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THE ANALYSIS OF NONPARAMETRIC MIXTURE PROPERTIES  

WITH A PROBABLITY DENSITY OF A MULTIDIMENSIONAL RANDOM VARIABLE 
 

The asymptotic properties of a mixture with nonparametric estimations of probability density with a 
multidimensional random variable are researched in this article. They are compared with the properties of the 
traditional Rosenblatt–Parzen type nonparametric probability density estimation, depending on the quantity of the 
composed mixture and dimension of the random variable. 
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The application of nonparametric statistics methods 
based on the estimations of Rosenblatt–Parzen type 
probability density [1; 2] is a rapidly developing 
modelling method of priori uncertainty systems. 
However, when the research conditions of the system are 
complicated, there appear methodical and computing 
difficulties in traditional nonparametric algorithms and 
models; this can be clearly observed during the processing 
of statistical data in great amounts. 

The perspective “detour” direction of the arisen 
problems consists in the application of decomposition 
principles of training samples according to their size, and 
the application of the parallel calculation technology. 

The purpose of this work is to prove the effective 
usage of decomposition principles when processing large-
scale arrays of statistical data, on the basis of the 
asymptotic properties’ analysis for a nonparametric 
estimation of probability density mixture. 

Let sample ( ), 1,iV x i n= =  from n  independent 

observations of k – dimensional random variable 

( ), 1,vx x v k= =  be with a probability density ( )p x . The 

type ( )p x  is a priori unknown. 
Let’s divide sample V  into T observation 

groups ( ),i
j jV x i I= ∈ , 1,j T= . Multiple observation 

numbers x  in the group with number j  shall be identified 

as jI . While: ( )
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At each sample jV  let us construct a nonparametric 
estimation of probability density with a multidimensional 
random variable x  [1]: 
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In statistics (1), the nuclear function ( )vuΦ  is 
satisfied to conditions of normalization, positivity, and 

symmetry. The parameters of nuclear ( )v vc c n=  
functions decrease with the increase of n . 

Let the intervals of component vx value change for 
vector x be identical. In these conditions it is reasonable 
to assume that the values of coefficients vc in 
nonparametric estimations of probability densities ( )jp x , 

1,j T=  are identical and equal to с . Then estimation (1) 
will look as: 
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As for magnifying ( )p x with statistical sample V we 
shall use a mixture of nonparametric estimations of a 
probability density type: 
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Statistics (3) allows the usage of parallel calculation 
technology while estimating the probability density in 
conditions of large samples. 

The asymptotic properties ( )p x are defined by the 
following statement. 

The theorem. Let ( )p x and its first two derivatives 

from each component vx , 1,v k= be limited and 
continuous; the nuclear functions satisfy 

( )vuΦ conditions: 
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of sequence ( )c c n=  for blur coefficient in nuclear 
functions are such, that at n → ∞  values, 0c →  and 

kn c → ∞ . 
Then at finite values T the nonparametric estimation 

(3) of the probability density ( )p x has a property of 
asymptotic unbiasedness and competence. 
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Hereinafter infinite limits of integration are omitted. 
The proof: 
1. By definition: 
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where M  – is a mathematical expectations sign. When 
performing the conversion, it is considered that statistical 
sample units , 1,jV j T= are values of the same random 
variable t with a density probability of 1( , , )kp t tK . 

Let’s spread out 1 1( , , )k kp x cu x cu− −K  in the Taylor 
row at point 1, , kx x x= K and being limited by the first 
two terms of the series, we get: 
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where ( ) ( )2
vp x  – is the second derivative of the 

probability density ( )p x at component vx . 
From here, in condition that 0c →  at n → ∞ , appears 

the property of the asymptotic unbiasedness for a mixture 
of nonparametric probability density estimations (3). 

2. For convergence proof of ( )p x  in square mean we 
shall consider the following expression: 
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Let’s find the asymptotic component expression for 
the second part of expression (5): 
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Let’s transform its last part: 
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which, with great enough volumes of statistical data 
considering expression (4) is presented as: 
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Notice that the asymptotic statistics expression of 
type:  

1( ) ( )t kM p x p x dx dx∫ ∫K K  
corresponds to: 
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Substituting expression (7), (8) in (6), after a series of 
simple conversions will give: 
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In V. A. Epanechnikov’s research [2] – an asymptotic 
expression for the purpose of square deviation in 
nonparametric probability density estimation ( )p x , 
composing the first part of expression (5), is received: 
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Accounting (9) and (10), expression (5) with enough 
n values is represented as: 
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It is not difficult to notice that in conditions 0c →  at 
knc → ∞  the estimation n → ∞ of probability density 

mixture (3) converges in square mean to ( )p x ; 
considering the property of its asymptotic unbiasedness is 
well-founded. 

