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ABOUT THE ANALYSIS OF THE PULSE-WIDTH  

SYSTEM WITH FEEDBACK 
 
In the article research results of the pulse-width system (PWS) captured by a negative feedback circuit have been 

depicted. Based on an asymptotic method of order decrease in the linear part of system, we have offered a technique for 
decreasing the PWS to an equivalent nonlinear pulse-amplitude system for which known methods of research are 
applied. 

 
Keywords: stability, width-pulse systems, complex linear chain, nonlinear distortion. 
  
Pulse-width systems (PWS) find application in 

automatic control devices, as well as in amplifiers of 
capacity of “D” class with an intermediate pulse-width 
modulation, captured by a negative feedback for the 
reduction of nonlinear distortions. Feedback presence in 
PWSs is inevitably connected with the problem of 
stability maintenance. The solution of this problem, in a 
comprehensible with practical application way for the 
PWSs generally does not exist. The possibilities of private 
decisions have been considered in [1; 2]. 

The aim of the present work consists in the search for 
new methods of the PWS stability analysis, applicable in 
practical applications. 

Methods of pulse-width systems analysis. An analysis 
of the pulse systems is made, as a rule, basing on the 
theory of trellised functions and discrete transformation of 
Laplasa [1]. The theory of pulse-amplitude systems has 
now developed in enough detail: for a linear path and for 
systems containing nonlinear inertialess elements [1; 2]. 

Unlike the АPS, the PWS is much more difficult to 
analyze, therefore it is investigated using data equivalent 
to the nonlinear АPS. 

A nonlinear АРS block diagram is presented in fig. 1. 
 
 

 
 

Fig. 1. The block diagram of a nonlinear АPS: 
f(t), z(t) – are the input/output signals; w(t) – is the pulse 

characteristic of the PWS continuous (linear) part; γ – is the 
duration of an impulse; x(t) – is the error signal; y(t) – is the 
nonlinear transformation x (t); 1 – nonlinear inertialess tract 

converters; 2 – the generator clock δ – are the functions modulated 
on amplitude by signal y(t); 3 – the generator of form impulses s(t); 

4 – a linear part of a path 
 
According to [2], the formula of the control systems 

(fig. 1) looks as: 
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where 
T
τ

τ =  – is the discrete time; B – is the coefficient 

of linear strengthening x(t) in the APS tract. 
The integral in (1) represents the convolution of the 

function for a forming element and the pulse 
characteristic ω(t). In the research [2] this has received the 
name of the resulted pulse characteristic ω(t). 

If equation PWS manages to be reduced to (1) to it is 
possible to apply all known methods of the analysis and 
calculation of nonlinear АРS. 

A simplified block PWS diagram is presented in fig. 2. 
For PWS the function of a forming element s (t) looks 

like fig. 3, where Т – is the period of clock frequency. 
 
 

 
 

Fig. 1.2. The block diagram of the PWS 
 

 
 

Fig. 1.3. Forming the PWS element 
 

According to fig. 3, s( τ ) corresponds to the bilateral 
PWS. 

In К1 = 0, or К2 = 0 the unilateral takes the place of 
PWS. 

By analogy with (1), for PWS it is possible to write 
down following expression: 
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Unlike (1), the integral in (2) is functioning and x(t), 
defines the features of the PWS analysis. 
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Accorging to fig. 3 
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Let’s include the concept of factor of PWS symmetry, 
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On an integration interval in (2) s( τ ) = 1, and                     
ω (n–m–1; 1) it is possible to present a number of 
elementary pulse characteristics: 
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where s – is a number of different poles; rν – is the 
frequency rate v of the poles: 
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РН(q); QH(q) – are the polynoms in the numerator and a 
denominator of the transfer function of continuous part of 
the PWS W(q). 

Let’s assume that all poles are simple and are not 
equal to zero (the presence of zero or multiple poles does 
not complicate and does not simplify a problem of the 
PWS and APS data. 

For a case with simple poles: 
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Substituting (6) in (2), we will receive: 
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where: 
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Comparing (7) and (1) it is possible to draw a 
conclusion that the PWS it is reduced to the equivalent 
multidimensional nonlinear APS. 

The number of parallel branches equivalent to the 
APS is equal to the number of roots in the typical 
equation. 

The analysis of the multidimensional nonlinear APS 
allows us to define only the absolute stability of the 
system in a general view; the results comprehensible to 
practical management are to be received only for two-
dimensional systems, or for systems reduced to two-
dimensional during the stability analysis [3]. 

In this case the analysis of PWS stability resorts to the 
approached methods, allowing the decrease in the APS 
order equivalent. In [4], for example, it is offered to 
present Фν(x) as a sedate polynom of such a kind: 
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In this case (7) becomes: 
 

1

1 10
1

П
0 1

( ,0) ( ,0) e

( ,0) ( ,0) ( ,0) ( ),

xp ( )
s Nn

v v
v km

n N
k k

k
m k

x n f n BT C

x m f n BT x m n m

q n m
−

= ==

−

= =

′= − ⎡ ⎤ ×⎣ ⎦

′× = − ϖ −

−∑ ∑∑

∑ ∑
(11) 

  

where: 
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When comparing (7) and (11), it is easy to notice that 
in (11) the number of branches is linear and is defined by 
the number of polynom members (10), from which it 
occurs. 

If the equivalent nonlinearity Фν(x) is rather small in a 
polynom (10) it is possible to leave only two or three 
composed. Thus, the equivalent APS will be two – three 
measurements, even in case of constant usages of linear 
PWS parts. 

