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AN ANALYSIS OF INTELLIGENT METHODS AND ALGORITHMS  
FOR UNLABELED DATA PROCESSING* 

 
Intelligent algorithms and method is well-suited to many problems in data processing, where unlabeled data may       

be abundant. We survey previously used selection strategies for intelligent model, and propose two novel algorithms               
to address their shortcomings, focus on Active Learning (AL). While has already been shown to markedly reduce            
the annotation efforts for many sequence labeling tasks compared to random selection, AL remains unconcerned about 
the internal structure of the selected sequences (typically, sentences). We propose a semi-supervised AL approach            
for sequence labeling.  
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Modeling can have a number of objectives, including 

understanding or explaining data, developing scientific 
theories, and making predictions. We focus in this paper 
on predictive modeling. The goal is to predict an outcome 
y given a number of predictor variables x = [x1, x2, … xn], 
also called features, attributes, or factors. For instance, in 
handwriting recognition, the predictor variables may 
indicate the presence of features such as loops or 
segments oriented in a certain direction, and the target 
variable or “label” can be a letter or a word to be 
recognized. In chemo-informatics, the predictors are 
descriptors of the molecular shape and the target indicates 
e.g., the activity of the molecule against a given disease. 
In text processing, the predictors may be simple 
frequencies of words and the target could be a document 
category such as “politics”, “sports”, “computers”, etc. 

Producing predictive models in the “supervised 
learning” setting requires a “training set” of labeled 
examples, i.e., examples x for which the target value or 
“label” y is known. Those are used to train the predictive 
model, which is then evaluated with new examples (test 
set) to estimate its “generalization performance”. 

In many applications, including handwriting recogni-
tion, chemo-informatics, and text processing, large 
amounts of unlabeled data are available at low cost            
(x only is known), but labeling examples (using a human 
expert to find the corresponding y value) is tedious and 
expensive. Hence there is a benefit to either use unlabeled 
data to improve the model in a semi-supervised learning 
algorithm, or to sample efficiently x-space to use human 
expertise for labeling only the most informative examples. 

In the regular machine learning setting (passive 
learning), a batch of training pairs {x, y} is made readily 
available (training set). The learning machine may be 
used to select the examples, which look most promising 
to improve the predictive model. There exist several 
variants of active learning: 

– pool-based active learning: a large pool of examples 
x is made available from the onset of training; 

– stream-based active learning: examples are made 
available continuously; 

– de novo query synthesis: the learner can make up 
values of x. 

Of the variants of active learning considered, pooled-
based active learning is tremendously important in 
today’s machine learning and data mining applications, 
because of the availability of large amounts of unlabeled 
data in many domains, including pattern recognition 
(handwriting, speech, airborne or satellite images, etc.), 
text processing (internet documents, archives), chemo-
informatics (untested molecules from combinatorial 
chemistry), and marketing (large customer databases).  

Stream-based active learning is also important when 
sensor data is continuously available and data cannot be 
easily stored. However, it is more difficult to evaluate. It 
is reasonable to assume that several of the techniques 
developed for pooled-based active learning will also be 
applicable to stream-based active learning. The problem 
of de-novo queries is conceptually rather different 
because it involves human interventions on the system 
that may disrupt its normal functioning (interventions or 
manipulations).  

A number of query strategies with various criteria            
of optimality have been devised. Perhaps the simplest          
and most commonly used query strategy is uncertainty 
sampling [1]. In this framework, an active learner queries 
the instances that it can label with least confidence.              
This of course requires the use of a model that is capable 
of assessing prediction uncertainty, such as a logistic 
model for binary classification problems. Another general 
active learning framework queries the labels of the 
instances that would impart the greatest change in the 
current model (expected model change), if we knew the 
labels. Since discriminative probabilistic models are 
usually trained with gradient-based optimization, the 
“change” imparted can be measured by the magnitude of 
the gradient [2]. 

