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In order to simulate the Vaganov–Shashkin model for seasonal growth and tree-ring formation, a solution algorithm 

for the parameterization problem of the model is being proposed in cases, when a modulation is possible. The algorithm 
is realized as dll-library (or as a text file), tested on extensive data. A concept of difference in criterion between the 
actual tree-ring chronology and its model is introduced. Two new difference criteria are developed. 
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The Vaganov- Shashkin model of seasonal growth and 

tree-ring formation [1–3] (hereinafter referred to as VS-
model) describes the influence of climatic conditions on 
the cellular structure of annual rings. The main 
destination of the model consists in using it as a tool 
permitting any individual or generalized tree-ring 
chronology (TRC) during a set of years with available 
meteorological station data (see below description of the 
VS-model input): 1) extracting the climate-driven 
component of the TRC under consideration; 2) pointing, 
if modeling quality of the involved TRC by the VS-model 
is satisfactory, for arbitrary day of the given years set, 
what of two factors – air temperature or precipitation – 
had limited the growth of woody plant which corresponds 
to the TRC.  TRC is a time series of values of some 
numerical characteristic of tree/trees of this TRC [4]. 

The main destination of the VS-model, in particular, is 
that it makes possible to use it as a quality tester for 
individual and generalized TRCs which will be used as 
mediators, carrying information about climatic data [2].  
A TRC is considered to be suitable for using for the 
purpose of a mediator for carrying climatic information if 
and only if its climate-driven component had been 
extracted by the VS-model conforms with the TRC 
satisfactorily enough. 

The VS-model is a deterministic dynamic simulation 
model.  Its input data consist of two blocks.  The first 
block is the climatic data of daily resolution at air 
temperature, precipitation, and doses of solar radiation 
coming down to the Earth’s surface. The data of this 
block can refer to an arbitrary set of years, which does not 
have to be continuous.  However, climatic data per year 
must not contain missing values. 

The second block is a set of the VS-model’s parameter 
values.  The model has 42 parameters. All parameters, 
except two, are real single-valued variables and three 
parameters are integer single-valued variables. Two 
parameters are vectors of equal dimension. One of the 
vectors contains real single-valued variables, the second – 
boolean single-valued variables. The dimension of the 
vectors is a parameter of the VS-model. 

The value of each parameter provides the VS-model 
with information either on the actual tree or on its site.  
The VS-model has 10 options. A set of option values 
defines the VS-model variant which will be used for 
modeling.  The options of the VS-model define a 
collection of its modules being run under modeling, 
calculating accuracy under modeling, etc. 

The output of the VS-model consists of two blocks.  
The data of the first block consists of numerical 
characteristics reflecting the dynamics in time, the time 
step of whose tracking does not exceed one day – for 
some processes taking place in the modeled tree and its 
modeled site (soil moisture, value of tree transpiration, 
number of cambial cells, etc).  The contents of this block 
depend on the used set of the VS-model option values. 

The second output block of the VS-model is a model 
of TRC. The VS-model supposes the actual individual 
TRC for being modeled to be a time series of values 
either of width of a formed annual ring or of number of 
wood cells in such a ring.  The VS-model supposes all 
individual TRC are used for the construction of an actual 
generalized TRC to be such a one described above. For 
each year of the VS-model, the climatic input of the second 
block contains the value of modeled TRC.  

This value does not have any units if a generalized TRC 
has been modeled. If an individual TRC has been modeled, 
this value either does not have any units or is number of 
wood cells in an annual ring (variants, taking place are 
determined by the used set of the VS-model options 
values). 

A parameterization problem and approach to its 
solution for the VS-model. In the field of mathematical 
modeling the term “parameterization” is usually 
understood as either an activity on describing some 
process/phenomenon by means of a finite number of 
parameters, i. e. the creation of a parametric mathematical 
model of this process/phenomenon, or choosing certain 
values of parameters of a parametric mathematical model 
that were already created.  In the article the term is being 
understood according to the second interpretation. 
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To process the VS-model it is necessary to have 
certain numerical values of its parameters.  Sets of these 
values must have the necessary internal structures that are 
specified by interrelations between parameters of the VS-
model and by ranges of parameter values. Meaning, many 
parameters, the VS-model structure, semantics of its 
output components, and specific context in which 
modeling is performed determine the mentioned 
interrelations, and value ranges.  As a rule, the checking a 
set of values of the VS-model parameters for the presence 
of the necessary internal structure in it requires an analysis 
of the VS-model output that corresponds to this set. 

