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Disadvantages: 
– algorithms are complicated; 
– there are high system requirements. 
Except for the algorithm of segmentation itself in this 

work there were described some other new ideas: 
– the method of multi scale analysis with extraction of 

frequency information; 
– the algorithm of two-dimensional function 

minimization which uses morphological filling; 
– combination of areas growing and areas uniting; 

– the criterion of the definition of the optimal moment 
to stop uniting. 
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RESULTS OF COMPUTING EXPERIMENTS FOR WATER ECOLOGICAL SYSTEM  

MATHEMATICAL MODELING 
 
The point-wise imitation and one-dimensional mathematical models of aquatic ecosystems have been overlooked. 

The developed models are intended for studying ecosystems in the Krasnoyarsk aquatic basin and in separate locations 
on the Yenisei River. The results of the computing experiments are presented. 
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Environmental issues have a designated place in the 

general list of issued for which mathematical modeling is 
used. The increase of the anthropogenic environmental 
impact, caused by intense exploitation of natural 
resources and the growth of industry leads to an 
ecological balance disruption. This is happening both on 
local (in separate areas of globe) and on planetary scale. 
The importance of struggling against anthropogenic 
eutrophication of reservoirs and their pollution is 
understood everywhere in the world. There had been a 
great amount of researches in limnology, mathematical 
modeling, and economy, connected with problems of 
preservation, restoration, and the effective exploitation of 
natural resources, such as lakes and manmade reservoirs. 
The ecological condition of the water bodies depends on a 
number of various factors and processes: hydrophysical, 
hydrobiological, hydrochemical, meteorological, and 
anthropogenic. Hydrophysical processes appreciably form 
a habitat of hydrobionts, define the transferred and 
sedimentation of substances, the intensity of pollution, 
and the self-cleaning of reservoirs. 

The problem of water quality is complicated. Water 
bodies are complex physical, biochemical and ecological 
systems. To be able to predict the consequence of one 
decision or another, the corresponding tool by dint of 
which it is possible to analyze the sufficiency of 
information is required. Such a tool is the computing 
experiment based on mathematical modeling and 
numerical methods. An effective means of the arising 
problem objective analysis in the field of hydrobiology 
problems are the methods based on constructing and 
studying mathematical models of water ecosystems. The 
using of mathematical modeling and carrying out 
computing experiments allows us to predict the dynamics 

of water ecosystem development, and also to estimate the 
consequences of realizing various projects, connected 
with influence on the ecosystem. 

A number of general claims to each mathematical 
model are known: the corresponding system of the 
equations should be closed and consistent; the model 
should describe a variety of physical phenomena and 
suppose the designing of realized numerical algorithm. 

In the given work, some results of the calculations, 
carried out with a mathematical model of the water 
ecosystem (being an improvement of the model 
considered in [1]) are presented. The model is modified 
by the separation of green algae as independent 
components of a mathematical model and the introduction 
of an additional equation, describing the change in algae 
concentration. 

As dynamic variables of model, the concentrations of 
green algae (CA0), of blue-green algae (CA1), of diatoms 
(CA2), of zooplankton (CZ), of bacteria (CB), of detritus 
(CD), of the inorganic phosphorus dissolved in water 
(PS), of the inorganic nitrogen dissolved in water (NS), of 
the organic matter dissolved in water (POB), and of the 
oxygen dissolved in water (О2) are taken.  

In model the following processes are considered: 
– growth of microorganisms; 
– outflow of products of a metabolism; 
– death rate of microorganisms; 
– processes of settling; 
– transitions on a trophic chain; 
– decomposition processes; 
– atmospheric reaeration (isolation of oxygen from 

water); 
– denitrification (process of restoration of nitrates to 

the molecular nitrogen, caused by bacteria); 
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– limiting factors (illumination, temperature); 
– water aeration (saturation of water by oxygen of air). 
The main feature of the given model is the division of 

blue-green algae into two species: greens and blue-greens; 
this isn’t presented in many models, but is of great 
importance for the research of the reservoirs’ ecology, for 
their development is various.  

The model allows predicting the dynamics of water 
ecosystem development; including the transformations of 
nitrogen and phosphorus, as basic biogenous elements, 
defining the efficiency and water quality in reservoirs. 