A more theoretically motivated query strategy is 
query-by-committee (QBC) [3]. The QBC approach 
involves maintaining a committee of models, which are 
all trained on the current set of labeled samples, but 
represent competing hypotheses. Each committee member 
votes on the labels of query candidates and the query 
considered most informative is the one on which they 
disagree most.  
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It can be shown that this is the query that potentially 
gives the largest reduction in the space of hypotheses 
(models) consistent with the current training dataset          
(version space). A related approach is Bayesian active 
learning. In the Bayesian setting, a prior over the space of 
hypotheses gets revised into a posterior after seeing data. 
Bayesian active learning algorithms, for instance [4], 
maximize the expected Kullback-Leibler divergence 
between the revised posterior distribution (after learning 
with the new queried example) and the current posterior 
distribution given the data already seen. Hence this can be 
seen both as an extension of the expected model change 
framework for a Bayesian committee and a probabilistic 
reduction of hypothesis space. 

A more direct criterion of optimality seeks queries      
that are expected to produce the greatest reduction in   
generalization error (expected error reduction). The first 
statistical analyses of active learning proposed in [5], 
demonstrating how to synthesize queries that minimize 
the learner’s future error by minimizing its variance. 
However, their approach applies only to regression tasks 
and synthesizes queries de novo. Another more direct, but 
very computationally expensive approach is to tentatively 
add to the training set all possible candidate queries with 
one of the opposite label and estimate how much 
generalization error reduction would result by adding it to 
the training set [6]. 

It has been suggested that uncertainty sampling and 
QBC strategies are prone to querying outliers and 
therefore are not robust. The information density 
framework [7] addresses that problem by calling 
informative instances that are not only uncertain, but 
representative of the input distribution. 

Active Learning. Sequence labeling is the task of 
mapping an ordered list of inputs to a sequence of output 
tags. It has many practical applications in natural 
language processing such as named entity recognition, 
part-of-speech tagging, shallow parsing, and text 
chunking. Another potential application, which is 
investigated in this study, is the subphrase generation 
problem. The goal of subphrase generation in query 
processing is to find subphrases in a query that maximally 
preserve the user’s intent. Unlike the classification of 
record based data, sequence labeling depends not only on 
the features extracted from the input equence but also on 
its previous output tags. Many algorithms have been           
proposed in the literature to address this problem,             
including Conditional Random Field [8], Hidden Markov 
Model [9] and Maximum Entropy Markov Model [10]. 

A known problem in supervised learning tasks such as 
sequence labeling is the difficulty of acquiring labeled 
examples. The size of training data available is often 
limited because labeling examples can be very expensive. 
Labeling a sequence is also more challenging because the 
output tag depends on both the input and previous output 
tags. As a result, the tags of a sequence must be 
determined as a whole, rather than individually for each 
input element. Active learning may help to address this 
problem by selecting a small subset of examples for 
labeling from the large pool of unlabeled sequences 
available. By selecting the most informative examples, 
active learning can significantly reduce the required size 

of training data while maintaining comparable level of 
performance. However, the definition of «informative» 
varies for different algorithms and applications. One 
commonly used method is to select examples with largest 
uncertainties. In this paper, we treat each sequence as a 
whole for labeling and propose two strategies to measure 
the uncertainty of sequences under the Neural Network 
framework, referred as simple uncertainty (SU) and       
most-possible-constraint-violation method (MPSV).  

Sequence Labeling Problem. Sequence labeling is a 
common problem with many applications in many areas 
such as named entity recognition [11], POS tagging [12], 
text chunking [12], etc. Definition 1 and Definition 2 give 
the formal definition of sequence and sequence labeling 
problem. 

Definition 1 [Sequence]: A sequence x is an ordered 
list of elements x = (x1, x2, ..., xt). 

Definition 2 [Sequence Labeling]: Given a sequence 
of inputs x, the sequence labeling problem is trying to 
label it with a sequence of tags y = (y1, y2, ... , yt), where 
each tag yi belongs to a tag set D with |D| tags. 

One simple way to solve the sequence labeling 
problem is to use traditional classification algorithm such 
as Neural Network, which treats each element in the 
sequence as one example. However, it requires the 
features extracted only depend on the inputs x, which is 
not true in sequence labeling problem. The features 
extracted for sequence labeling not only depends on the 
inputs x, but also depends on the outputs y. The feature 
vector for a sequence (x, y) is represented as a joint 
feature mapping vector φ(x, y). The definition of φ 
depends on the nature of different applications. One 
example feature for the subphrase matching problem 
would be “previous word is dropped → current word is 
kept”, which represents the transition from previous tag 
“0” to current tag “1”. 