 

If:          ( ) ( ) 2
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As shown in [4], the PWS block diagram can be 
shown as a one-dimensional nonlinear APS.  

Such a method of approached analysis of stability is 
especially effective, when the nonlinearity equivalent 
APS is expressed poorly. 

The analysis of PWS stability; the method of artificial 
order drop in its linear part. The approached calculation 
of transients is based on an offered method of the analysis 
in difficult linear chains. This way is offered and in 
details investigated by J. S. Itshoki [5]. Its issues are 
following: 

The order of the initial differential equation of a linear 
part of the system artificially goes down (the differential 
equation “is shortened”), and equivalent delay (in certain 
cases probably and not a late decision) is placed into the 
system description. 

The parameters of the truncated equation steal up so 
(fig. 4), that a steepness of transitive function increase h(t) 
in in-between decline space (DS) and the amplitude of the 
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oscillatory process (if possible) corresponds to the initial 
h(t). 

 
 

 
 

Fig. 4. Approximation of the transitive feature 
 
Such a method can be rather effective even during the 

fall of difficult linear chains of a high order to the first 
and the second order. 

For the solution of the approached description of the 
PWS linear part, its transfer function is necessary to lead 
the normalized equation to: 
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Where at least n < k – 1 (at n > k – 1 the 
approximation by late function does not exist). 

The required approximation W(p) in order m is found in:  
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where tзт – it is defined by the solution of the following 
equation: 

 

( ) ( )
1

1
11 0

1 ! !

m m
mзт зт

m
t t

m m

+
+

+− + + − ⋅ Δ =
+

L , 

where:  
1 1 1

2 2 2 1 1

3 3 3 2 2 2 1

,
,

.

a g
a g a g

a g a g a g

Δ = −
Δ = − − ⋅

Δ = − − ⋅ − ⋅
 

 

Let’s notice that necessary value of delay                       
tз corresponds to the least material (always positive) root 
tз = tзm. Finding this value it is uneasy even at m = 3. 

Other parameters of approximation in (13) are found 
as follows: 
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For the approximation of this or that order there are 
certain living conditions. 

Order approach m =  0 exists always. 

Approach m = 1 is limited by a condition   2
2
1

1
2

Δ
<

Δ
. 

In case when m = 2, two variants are possible: 
1. Approach m = 1 does not exist, i. e. Δ2 ≥ 0,5Δ12. 

The condition of the existing approach m = 2 looks like:       
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2. Approach m = 1 exists, but the accuracy of 
approach is insufficient. Then the condition of approach 
existence m = 2 becomes: 
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Because the increase of an approximation order 
sharply complicates a problem of search for the 
approached decision and the analysis of PWS stability, it 
is not necessary to apparently use, m > 2. 

Let’s assume that in result of the considered method 
of approximation PWS linear function in the form of the 
first order approach (m = 1) is defined: 
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The corresponding trellised (discrete) pulse 
characteristic on the basis of (6) will become:  
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where 1 1
1 1; ;зt b
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makes time discrete time.  
The resulted pulse characteristic according to (9) can 

be written down as: 
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Nonlinearity equivalent APS we will be according          
to (8): 
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where X – has normalized a signal changing within          
0 < X < 1. Taking into account, expression can be copied 
as so: 
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Schedules of this dependence for each special case               
b1 = 0.5 are presented in fig. 5. As one would expect, at 
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asymmetrical kinds PWS (А = ±1) nonlinearity Ф1(x) – 
expresses not much more strongly, than in А = 0. 

 

 
 

Fig. 5. Nonlinear PWS characteristics 
 
The transfer function of the resulted linear part will be 

found in the form of discrete Laplasa transformation from 
(14): 
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Having replaced in this expression q by j (= ωТ), we 
shall receive the peak-phase characteristic of the resulted 
linear PWS part. Using this detail, it is possible to 
estimate the PWS stability applying the criteria For 
example, according to criterion of the absolute position 
stability balance [2]: 
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where 
( )1
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∂
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∂
– is the maximum differential 

value of factor of equivalent nonlinear element transfer. 
In – is the factor of linear strengthening in the PWS 

pulse tract. 
Introducing the connecting processes, offered by              

L. S. Iuhoni, the method drawn near calculation, has 
greatly allowed simplifying the problem of the analysis to 
a stable width-pulsed system in the event of a high order 
even by its linearities.  
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DYNAMIC MODELING OF A BUCKET-WHEEL EXCAVATOR  

PROPELLING MOTOR 
 
The article reviews algorithmization of a dynamic model of a bucket-wheel excavator propelling motor during its 

motion. There are essential schemes and formulas used in dynamic modeling algorithmization. 
 
Keywords: algorithmization, propelling motor, contour, moment, reaction. 
 
Multi-support contours as analytical models are 

considered in order to determine bearing reaction, bearing 
load and moments which appear in the process of a 
bucket-wheel excavator motion at the face. This, in its 
turn, will help to evaluate a technical state of a bucket-
wheel excavator [1]. 

When analyzing the impact of a traveling gear on a 
bucket-wheel excavator dynamics, we don't consider a set of 
an excavator motion equations, but focus on specific issues 
of traveling gears algorithmization and their connections 
with the whole machine in various operating modes. 

The reactions to G force action are determined 
depending on the position of this force projection on the 
support contour taking into consideration a projection 
point shift relative to the support contour center. If an axis 
of a superstructure does not coincide with a force G 
projection point and a geometric center, both shifts are 
taken into account. In this case we should consider two 
centers of mass, where G1 is a gravity of a fixed part of a 
machine, with running-out Q and G2 is a gravity of a 
swivel part with a resultant running-out S0 relative to the 
steering axis. 