The structure of model describing the functioning of 
an ecosystem is given in the flow chart (fig. 1).  

 
 

 
 

Fig. 1. Flow chart of the model. Arrows designate directions  
of substance streams between ecosystem components 

 
On the basis of the flow chart the imitating model, 

describing the considered processes in the ecosystem is 
constructed. The mathematical model represents the 
following system of the ordinary differential equations 
with corresponding initial data: 
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where mAi are functions describing growth; coefficients 
RAi are breath; MAi are the death rate; SAi is the settling; 
Yi are proportionality coefficients; Т in temperature in C0; 
t is time. 

In the live description the incoming and proceeding 
streams’ components are taken into account. Also is 
included the share of received resources (food) spent for 
growth and reproduction; proceeding is the consumption 
of species from given components; predators and death 
rate depending on every other possible reason. 
Meanwhile, the influence on the stream speed of the 
environment (temperature, etc.) is considered. 

In microbiological systems as a rule, the growth rate is 
limited by a concentration of substrates. We have applied 
the hyperbolic dependence offered by Z mono for the 
description of the limitation process. 

It is supposed, that the growth of green and blue-green 
algae is limited by phosphorus, while the growth of 
diatoms – by nitrogen and phosphorus. The growth 
functions, death rate, illumination, and temperature 
dependence, as well as all entrance data are included 
according to researches [1–3]. 

The constructed mathematical model represents the 
Cauchy problem for a system of ten ordinary differential 
equations. For the numerical solution of the Cauchy 
problem, the Runge–Kutta method of the fourth 
approximation order is applied: 
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where yr  is a vector function of unknown; F
r

 is the right 
part of system (1); τ  is a step in time; 0yr  is specified. 

Let’s note that the set of components in the model 
considerably complicates the problem, both the modeling, 
and in studying the model; as it is required to specify its 
value for each coefficient (fig. 2).  

A complex of the programs is written, allowing the 
inputting of entrance data in an interactive mode. The 
calculation results can be received numerically, presented 
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graphically, and transferred outside for subsequent 
processing. For the management of graphic representation 
of calculation results, a corresponding menu is provided. 

 
 

 
 
Fig. 2. Coefficients of modeling and initial system values 
 
The program’s complex is realized in Visual C ++ 6,0 

with the use of MFC (Microsoft Foundation Classes) 
which is one of the most convenient and powerful tools 
among Windows’ applications. The software product has 
a friendly interface, it is convenient in work, and is 
intended not only for mathematicians, but also for 
researchers who are not experts in programming. 

The first numerical experiments have been devoted to 
the comparative analysis of results, obtained by means of 
a working mathematical model [1] and by its updating 
means (1) with same input data [4]. The calculation 
results have shown that the received concentrations of 
diatoms, bacteria, and detritus for a working model [1] 
poorly correspond to experimental data, in comparison 
with the results obtained from the model aforementioned.  

Thus, the computing experiments that have been 
carried out have shown the effectiveness of separating 
green algae as an independent variable of the 
mathematical model for the reservoir ecosystem. 

The following calculations with an improved 
mathematical model are meant for researching general 
tendencies of seasonal dynamic variable change for a 
model, using field data from the Novoselovsky reach of 
the Krasnoyarsk impoundment for 1998–2000. Notice 
that for the comparison of calculations results, we have 
used only the field data, the time moments of which are 
precisely known. During other time periods, due to the 
incompleteness of existing information, the comparative 
analysis of average data also shows qualitative calculation 
coincidence. 

Particularly seasonal dynamics of diatoms 
demonstrate a qualitative picture of two “flowering” 
peaks: summer – with the maximum biomass of 5.9 mg/l, 
and autumn with the maximum biomass of 2.27 mg/l; this 
corresponds with the supervision data [5]. The total 
biomass of diatoms according to supervisions in July and 

August decreases to 1.2–2 mg/l. Model calculation has 
also shown a falling in values of biomass during this 
period (fig. 3). 