At T = 1 the received result (11) coincides with 
Epanechnikov’s theorem [2], which confirms the 
correctness of the fulfilled conversions. 

The analysis of approximating properties of statistics 
( )p x . For the efficiency analysis of a nonparametric 

estimation of probability densities mixture (3) and the 
Rosenblatt–Parzen estimations of a probability density: 
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let’s consider the ratio of asymptotic expressions, 
corresponding to deviation squares for the best 
coefficients of blur values in nuclear functions. 
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Let’s define the minimum value 2W of expression (11) 

with optimal coefficient *c values of blur nonparametric 
estimations ( )jp x  composing the probability densities 
mixture. In the accepted assumption value: 
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If 1k = , then 2W  – is coincides with the minimal 
asymptotic expression of square deviation for the mixture 
of nonparametric probability densities estimations, 
obtained in study [3]. 

At T = 1 and n n=  expression (12) corresponds to 
the minimal asymptotic expression 2W ′ for a deviation 
square of the probability density Rosenblatt–Parzen type 
estimation [2]. 

After simple conversions we get: 
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By analogy we shall calculate the ratio for the minimal 
values of the main dispersing composing statistics ( )p x  

and ( )p x% : 
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Their ratio looks as: 
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It is easy to be convinced, that the ratio of asymptotic 
expressions offset: 1W , 1W ′  for the estimated probability 
density ( )p x  and ( )p x%  at optimal blur coefficients for 
nuclear functions, is equal to: 
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Dependences of ratios 2R  (a), 3R  (b), 1R  (c) from the dimension of random variable k  and ( ), 1,vx x v k= =  quantity  

T = 1–10 (curves 1, …, 10), composing the nonparametric estimations mixture of probability density ( )p x  (3) 
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With growth of component quantityT  of the 
nonparametric estimations mixture of probability density, 
there is an increase in ratio values 2R > 1 (figure, a),            

1R > 1 (figure, c). The noticed deterioration of 
approximating mixture properties ( )p x  in comparison to 
traditional nonparametric estimation of density 
probability ( )p x%  (12), points to the decrease in sample 

sizes used during the estimation of compositions ( )p x . 
This is a special feature of minor dimensions k of random 
variables. When complicating the estimating probability 
density with efficiency k , the growth of nonparametric 
estimations ( )p x  also decreases ( )p x% . Criteria 
corresponding to them 2W , 2W ′  and 1W , 1W ′  become 
commensurable; this is evident in the decreasing of ratio 

2R  and 1R values. 
The offered mixture ( )p x of probability density 

estimations has a lesser dispersion in comparison to the 
nonparametric estimation ( )p x% , which is identified by its 

structure, since statistics synthesis ( )p x is carried out on 
the basis of an averaging operator (figure, b). With a 
quantity increase in T composing the mixture of 

nonparametric estimations ( )p x , the density probability 
and dimension k of random dimensions increases. 

On the basis of the asymptotic properties analysis for 
nonparametric estimations mixtures of probability density 
with a multidimensional random variable, the 
decomposition possibility for initial statistical data under 
a synthesis of nonparametric statistics in large samples 
conditions is justified. The researched statistics, in 
comparison to the traditional Rosenblatt – Parzen 
nonparametric evaluation, has a considerably smaller 
dispersion and allows using parallel calculating 
technologies. 
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GENERATION OF THE STATE TREE BASED ON GENERATIVE  
GRAMMAR OVER TREES OF STRINGS 

 
In the article the principle of state trees generation is considered based on the generative grammars over trees of 

strings in such objects as the sentences of natural languages, as well as two and tree dimensional images. The image of 
the object as a forest is considered; including the trees of object different layouts for the purpose of complex system 
modeling. 
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The problem of natural language sentences generation 

is one of the key issues in the field of computer science 
and formal grammar theories. The issue of meaningful 
speech generation applies to the area of semantics and 
computer science [1–7]. The states tree generation issue is 
studied well enough in computer science and in system 
analysis. In respect to the question of meaningful phrases 
tree generation the problem is first of all connected to the 
method of sentence generation by means of Chomsky’s 
generative grammars. Generative grammars are 
successfully applied in software such as electronic 
translation systems, expert systems, systems of 
orthography checking, etc. 

The flash point of the article is the analysis prospects 
for using generative grammars not over strings, but over 
trees of strings. In this respect it is possible to solve the 

task of generating grammatically and semantically 
meaningful speech more effectively and increasing the 
efficiency of different images analysis and synthesis 
aspects. 

The importance of the issue on effective generating 
language meaningful constructions and two or three 
dimensional images is generally understood and is 
connected with the demands of linguistic and other 
software. 

The purpose of this research is to apply generative 
grammars on the necessity basis over trees as means of 
meaningful speech generation connected with greater 
heterogeneous context. 

The novelty of the work is in the application of 
generative grammars not over strings but over trees of 
strings. 