In an attempt to set certain values to the model’s 
parameters to realize the modeling, it often happens that 
the available information is not enough for the 
identification of exact values for some parameters. For 
such parameters it is possible to provide only a qualitative 
assessment of their values, for example, by means of 
determining the boundaries in which the values of these 
parameters lie. In addition to a number of properties of 
some the VS-model’s parameters, it complicates the 
empirical measurement of the values and makes the exact 
value conception for these parameters meaningless.  It has 
as a consequence in a situation when for each parameter 
of the VS-model, the range of its values was known, and 
for some parameters their specific numerical values are 
known. 

The parameterization problem for the VS-model is a 
problem of choosing values of those parameters, for 
which only the ranges of their values are known.  The 
choice has to be realized within these ranges in such a 
way that the derived set of values of all the VS-model 
parameters has the necessary internal structure.  How do 
we realize this choice?  What should one be guided by to 
realize the choice?  These two questions are the essence 
of the parameterization problem. The parameterization 
problem of an existing mathematical model is a problem 
of choosing the model input data in conditions of 
insufficient information. 

There are different approaches used in the practice of 
solving the parameterization problem of a parametric 
mathematical model [5]. A solution to the parameteri-
zation problem for the VS-model, presented below, uses 
the existing arbitrariness in choosing values of 
parameters, for which information is necessary for 
determining their exact values is absent, purposively.  
Values of the parameters are selected, which conform to 
the researcher’s objective formalized in a form of 
reaching the optimum of an objective function in the 
optimal, over the domain of definition of the objective 
function, way (conform in the optimal way).  The 
proposed solution to the parameterization problem for the 
VS-model can be applied only in cases when entity for 
being modeled is available, in particular, under using the 
VS-model according to its main destination. 

A concept of difference criterion between actual TRC 
and its model. Introducing the concept “difference 
criterion between actual TRC and its model”, being 
significant out of the context of the VS-model 

parameterization problem, to state the solution being 
proposed in this article to the latter problem.  The actual 
TRC is a TRC for being modeled. The difference criterion 
is a real single-valued nonnegative function of two 
arguments, denote it by DC(trCr, mCr), that is defined 
over a set of pairs of real vectors of equal dimension with 
nonnegative components.  The dimension of the vectors is 
the power of set Yrs.  The set Yrs is the intersection of 
two sets – set of years, which the modeling has been 
performed for, and set of those years, which values of the 
actual TRC are available for. 

The first argument is that trCr must be a vector of 
values, relating to the years Yrs, of the actual TRC, which 
are situated in the vector in increasing order of the years. 
The second argument must be mCr a vector of respective 
values of the TRC modeled by the VS-model. 

A value of the difference criterion characterizes the 
remoteness of the TRC model, obtained by means of the 
VS-model, from this actual TRC. Given a fixed actual 
TRC, a smaller value of the difference criterion 
corresponds to a better model of this TRC. A difference 
criterion introduces the relation of equivalence on a set of 
models of the certain fixed TRC and orders the 
equivalence classes linearly. 

A difference criterion between actual TRC and its 
model must have two additional properties: symmetry 
property on its domain of definition and reflexive 
property (trCr  =  mCr implies DC(trCr, mCr) = 0).  
These two properties are not imposed on the difference 
criterion between actual individual TRC and its model 
since semantics of the actual TRC values (including units 
of measurement) coincides with semantics of values of 
the TRC model, obtained by means of the VS-model, 
guaranteed for generalized TRCs only. 

The necessary properties of a difference criterion do 
not guarantee its continuity.  Multivalued difference 
criteria have not been considered in this article. 

