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ON PROPERTIES OF KNAPSACK SYSTEMS OF INFORMATION  

PROTECTION WITH THE OPEN KEY IN Zp 
 
Properties of sequences of numbers expressed through components of a knapsack vector are investigated. 

Properties of isomorphic and similar knapsack systems of information protection are analyzed. Methods of increasing 
cryptographic security of knapsack systems of information protection with an open key are presented. 

 
Keywords: a knapsack vector, isomorphism, cryptoanalysis, density, injectivity. 
 
Let’s express a set of natural numbers {0, 1, …, p–1} 

through Zp and a set of all numerical sets of length n with 
components from Zp. through n

pZ  .  

A knapsack problem for set w ∈ N and vector A = (а1, 
а2, …, аn), where аi∈N, I = 1…n, has the solution in Zp            
if there is an equation solution 

 

  AxT  = w, x∈ n
pZ       (1) 

 

we will call vector А of equations (1) a knapsack vector. 
A knapsack vector A = (а1, а2, …, аn) is an injective 

one if for any natural w the equation (1) has not more than 
one solution. A knapsack vector which has two elements 
ai = aj, I ≠ j, is not injective. Injectivity of a knapsack 
vector allows to speak about uniqueness of restoration of 
the original text according to the cryptogram. 
Supergrowing knapsack vectors are the simplest injective 
knapsack vectors from the point of view of understanding 
and algorithmization. For their components in Zp the 
following relationships are carried out: 

 

1

1
( 1)

j

j i
i

pa a
−

=

> −∑ , j = 2...n           (2) 
 

A knapsack vector A = (а1, а2, …, аn) is a 
nondecreasing one if its components are ordered 
according to the rule ai–1 ≤ аi, I = 2…n. Accordingly, the 
vector is increasing if its components are ordered 
according to the rule ai–1 <аi, I = 2…n. 

Definition. Let’s call vector ΔA = (δ 1, δ2, …, δn)                
a variation of vector A = (а1, а2, …, аn) (аi ∈ N, I = 1…n) 
in Zp, For its components the following correlations are 
carried out:  

1 1a=δ , 
1

1
( 1)

j

j j i
i

pa a
−

=

= − −δ ∑ , j = 2…n.            (3) 
 

On the basis of vector ΔA it is possible to define a 
knapsack vector A in Zp corresponding to it: 

 

1 1a = δ ,  
1 1

1

1 1
( 1) ( 1)

i i
i j

i i j i j
j j

p p pa a
− −

− −

= =

= + − = + −δ δ δ∑ ∑ , 

 I = 2…n.       (4) 
 

Let’s express a set of various values w for which 
equation (1) has the solution through μ (p, А). Capacity 
μ (p, А) does not exceed pn since the quantity of various 
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vectors in n
pZ  is equal to pn. Value | μ (p, А) | reaches the 

upper boundary, if  
 

∀x1, x2∈
n
pZ  x1 ≠ x2 ⇒ Ax1

T ≠ Ax2
T.       (5) 

 

Thus, capacity μ (p, А) reaches the upper boundary 
only when vector A is injective. Really, if vector A is 
injective, then correlations (5) are carried out and the 
number of various values AxT(x∈ n

pZ ) is equal to the 

number of various elements in n
pZ , i. e. pn. On the other 

hand, if |μ (p, А)| = pn, then there is a one-to-one 
depentanizer between elements μ (p, А) and n

pZ , and 

hence equation (1) for any w ∈ μ (p, А) has only one 
solution. From the latter follows an injectivity of 
knapsack vector A. 

Definition. Let’s call the value 
 

1

( , )
( )

( 1)
p n

i
i

p A
Ad

p a
=

μ
=

−∑
                           (6) 

 

density of a knapsack vector A in Zp. 
The density defines the relation of capacityμ (p, А)              

to the length of a cut [0, 
1

( 1)
n

i
i

p a
=

−∑ ]. It is obvious that     

∀ x∈ n
pZ  is a value AxT ∈ [0, 

1
( 1)

n

i
i

p a
=

−∑ ]. Thus,                  

0 <dp (A) ≤ 1. Moreover for injective knapsack vectors the 
density is equal to 1 only when all components of a 
variation of vector A are equal to unit [1], and 
cryptoanalysis of such knapsack systems consists in 
finding p. 

Wx = AxT, wx ∈ μ (p, А) corresponds to each set             
x = (α1, α2, …, αn) ∈

n
pZ . We will write out the sequence 

Wμ (p, A) = (w0, w1, w2, …, wk), where wi  = Axi
T,                           

xi = (α 1, α2, …, αn), i = 
1

n
n i

i
i

p −

=
α∑ , I = 1 … k, k = pn–1. 

