→

κ δ = κ ,  ( ) ( )
0

lim ,R z R z
δ→

δ = . 
 

Considering the kind of matrix A (z), from (12) are we 
get a set of independent differential equations: 

 

( ) ( ) ( )

( ){ }

, , , , , , , ,0,

1 ,ju
ss

H s u z t H s u z t H s u t
t z z

e G z

∂ ∂ ∂
= + ×

∂ ∂ ∂
× −

    (14) 

 

the initial conditions are given in the following way: 
 

( ) ( ), , ,0 , .H s u z R s z=                        (15) 
 

The solution of a problem (14–15) by applying of the 
transformation of Fourier–Stieltjes: 

 

( ) ( )
0

, , , , , ,j z
zs u t e d H s u z t

∞
αϕ α = ∫ .               (16) 

The function φ (s, u,  α, t) is satisfied by the following 
equation: 

 

( ) ( ) ( )

( ){ }*

, , , , ,0,
, , ,

1 ,ju
ss

s u t H s u t
j s u t

t z
e G

∂ϕ α ∂
= − αϕ α + ×

∂ ∂
× α −

      (17) 

and the initial condition: 
 

( ) ( )

( ) ( )

0

*

0

, , ,0 , , ,0

, , ,

j z
z

j z
z

s u e d H s u z

e d R s z R s

∞
α

∞
α

ϕ α = =

= = α

∫

∫
            (18) 

where 

( ) ( )*

0

j z
ss z ssG e d G z

∞
αα = ∫ . 

 

The solution of the differential equation (17) is: 
 

( ) ( ) ( )

( )

0

*

, ,0,
, , , ,

1 .

t
j t j

ju
ss

H s u
s u t e R s e

z

e G d

− α ∗ ατ⎧ ∂ τ⎪ϕ α = α + ×⎨
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∫
  (19) 

As  

( ) ( )
0

lim , , , , , , 0j z
zt

s u t e d H s u z
∞

α

→∞
ϕ α = ∞ =∫ , 

 

that, having directed t to infinity in equation (19) we get: 
 

( ) ( ) ( )( )*

0

, ,0,
0 , 1j ju

ss

H s u
R s e e G d

z

∞
∗ ατ ∂ τ

= α + α − τ
∂∫ . 

 

From this equality we find the Fourier transformation 

in τ from function 
( ), ,0,H s u

z
∂ τ

∂
: 

 

( ) ( ) ( )( ) 1*

0

, ,0,
, 1j ju

ss

H s u
e d R s e G

z

∞
−ατ ∗∂ τ

τ = α − α
∂∫ . 

 

Having executed the reverse Fourier transformation 
we identify: 

 

( ) ( ) ( )( ) 1*, ,0, 1 , 1
2

j ju
ss

H s u
e R s e G d

z

∞
−− ατ ∗

−∞

∂ τ
= α − α α

∂ π ∫ . 

 

Equation (19) considering the received transformation 
will be:  

 

( ) ( ), , , ,j ts u t e R s− α ∗⎧ϕ α = α +⎨
⎩ 0

1
2

t
je ατ ×

π∫  

( ) ( )( ) ( )( )1* *, 1 1jy ju ju
ss sse R s y e G y dy e G d

∞
−− τ ∗

−∞

⎫⎪× − α − τ⎬
⎪⎭

∫ .  (20) 

 

Knowing, that H (s, u, ∞, t) = H (s, u, t) = φ (s, u, 0, t), 
R * (s, 0) = κ1rsAss, G*

ss (0) = 1, we get an expression for 
function H (s, u, t): 

( )

( )( ) ( )

1
0

1*

1( , , ) ,
2

1 1 .

t
jy

s ss

ju ju
ss

H s u t r A e d R s y

e G y dy e

∞
− τ ∗

−∞

−

= κ + τ ×
π

× − −

∫ ∫
   (21) 

 

Considering: 

( )
0

1 1
t

jy jyte d e
jy

− τ −τ = −∫ , 
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and: 

( ) ( )

( )( ) ( )( )
0

*
1

1
0 0

, ,

1
1 .

jyz
z

z
s ssjyz

s ss

R s y e d R s z

r G y
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∞
∗

∞
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∫

∫ ∫
 

 

We shall denote the equation (21) as: 
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1
1 2
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Let’s denote ( , ) ( , , )
s

h u t H s u t= ∑ as: 
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Knowing, that ( , ) ( , , ) ( , , , )
s s

h u t H s u t H s u t= ≈ δ∑ ∑ = 

0
( , ),jun

n
e P n t

∞

=

= ∑  and sorting it to the right part of the 

received equation of the exponent levels eju, it is possible 
to write down the following asymptotic equation as: 
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Then the asymptotic probabilities distribution of 
possibility P1(m, t),  number of events m which start in the  
SM time process t, look the following way: 
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 (23) 

 

where  
( ) ( )1 , ,P m t P m t≈ . 