Now assume that we have a training sequence set         
X = {x1, x2, ..., xn} with its corresponding tag sequence set 
Y = {y1, y2, ..., yn}. We are interested in learning a 
mapping function f : X → Y. Instead of learning f directly, 
the strategy is to transform the problem into learning a 
discrimination function F over the joint mapping of input 
and output: 

X × Y → R. 
 

Given a test sequence x, its prediction is achieved by 
maximizing F over the response variable. The generalized 
form of the hypotheses f  becomes 

 

( , ) arg max ( , ; )
y Y

f x w F x y w
∈

= ,           (1) 
 

where w is the parameters to be learned. Using the joint 
feature vector φ(x, y), it can be further formulated as 
 

( , ) arg max ( ( , ); ).
y Y

f x w F x y w
∈

= ϕ             (2) 

Note that many existing methods for sequence                
labeling problem can be explained in the above framework. 
For example, the function form F that are maximized in 
the above prediction function represents the conditional 
probability P(y|x) in conditional random filed [8], Hidden 
Markov Models [9], Maximum Entropy Markov Models 
[10] and Modified Neural Network [13]. 
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Active Learning By Modified Neural Network. 
From the previous work on active learning [14], 
measurement of uncertainty has played an important role 
in selecting the most valuable examples from a pool of 
unlabeled data. In the in the above framework, three 
methods have been proposed to measure the uncertainty 
of simple data, which are referred as simple margin              
(fig. 1), MaxMin margin and ratio margin. 

 

 
 

Fig. 1. Simple margin method will select unlabeled data x1  
for querying, which lies closest to the hyperplane 

 
Simple margin measures the uncertainty of an simple 

example x by its distance to the hyperplane w calculated as 
 

|w · φ(x)|.                                (3) 
 

As illustrated in fig. 1, examples lying closer to the 
hyperplane are assigned with larger uncertainty score. 
This is consistent with the intuition that examples close to 
the hyperplane are classified with lower confidence. 
These examples are considered as valuable examples 
since they have higher probability to be misclassified and 
thus more informative to be selected for further training. 

However, labeling an element in a sequence by itself 
is almost infeasible in most sequence labeling 
applications because of the requirement for context 
information. In most situations we have to consider a 
whole sequence as an unit for uncertainty measurement 
and active selection. Given a pool of unlabeled sequences, 
U = {s1, s2, ..., sm}, the goal of active learning in sequence 
labeling is to select the most valuable sequences from the 
pool. A straightforward way to measure the uncertainty of 
a sequence s is by its prediction score. The prediction 
score wT φ(s, y) measures the certainty of labeling test 
sequence s using the tag sequence y. 

The simple uncertainty for sequence s is then 
calculated in Neural Network as: 

( ) exp( max ( , )),T

y Y
UC s w s y

∈
= − ϕ           (4) 

which is based on the negative value of the prediction 
score given by formula (2). Note that the features in 
sequence labeling not only depend on the input sequence 
s, but also depends on the output y. Finally, the sequences 
with larger uncertainty are selected as valuable examples 
to add to the training set for further learning. We refer this 
method as simple uncertainty (SU) in this paper. 

One drawback of the simple prediction score is its 
ignorance of the underlying score distribution among 
different classes and only use the maximum score as a 
measure of certainty. Here we propose another method 
which defines the uncertainty of a sequence x as 

 

1 2
1 2

1 2,
MPSV( ) exp( max ( ( , ) ( , ))),T T

y y Y
y y

s w s y w s y
∈

≠

= − ϕ − ϕ   (5) 

which can be further formulated as 
 

MPSV( ) exp(min ( , ) max ( , )).T T

y Y y Y
s w s y w s y

∈ ∈
= ϕ − ϕ   (6) 

 

We measure the uncertainty of an sequence s as the 
difference between the minimum prediction score and the 
maximum prediction score, which is actually the most 
possible violated constraint for a sequence s that can be 
added into the optimization problem. 

We refer this method as the most-possible-constraint-
violation method (MPSV) in this paper. The two methods 
SU and MPSV proposed here are used to calculate the 
uncertainty for each test sequence s. The test sequences 
with maximum uncertainty score are selected as the most 
informative sequences. These sequences are submitted to 
the labeler to query for labeling and further added into the 
training set.  