The testing and approbation of the parameterization 
algorithm for the VS-model, which is presented below, 
have been done with the following two difference criteria 
which are being offered for using as default difference 
criteria. Difference criterion DCITRC between actual 
individual TRC and its model, and difference criterion 
DCGTRC between actual generalized TRC and its model 
are defined with formulas:  
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where crln(trCr, mCr) and sync(trCr, mCr) are 
coefficients of Pearson’s correlation and of synchronism 
(coincidence) between vectors trCr and mCr, trCri (mCri) 
is a corresponding to the year i component of the vector 
trCr (mCr). 

The selection of such difference criteria is conditioned 
by a desire: 1) to get calculated TRCs the most possible 
positive correlated with their respective actual TRCs;            
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2) of not having small values of synchronism coefficient 
between actual TRC and its model; 3) of absence of 
serious visual differences between broken lines that 
represent an actual generalized TRC and its model.  The 
difference criteria DCITRC and DCGTRC have been tested on 
extensive data, are compatible with the parameterization 
algorithm for the VS-model (see below), and reflect the view 
of most researchers on concept of proximity of two TRCs. 

The parameterization algorithm. Let us introduce 
definitions and denotations.  Let p   = (p1, …, pn) denote 
vector of the VS-model parameters used under modeling 
(PUuM).  Vector p is uniquely defined by a set of the  
VS-model options values used under modeling.                 
We denote that the numbers of these n parameters of the 
VS-model, which certain numerical values are known for, 
by i1, …, ik ; let 

1
, ...,

ki ic c  denote the certain numerical 
values known for these parameters.  The range of values 
of the VS-model parameter i is denoted by [ai ; bi].  For 
the ease of exposition, it is supposed that 

j j ji i ia b c= =  

for j = 1, …, k. 
Let us call the following subset of (n – k) a 

dimensional parallelepiped: 
  

{ }: for 1n
i i iP p a p b i n= ∈ ≤ ≤ ≤ ≤R  

 

lying in nR  the optimization space S.  S is defined by the 
condition: an element of P, considered as a set of values 
of the PUuM, belongs to S if and only if it has the 
necessary internal structure (see above).  Call a set, 
belonging to S, of values of the PUuM a feasible.  We 
consider S ≠ ∅.  The structure of S is conditioned by the 
interrelations, used under modeling, between the PUuM.  
S resembles a rectangular piece of cheese.  It is a typical 
situation: among 100 000 values of the continuous             
n-dimensional random variate uniformly distributed on P 
only one belongs to S. 

Define the predicate function pFail(p): P → 
{“TRUE”, “FALSE”} taking the logical value “TRUE” 
only if p∉S.  As a rule, for calculation of pFail(p) the VS-
model output data obtained for the set p are necessary. 

Let us call the quantity:  
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the accuracy along the i-th axis, 1 ≤ i ≤ n.  Here InpOpt1 
and InpOpt2 – are two collections of the VS-model input 
data and of values of its options, which differ only in 
values 1

ip  and 2
ip  of the i-th PUuM, Output1 and Output2 – 

the VS-model output data corresponding to InpOpt1 and 
InpOpt2 respectively.  The predicate Q is true if and only 
if Output1 and Output2 differ from each other so little that 
this difference may be ignored and is considered to be 
negligible. Denote by hi an estimate, used under 
modeling, of the accuracy along the i-th axis. 

We introduce S – a metric d: S×S → [0; +∞) defined as:  
 

1
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i
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Selecting a metric on S is not a trivial problem.  Such 
a metric is introduced in S since: 1) the optimization space 
has, generally speaking, different physical units of 
measurement along with different axes; 2) the constants hi 
corresponding to axes with equal physical units of 
measurement can be different; 3) it is a natural analog of 
the metric ρ∞ on nR  [6]. 

Let us state the parameterization algorithm for the  
VS-model.  The proposed algorithm selects a set of values 
of the PUuM from the optimization space S; the selected 
set provides the global minimum over S of the objective 
function F(p). The algorithm requires that F(p) is a real 
single-valued nonnegative function defined everywhere 
on S.  The algorithm does not require any additional 
properties of F(p).  The objective function is defined by a 
following equality:  

 

F(p) = DC(trCr, mCr(p)), p ∈ S, 
 

where mCr(p) is the vector of values, relating to the years 
Yrs, of the TRC model (see above) derived by using the 
VS-model with the set p of the PUuM values.  The 
proposed parameterization algorithm for the VS-model is 
applicable with any difference criterion.  It considers only 
those properties of the difference criterion being 
minimized by the one in which any difference criterion 
has necessarily. 