 

Above were obtained formulas that allow us to find 
the asymptotic probability distribution of the number of 
events, which happen in the SМ-process in time t. This 
distribution was also found in prelimit situations [1], by 

using methods of integrated transformation. It is 
necessary to find out how close the results received by the 
asymptotic method of analysis are to the results received 
in prelimit situations.  For this purpose there is a 

magnitude ( ) ( )max , ,
n

F n t F n t
∧

Δ = − , where ( ),F n t
∧

 – is 

the function of distribution, obtained from the asymptotic 
analysis; F (n, t) – is the function of distribution for 
prelimit situations, received in [1]. 

Let: 
3 1 2

3 4 1
4 2 6

Q
−⎧ ⎫

⎪ ⎪= −⎨ ⎬
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, 

5 2 10

4 9

6 3 8

1 1 1
( ) 1 1 1

1 1 1

x x x

x x x

x x x

e e e
G x e e e

e e e

− − −

− − −

− − −

⎧ ⎫− − −
⎪ ⎪

= − − −⎨ ⎬
⎪ ⎪− − −⎩ ⎭

,    t = 6. 

 

From table it can be seen that at the given parameters 
of values the magnitude Δ are:  

 
Deviation results of the asymptotic from prelimited analysis 

 

δ 0,001 0,0005 0,0001 0,00005 0,00001 
Δ 0,0427 0,0216 0,0042 0,0021 0,0003 

 
On fig. 1–3 are the probability distributions of the 

number of events in the SM-process, which occurred in 
time t = 6, obtained by using the asymptotic analysis and 
the prelimit situation. 
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Fig. 1. Distribution probabilities of a number of events  
for the SM-flow at δ = 0,001 
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Fig. 2. Distribution probabilities of a number of events  
for the SM-flow at δ = 0,0001 
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Fig. 3. Distribution probabilities of a number of events  
for the SM-flow at δ = 0,00001 

 
In this research we have found the distribution of the 

asymptotic probability for a number of events occurring 
in the SM-flow in time t.  By reducing the parameters δ, 
the deviation results of the asymptotic analysis for           
the prelimited varies: at δ ≤ 0,0001 it is equal to less           

than 1 %. Also, it is necessary to notice, that the obtained 
distribution is multimodal. 
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MECHANICAL ANALYSIS OF ONBOARD EQUIPMENT AND THE ISSUE  

OF FINITE-ELEMENT MODEL ADEQUACY 
 
In this article we have considered issues related to the applied software package, designed to conduct onboard 

mechanical analysis of spacecraft equipment using FEM, together with an algorithm that simplifies the aforementioned 
models and estimates their correctness. 

 
Keywords: hardware and software complex, mechanical analysis, satellite-borne equipment, simplified model, 

finite-element model.  
 
The design of a complicated high-tech product, which 

includes space onboard equipment, is based on the 
currently used analysis methods. This allows building 
complicated structures and analyzing them thoroughly. 
Today these methods are successfully used is computers 
and modern CAE systems (Computer-Aided Engineering – 
engineering analysis systems). By applying this method, 
difficulties during the design and the strength analysis 
could be resolved, by bringing design models much closer 
to the existing structures. 

The Finite Element Method (FEM) is one of the most 
universal methods of mechanical analysis, which is 
performed for different structures. It is, in fact, a variation 
method used to calculate detailed irregular models. Its 
capabilities of constructing overall systems, which can 
calculate all structural parts without separating the 
elements of the structure, give this method more 
advantages. The design of onboard equipment is 
characterized by the tendency of its design model 
improvements; this can be explained in two ways:  

– in some cases it is possible to significantly reduce 
the mass of the onboard equipment, owing to more a 

detailed analyses of voltage and the distorted 
construction; 

– this analysis is often the only method to estimate 
structure behavior in space conditions and on the way to 
space after onboard equipment simulation; ground 
operations in most cases are extremely limited. 

Nevertheless, together with a number of beneficial 
characteristics FEM also has some disadvantages. The 
continuous progress in computational technologies 
stipulates the building of more detailed models, in the size 
of which there could be approximately 105 equation 
members.  It is easier to perform a dynamic analysis of a 
reduced model while calculating the detailed models; this 
is still restricted in terms of the obtained results validity. 

To eliminate such difficulties, the created applied 
programs packages are used to perform mechanical 
analysis, including analysis of the reduced models. 
ASONIKA-TM is the most popular product used for these 
purposes. It is used for analyzing mechanical 
characteristics of the upper level structures (cabinet, rack, 
and unit). Printed circuit boards with lumped EEE parts 
and associated material data package are not taken in 




