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SOLVABILITY OF AN INITIAL-BOUNDARY PROBLEM FOR A LOADED WAVE EQUATION 
 

Solvability of an initial-boundary problem for a loaded wave equation is proved. The proof of the solution           
uniqueness is based on the a priori estimate of the solution. A sequence of Galerkin approximations is constructed       
for the solution existence to be proved.  
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A loaded equation is an equation with partial                

derivatives that contain the values of functionals of the   
sought function. Such equations are encountered in   
modeling certain physical processes [1] and also in       
solving inverse problems of mathematical physics [2; 3]. 

Let us consider the following initial-boundary 
problem for the function ( ),u x t , ( ) [ ] [ ], : 0, 0,x t Q l T∈ × : 

 

( ) ( ) ( ) ( )
0

, , ,
T

tt xx xxu u b x t T u x d c x t− − − τ τ τ =∫ ,        (1) 

( ) ( ),0u x p x= , ( ) ( ),0tu x n x= ,                 (2) 
 

( ) ( )0, , 0u t u l t= = ,                             (3) 
 

( ) ( ) ( ) ( )0 0 0p n p l n l= = = = .                 (4) 
 

Here, ( ),b x t , ( ),c x t , ( )p x , and ( )n x  are specified 
functions.  

To obtain an a priori estimate of the solution, we 
multiply Eq. (1) by tu  and integrate the result with 
respect to x  from 0 to l : 

 

( ) ( )2 21 1 , ,
2 2t x x t t

d u u U bu c u
dt
⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

.     (5) 
 

Here, ⋅  and ( ),⋅ ⋅   are the norm and the scalar 

product in  ( )2 0,L l , 
 

( ) ( ) ( )
0

,
T

xU U x T u x d= = − τ τ τ∫ .              (6) 

 

By virtue of conditions (3), we have 
 

( ) ( ), ,x t x t txU bu U b u bu= − + .              (7) 
 

Integrating Eq. (5) with allowance for Eqs. (2) and (7) 
from 0  to t , we obtain 

 

( )

( ) ( )

2 2
1

0

0 0

1 1 ,
2 2

, , .

t

t x t

t t

x t tx

u u C c u dt

U b u dt U bu dt

+ = + −

− −

∫

∫ ∫
              (8) 

Here,  

( ) ( )2
1

1 1
2 2

dp x
C n x

dx
= + . 

 

The following equality is valid: 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
0

0

, , , , , ,

, ,0 ,0 , , , .

t

tx x

t

x x t

U x b x u x d U x u x t b x t

U x u x b x U x u x b x d

τ τ τ = −

− − τ τ τ

∫

∫
 (9) 

 

The following estimates are obtained: 

( ) ( )
1 2

1 2 3 2 2

0

3 ,
T

xU x T u x d− ⎛ ⎞
< τ τ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ , 

( ) 22

0 0

1,
2 2

t T

t tc u dt c u dtε⎛ ⎞≤ +⎜ ⎟ε⎝ ⎠∫ ∫ ,           (10) 

( ) ( ) ( )( ) 221, , ,
2 2x x

TU x u x t b x t B U u
T

⎛ ⎞≤ +⎜ ⎟
⎝ ⎠

. 
 

Here, ε  is an arbitrary positive number and B  is the 
maximum value of ( ),b x t  in Q . Taking into account 
Eqs. (9, 10), and (8), we obtain 
 

2 2 2
2

2 22 2

0 0

.

t x x

T T

t x

u u C BT u

T u dt T u dt

+ < + +

+α +β∫ ∫
                 (11) 

 

Here, the positive constants α , β , and 2C  depend on the 

maximum values of ( ),b x t , ( ),tb x t , and ( ),xb x t  in 

Q . Integrating Eq. (11) with respect to t  from 0 to T , 
we obtain  
 

( ) ( )2 23 3
2

0 0

1 1
T T

t xT u dt BT T u dt C T−α + − −β <∫ ∫ .  (12) 

 

Under the conditions 
 

( )3
11 0T−α ≥ δ > , 3

21 0BT T− −β ≥ δ > ,    (13) 
 

where 1δ  and 2δ  are arbitrarily small fixed positive 
numbers, we obtain the sought a priori estimate  
 

2

0

const,
T

tu dt <∫  2

0

const
T

xu dt >∫ .            (14) 

 

This estimate means that u  is bounded in the space 
( )1

2W Q  of functions that have generalized first-order           
derivatives integrated with a square.  