Experiment Result. We applied our algorithm to 
three data sets in our experiment. The first two data sets 
come from named entity recognition shared task of 
CoNLL-2002 [11]. One is Spanish data (ESP), which is a 
collection of news wire articles made available by the 
Spanish EFE News Agency. Another is Dutch data NED, 
which consist of four editions of the Belgian newspaper 
“DeMorgen” of 2000. The task is to label each word in 
the sentence using some predefined entity tags such as 
person names (PER), organizations (ORG), locations 
(LOC) and miscellaneous names (MISC) with a B ahead 
of them denoting the first item of a phrase and an I any 
non-initial word. The third data we are using is collected 
from the query subphrase matching project (QSPM) of 
Yahoo Sponsor Search. Given a query by a typical search 
engine user, the goal is to generate subphrases that 
preserve the user intent as well as match the bidded terms 
submitted by advertisers. There are two tags: “KEEP” 
(“1”) and “DROP” (“0”) for each position. 

For each position in the sequence, we extract its 
context features such as “current word is”, “previous 
word is”, “next word is” and so on. We also used tag 
transition features such as “previous tag to current tag”. 
Some word features such as prefix and suffix are also 
used based on the language of the data such as “th” for 
English data. We did not employ any feature selection 
methods in our experiments. For the DER data, the Part-
Of-Speech tags are also utilized as grammatical features. 

In this experiment,we compare themost-possible-
constraint-violationsmethod (MPSV) and simple 
uncertainty(SU) method with the random method. To 
alleviate the length problem in sequence active learning, 
we select a subset of sequences from the training data, 
which has the same length. For each data set, we run four 
experiments, each on a different length selected from the 
training data. For NED data, we select all the sequences 
with length 12, 13, 14 and 15 in each experiment. For 
ESP data, we select all the sequences with length 42, 43, 
44, 45 in each experiment. For the QSPM data, we select 
all the sequences with length 3, 4, 5, 6. For the NED and 
MPSV data set, we select 400 sequences at each length. 
The first 10 are used for initial training. The pool of the 
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remaining 390 sequences is for active selection. Each 
time we select 15 sequences and the result is reported as 
the average error rate of different length. For the QSPM 
data, we select 1930 sequences at each length. The first       
10 sequences are used for initial training. The pool of the 
remaining 1920 sequences is for active selection. Each 
time we select 60 sequences and the result is reported as 
the average error rate of different length on the test set.  

Fig. 2 shows the results for the three methods in the 
three data sets ESP, NED and QSPM. The x-axis denotes 
the number of unlabeled sequences selected to query for 
labeling. The y-axis represents the average error rate, 
which is calculated in the word level as follows: 

 

{WordLevel}ErrorRate

Total number of correctly tagged words .
Total number of  words

=

=
        (7) 

 

We observe from the fig. 2 that both MPSV and SU 
methods outperform random approach on all three data 
sets. Also MPSV performs better than SU, which means 
that MPSV is a better way to measure uncertainty for 
Modified Neural Network. Furthermore, the gap between 
the MPSV and other two methods seems very large when 
the number of selected sequences is small. It means that 
MPSV serves as a good criteria that only a small number 
of sequences are needed to get good performance. In this 
experiment, all the sequences are of the same length to 
compare three methods and we are aiming to select a 
predefined number of sequences.  

 

In this paper, we have proposed two measurements of 
uncertainty in Neural Network for selecting the most 
informative sequences to query from labeling from a pool 
of unlabeled sequences. One is the most-possible-
constraint-violation method (MPSV) and another is simple 
uncertainty (SU) method. We compare our proposed 
methods with random selection on three real data set from 
named entity recognition task and subphrase generation 
task for queries. For the task of entity recognition, our 
experiments reveal that this approach reduces annotation 
efforts in terms of manually labeled tokens compared to 
the standard, fully supervised AL scheme. Our 
experiment result on selecting sequences with same 
length shows that the most-possible-constraint-violation 
method (MPSV) and simple uncertainty (SU) outperform 
the random method significantly. Also MPSV 
outperforms SU by considering the underlying class 
distribution. 
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Fig. 2. The average error for ESP data set by three active learning uncertainty measurements 