The objective function F(p) and its domain of 
definition S are individual for every situation which the 
parameterization algorithm being stated is applied in.  
Investigating the problem of searching the global over S 
minimum of F(p) have shown that F(p) has more than one 
local minimum as a rule.  Input and output algorithm data 
and its structure are presented in figure. 

A zero-order method of multidimensional one-
criterion search of global minimum, used by the 
parameterization algorithm, is a multistart method of a 
coordinate descent method [7].  The question of existence 
of a more effective method for solving a family of 
problems, searching the global over S minimum of F(p) is 
not considered in this article.  The used coordinate 
descent method differs from the classical one in the 
following ways: 1) order of tracing coordinate axes of S is 
defined by a user; 2) a metric different from the Euclidean 
one is used on S; 3) the used one-dimensional 
optimization method performs a search of a global 
optimum; 4) absence of requirement of F(p) being 
continuous, and complicated structure of S require a 
modification of the classical coordinate descent method.  

Settings of the parameterization algorithm are a 
collection of six constants m, level, maxIter, ε, q, 
maxStart, and two vectors τ and wght.  The algorithm 
uses the same values of its settings over a period of all its 
operations being performed.  The following settings of the 
parameterization algorithm are being offered for using as its 
default settings: m = 3, level < infp∈S F(p), maxIter = 500,     
ε ≤ (n – k)–1, q = 1, maxStart = 1000, τi ≤ hi · min(1, ε)            
(1 ≤ i ≤ n), wghtj = 0 for j = i1, …, ik (default values of 
remaining n – k positive components of the vector wght 
are not noticed in the article).  The oddness of m, and 
truth of inequality τi ≤ hi · ε, 1 ≤ i ≤ n, are necessary for 
correct functioning of the algorithm. 



Mathematics, mechanics, computer science 
 

 60

 
 

Structural scheme of the parameterization algorithm for the VS-model 
 

 
The multistart method launches the coordinate descent 

method from maxStart starting points in S with the same 
settings.  The least of maxStart local minima found is an 
estimate of a global minimum and is delivered as a result 
of the multistart method run. Starting points are generated 
in a random manner and are different values of the 
continuous n-dimensional random variate uniformly 
distributed on P. 

The order of tracing the coordinate axes of S with the 
coordinate descent method is defined by the weights 
wght.  Each iteration of the latter consists in performing 
one-dimensional minimizations along the coordinate axes 
of S that have positive weights; halting condition is 
checked at the end of the iteration. One-dimensional 
minimizations along the axes that have maximum weight 
are carried out in the first instance. Axes with equal 
positive weights are traced in the order induced by their 
numbers – the smaller the number, the earlier the 
minimization is made. 

The minimization along axis i, 1 ≤ i ≤ n, means 
searching a global minimum of function f(x) = F(…, pi–1, 
x, pi+1, …) of a real variable x on a set that lies inside the 
segment [ai; bi] and which is specified by predicate 
function xFail(x) = pFail(…, pi–1, x, pi+1, …). After 
having performed the search, a value x* at which global 
minimum of f(x) occurs is being written into the i-th 
coordinate of the current point p in S.  In entering the first 
iteration, the current point p coincides with the starting 
one which has been selected by the multistart method.  
Coordinates of p with zero weights are not altered over a 
period of all operations being performed by the coordinate 
descent method. 

The halting condition holds in case of truth of at least 
one of conditions: 1) number of iterations have reached a 
threshold maxIter; 2) F(p) < level, where p is a current 
point at the end of iteration (after executing all one-
dimensional minimizations of the iteration); 3) d(pN, pN–i) < ε 
for all i = 1, …, q (N – the current iteration number, p j – 
current point in S at the end of iteration j, q and ε – 
positive constants); 4) d(pN, pN–1) = 0. 