 
 

 
 

Fig. 3. Comparison of experimental data with numerical results 
for diatoms. Natural data is marked by triangles 

 
The comparison of a seasonal course model for green 

and blue-green algae and experimental data [6], has 
shown that in a general understating of model 
concentration (approximately by 1.5 times) the relative 
time course had been precisely reconstructed (fig. 4). The 
annual course of biomass for zooplankton has a single 
peak and corresponds to the maximum values for green 
and blue-green algae biomasses, which also correspond 
with theoretical representations. 

 
 

 
 

Fig. 4. Comparison of experimental data with numerical results 
for blue-green algae. Natural data are marked by triangles 
 
For a seasonal course of chemical combinations of 

nitrogen and phosphorus concentrations, the calculation 
has shown the falling of values of nitrogen compound 
concentration during seasons, when intensive plankton 
growth occurs, and the maximum values at minima of 
plankton biomass. 

The annual course of organic matter concentration has 
two expressed maxima with values of 0.29 mg/l in the 
beginning of the summer; and 0.54 mg/l in the autumn. 
These periods correspond to the maximum values of 
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phytoplankton and zooplankton biomasses. For seasonal 
dynamics of bacteria and detritus, two peaks of 
development are typical: the first falls in the middle of the 
summer, the second – in the beginning of autumn. Thus, 
detritus influence the growth of bacteria and stimulate 
their productivity, which also corresponds to natural data. 

The obtained calculation model coincides with 
experimental data, which testifies the adequacy of the 
examined model. 

The one-dimensional model of the aquatic ecosystem. 
Along with point-wise model the mathematical model 
allowing mass transfer along the length of a reservoir 
(one-dimensional model in a horizontal plane) is 
examined. The mathematical model represents a 
differential equation system in partial derivatives of the 
first degree: 

( , , )U UV F t x U
t x

∂ ∂
+ =

∂ ∂

r r
r r

   (2) 

with corresponding initial and edge conditions: 

0( ,0) ( )U t U t=
rv

, 

1(0, ) ( )U x U x=
rv

. 
where V is the current speed of the reservoir; x is the 
spatial variable corresponding to the length of a reservoir; 
t is time; the right part of the equations (2) corresponds to 
the right part (1). In such modeling it is supposed, that the 
substance is evenly distributed along the width of the 
stream and moves with the average speed of the stream. 
So, the data is averaged for the depth and width of a 
reservoir. We will notice that the given model is 
expedient for using in the case when the length of a 
reservoir is greater than its width. 

The introduced mathematical model is also realized 
numerically by means of an implicit difference scheme: 
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n n n n
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j j j j
j
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−− −
+ =

τ
 

 

For initial data, the data from the point-wise model is 
taken. For edge conditions – the solutions obtained from 
the point-wise model are used. 

Initial distribution of all system components is 
considered uniform. The calculation was carried out for 
time from t = 0 to t = 365 (one year), for the 
Novoselovsky reach of the Krasnoyarsk impoundment, 
and also for sites on the Yenisei River downstream from 
the Krasnoyarsk Hydroelectric Power Plant with average 
current speed of the Yenisei of 1.2 km/h on a distance 
from ten to one hundred kilometers. In fig. 5 particularly, 
the results for bacteria calculations on a river site are 
given. It is visible, that under the specified conditions a 
concentration of bacteria in the chosen part of a reservoir 
changes considerably (we suppose that this difference of 
values is caused by the current). 

Notice that the ecosystem of the Yenisei on the site 
adjoining the power plant is strongly impoverished 
because of the destroying action of the plant’s turbines 
and the low water temperature. The self-cleaning process 
of water in this heavily polluted site is weakened. The 
zooplankton in process of substance decomposition plays 

an insignificant role. Bacterial mass cumulates which 
here, undergoes intense decomposition only at the inlet 
stream of the Angara. 

 

 
 

Fig. 5. Results of calculations for the bacteria carried  
out in a one-dimensional mathematical model 

 
Calculations have shown that the further the distance 

is from the Krasnoyarsk Hydroelectric Power Plant, the 
more change occur in concentration, selected as a 
component; in particular, there is a shift of peaks for 
diatoms, bacteria, and detritus. At a distance from the 
power plant of over one hundred kilometers, the model 
depicts the dynamics of water ecosystem development in 
space less adequately. This is caused by the studying of 
quality water characteristics; it is necessary to take in 
account the more difficult and full processes: 
hydrodynamic (convective stirring, pressure, wind, and 
deep currents), heat transfer and illumination. The use of 
the models based on various variants of mechanic 
equations for liquid and heat transfer, and corresponding 
boundary conditions is necessary [7].  