Вестник Сибирского государственного аэрокосмического университета имени академика М. Ф. Решетнева 
 

 81

Estimate (14) immediately yields the theorem of the 
solution uniqueness, because the constants in Eq. (14) 
should be equal to zero for different solutions to exist.  

The solution existence is proved with the Galerkin 
method. We seek for the Galerkin approximation in the 
form 

( ) ( ) ( )
1

,
m

m
mk k

k
u x t q t v x

=

= ∑ , 
 

where ( )kv x , 1, 2, ...k =  is the basis and ( )0mk kq p= , 

( )0mk kq n′ = , where km , kn , 1, 2, ...k =  are the 

coefficients of the expansion of the functions ( )p x  and 

( )n x  in the basis ( )kv x . The basis is found by solving 
the problem 

 

( ) ( ) 0k k kv x v x′′ + μ = , ( ) ( )0 0k kv v l= = , 
 

where kμ  are eigenvalues. Obviously, this basis has the 
form 

( ) sink
kxv x
l
π

= , 
2 2

2k
k

l
π

μ = , 1, 2, ...k =  
 

From the condition of orthogonality, we obtain a system 
of ordinary differential equations for the functions ( )mkq t  
 

( ) ( )
0

, , 0
T

m m m
tt xx xx ku u T u x d c v

⎛ ⎞
− − − τ τ τ − =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ,       (15) 

 

which has to be solved under the conditions 
 

( )0mk kq p= , ( )0mk kq n′ = .                (16) 
 

After the same considerations as those performed for 
obtaining the a priori estimate (14), we obtain 

 

1
0

T
m
tu dt C<∫ , 2

0

T
m
xu dt C<∫ , 

 

where the constants 1C  and 2C  are independent of m . 
From this estimate, there follows that the system of 
ordinary equations (15) with conditions (16) is solvable 
and that it is possible to choose a subsequence from the 
Galerkin approximations, which converges to a certain 
function, which is a solution of the initial problem.  

Thus, a theorem follows from here. Let  
 

( ) ( )2,c x t L Q∈ , ( ) ( ),b x t L Q∞∈ , 

( ) ( ),xb x t L Q∞∈ , ( ) ( ),tb x t L Q∞∈ , 

( ) ( )1
2m x W Q∈

o

, ( ) ( )2n x L Q∈  
 

and condition (13) be satisfied. Then, there exists a 
unique solution of problem (1–4), and  

 

( ) ( )1
2 20, , 0,u L T W l∈

o

, ( )2tu L Q∈ . 
 

To conclude, we should note that a similar theorem is 
also valid if we take for 0 t T≤ ≤  ( ), ,u u x y t= , 

( ),x y G∈ ; 0u = , ( ),x y G∈∂ , replace xxu  in Eq. (1) by 
the Laplace operator uΔ , and replace the functions 
( ),b x t  and ( ),c x t  by ( ), ,B x y t  and  ( ), ,C x y t . The 

basis ( ),k kv v x y=  and eigenvalues  kμ , 1, 2,...k =  are 
determined in this case by solving the following problem: 
 

0k kv vΔ +μ = , ( ),x y G∈ , 0k G
v

∂
= . 

 

An initial-boundary problem for a one-dimensional (in 
terms of the spatial variable) loaded wave equation is 
considered. This equation contains a functional of the 
sought function. An a priori estimate of the solution is 
obtained, which is used to prove the solution uniqueness. 
A sequence of Galerkin approximations is constructed; a 
converging subsequence that is a solution of the initial 
problem is chosen from this sequence. The results of this 
paper can be used to justify the correctness of models of 
some physical processes and to solve inverse problems of 
mathematical physics.  
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РАЗРЕШИМОСТЬ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ  

ДЛЯ УРАВНЕНИЯ, ОПИСЫВАЮЩЕГО ВОЛНУ НАГРУЖЕНИЯ 
 

Доказана разрешимость начально-краевой задачи для уравнения, описывающего волну нагружения. Доказа-
тельство единственности базируется на априорных оценках решения. Построена последовательность Галер-
кина, которая позволила доказать существование решения. 
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