The one-dimensional minimizations along the 
coordinate axes of S are carried out by the method that is 
a modification of an iterative method of dividing 
segments into several equal parts [7]. During each 
iteration the method divides current segment into m equal 
parts and either makes one of them a current segment or 
completes the operation informing the user about the 
necessity to change the value m.  The iterations stop when 
the value, on the current segment, of the function being 
minimized becomes less than the value level, or when the 
length of the current segment becomes less than the value 
δ defined before launching the method. 

All one-dimensional minimizations along axis i, is 
carried out in the course of running the coordinate descent 
method, are performed with δ = τi (1 ≤ i ≤ n). 

The realization and approbation of the 
parameterization algorithm. The parameterization 
algorithm for the VS-model is realized in programming 
language C++, using the means of the Standard C++ 
Library. Its textual code satisfies the C++03 standard 
(ISO/IEC 14882:2003). The executable code of the 
realization for a certain operating system can be derived 
without changing the textual code of the realization and is 
arranged as a dll-library (if the objective platform is an 
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OS of the Windows family) or a text-file (if the objective 
platform is an OS of the Unix family). 

The main factors influencing the duration of 
parameterization for a certain TRC by means of the 
realization, being considered, of the parameterization 
algorithm are: 1) the set of values of the VS-model 
options used under modeling; 2) the power of the set of 
the years which modeling is performed on; 3) the 
interrelations between PUuM used under modeling; 4) the 
value of the quantity n – k and the lengths of the values 
ranges of those PUuM which specific numerical values 
are not known for; 5) the difference criterion used under 
parameterization; 6) the used settings of the 
parameterization algorithm; 7) hardware and software of a 
device carrying out the code of the parameterization 
algorithm realization.  Varying any of these factors, one 
can get a significant change (of many times) of the 
duration of parameterization. 

Using laptop Asus F3JP with dual core processor 
T5300 (maximum clock frequency of each core is 1.73 
GHz), the parameterization of a TRC by using the 
realization of the parameterization algorithm usually lasts 
from several hours to several days. 

The proposed parameterization algorithm for the          
VS-model was used at more than 700 different pairs              
(S, F(p)).  Having performed these parameterizations as a 
consequence: 1) a number of statements about the              
VS-model, both the new and the previously formulated, 
are first confirmed by acomputing experiment;                        
2) a hypothesis about the relationship between the models 
of individual TRCs and the model of the generalized TRC 
(all the models are derived by using the VS-model with 
the same set of values of its options) is for the first time 
formulated and confirmed by a computing experiment;            
3) the VS-model has been first used in full as the quality 
tester of individual and generalized TRCs which are  
going to be used in the role of mediators carrying climatic  

information; 4) several properties of the considered 
parameterization algorithm have been established.  The 
successful approbation of the parameterization algorithm 
and its realization is due to these results. 

The results obtained in this article are demanded 
mainly in dendroclimatology and dendrochronology, and 
in mathematical modeling of processes taking place in 
woody plants. The created parameterization algorithm and 
its realization: 1) significantly extend the range of 
situations in which using the VS-model is already 
realizable in practice; 2) allow the testing and analyzing 
of the model at a qualitatively new level; 3) allowing to 
solve in practice inverse problems of restoring certain 
growing conditions for woody plants via its existing TRC. 
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CALCULATION METHOD FOR AUTOMATIC SECONDARY POWER SOURCES* 

 
The article describes methods for calculating the parameters of secondary power sources (SPS): rectifying devices 

and voltage impulse stabilizers.  Algorithms for calculating parameters of SPS power circuits have been developed. 
 
Keywords: secondary power sources, algorithms for calculating the parameters of secondary power sources. 
 
Secondary power sources (SPS) are an integral part of 

any radio set.  Modern SPSs of electronic equipment have 
developed far beyond the class of simple radio-electronic 
devices, containing a small number of elements as it was 25–
30 years ago. Today the secondary power sources are fairly 
complex devices which contain a large variety of functional 

units, performing certain functional transformations of 
electrical energy improving its quality. All this demands 
constant increase of performance from the SPS, while the 
time requirement for the design of the SPSs is being reduced. 
Electronic circuits of SPSs are characterized by a presence of 
components with nonlinear characteristics.  
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