Let’s note the basic results obtained in the work: 
Point-wise and one-dimensional mathematical models 

of water ecosystems consisting of ten differential 
equations had been constructed. The use of models allows 
revealing of processes progressing dynamics in difficult 
ecological water systems, to predict a system status in 
time and in space (the one-dimensional model in a 
horizontal plane) for a distance up to one hundred 
kilometers, and to analyze problematic situations. The 
models in particular, make it possible to describe the 
change of hydrobionts and the basic biogenic elements, 
and also to reproduce occurrence situations, both for one 
and for two peaks of phytoplankton flowering during the 
vegetative season, depending on external conditions. It is 
necessary to notice, however, that the offered 
mathematical models are very sensitive to changes in 
parameters and demand a meticulous selection of 
coefficients for each specific aquatic ecosystem. 

The results obtained by means of the models described 
above, can as well be used as well for estimating 
ecological risks.  

A complex of computer programs has been produced, 
and the numerical simulation of some processes 
progressing in the ecosystem of the Novoselovsky reach 
of the Krasnoyarsk impoundment and in the Yenisei River 
had been carried out.  

The authors express their gratitude to Professor               
Z. G. Gold for his useful consultations. 
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ON PROPERTIES OF KNAPSACK SYSTEMS OF INFORMATION  

PROTECTION WITH THE OPEN KEY IN Zp 
 
Properties of sequences of numbers expressed through components of a knapsack vector are investigated. 

Properties of isomorphic and similar knapsack systems of information protection are analyzed. Methods of increasing 
cryptographic security of knapsack systems of information protection with an open key are presented. 
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Let’s express a set of natural numbers {0, 1, …, p–1} 

through Zp and a set of all numerical sets of length n with 
components from Zp. through n

pZ  .  

A knapsack problem for set w ∈ N and vector A = (а1, 
а2, …, аn), where аi∈N, I = 1…n, has the solution in Zp            
if there is an equation solution 

 

  AxT  = w, x∈ n
pZ       (1) 

 

we will call vector А of equations (1) a knapsack vector. 
A knapsack vector A = (а1, а2, …, аn) is an injective 

one if for any natural w the equation (1) has not more than 
one solution. A knapsack vector which has two elements 
ai = aj, I ≠ j, is not injective. Injectivity of a knapsack 
vector allows to speak about uniqueness of restoration of 
the original text according to the cryptogram. 
Supergrowing knapsack vectors are the simplest injective 
knapsack vectors from the point of view of understanding 
and algorithmization. For their components in Zp the 
following relationships are carried out: 

 

1

1
( 1)

j

j i
i

pa a
−

=

> −∑ , j = 2...n           (2) 
 

A knapsack vector A = (а1, а2, …, аn) is a 
nondecreasing one if its components are ordered 
according to the rule ai–1 ≤ аi, I = 2…n. Accordingly, the 
vector is increasing if its components are ordered 
according to the rule ai–1 <аi, I = 2…n. 

Definition. Let’s call vector ΔA = (δ 1, δ2, …, δn)                
a variation of vector A = (а1, а2, …, аn) (аi ∈ N, I = 1…n) 
in Zp, For its components the following correlations are 
carried out:  

1 1a=δ , 
1

1
( 1)

j

j j i
i

pa a
−

=

= − −δ ∑ , j = 2…n.            (3) 
 

On the basis of vector ΔA it is possible to define a 
knapsack vector A in Zp corresponding to it: 

 

1 1a = δ ,  
1 1

1

1 1
( 1) ( 1)

i i
i j

i i j i j
j j

p p pa a
− −

− −

= =

= + − = + −δ δ δ∑ ∑ , 

 I = 2…n.       (4) 
 

Let’s express a set of various values w for which 
equation (1) has the solution through μ (p, А). Capacity 
μ (p, А) does not exceed pn since the quantity of various 