If vector A is not injective in Wμ (p, A) there are two values 
wi = wj, I ≠ j. We will designate sequence ΔWμ (p, A) = (m1, 
m2, …, mk), where mi = wi  – wi–1 (I = 1…pn–1). 

The sequence ΔWμ (p, A) is symmetric with respect to 
the middle and can be defined recursively relative to the 
dimension of a knapsack vector A.  

Let Аn = (а1, а2, …, аn) (аi ∈ N, I = 1…n) be a 
knapsack vector. Vector Аn+1 = (а1, а2, …, аn, an+1) is 
received from An  by adding the component an + 1∈N. Then  

 

ΔWμ (p, An + 1) = (ΔWμ (p, An), δn + 1, 
ΔWμ (p, An), δn + 1, ΔWμ (p, An), …, δn + 1, ΔWμ (p, An)), 

 

where δn + 1, ΔWμ (p, An) is repeated p–1 times. 
The sequence ΔWμ (p, A) describes distances between 

the elements of sequence Wμ (p, A), i. e. its “sparseness”, 
and, hence, is the characteristic of μ (p, А).  

From symmetry ΔWμ (p, A) it follows that any w∈ W μ (p, A) 
can be presented in two ways: 

 

w=
1

n

j j
j

a
=

α∑ =
1 1
( 1)

n n

k ii
k i

p a a
= =

− − β∑ ∑ ,             (7) 

 

where αi, βi  ∈ Zp, I = 1…n. 
Lemma 1. Аn = (а1, а2, …, аn) is an injective knapsack 

vector, where аi ∈ N, I = 1…n. A vector Аn + 1 = (а1, а2, …, 
аn, an+1) is received from An by adding the component            
an + 1∈N, ΔAn + 1 = (δ 1, δ2, …, δn, δn + 1) is a variation of 
vector Аn+1 and δn + 1> 0. Then Аn + 1 = (а1, а2, …, аn, an+1) 
is an injective knapsack vector. 

The proof. 
Let’s show that ∀ wx ∈μ (p, Аn+1) equation (1) has 

only one solution. 
As wx belongs to set μ (p, Аn + 1) it follows that                

∃x = (α 1, α2, …, αn, αn + 1) ∈
1n

pZ +  for which wx = An + 1xT 

is carried out.  
1. If αn + 1 = 0, then wx ∈μ (p, Аn) and (1) has the only 

solution because of injectivity of Аn;  
2. Let 0 <αn + 1 <p. As δn + 1> 0 then any element              

μ (p, Аn) is less than an+1. Thus, if there is unique αn+1 and 
w′x ∈ μ (p, Аn) then wx = α n+1an + 1 + w′x and consequently 
equation (1) has the only solution.  

From randomness wx ∈μ (p, Аn + 1) it follows that Аn + 1 
is an injective knapsack vector. 

Lemma 2. Аn = (а1, а2, …, аn) is an injective increasing 
knapsack vector, where аi∈N, I = 1…n. Vector Аn + 1 =          
= (а1, а2, …, аn, an+1) is received from An by adding the 
component an+1∈N, ΔAn+1 = (δ1, δ2, …, δn, δn+1) is a 
variation of vector Аn + 1 and δn + 1 < 0.  

Vector Аn+1 = (а1, а2, …, аn, an+1) is an injective 
increasing knapsack vector if the following equation is 
carried out: 

 

(
1
( 1)

n

n j
j

pa a
=

− −∑  <δn+1) & (| δn+1 | ∉ W μ (2p-1, An)). 
 

The proof. 
First of all we will define a condition at which Аn + 1 

will be increasing. Since Аn is an increasing vector, it is 
necessary to follow the condition 

 

1 1
1
( 1)

n

n n nj
j

a a p a+ +
=

< = + δ−∑ . 

Hence  

1
( 1)

n

n j
j

pa a
=

− −∑  < δn + 1. 

 

Let Аn + 1 = (а1, а2, …, аn, an + 1) be increasing, but not 
injective, i. e. let there exist ωx ∈μ (p, Аn + 1), then                 
the equation (1) does not have only one solution. From 
the injectivity of Аn and properties of sequences Wμ (p, An) 

and Wμ (p, An + 1) it follows that all such ωx belong to cuts       

[an + 1 + k an + 1, 
1
( 1)

n

j
j

p a
=

−∑  + k an + 1], where k = 0... p–2.  
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Also, if  

1 1
1
( 1)

n

n j n
j

pa a+ +
=

= − + ≤δ∑ ωx 
1
( 1)

n

j
j

p a
=

≤ −∑           (8) 

 

and equation (1) has more than one solution for ωx,               
then the equation (1) also has more than one solution for 
ωx + k an + 1, where k = 0…p–2, and on the contrary.  

On the basis of the above-stated information we will 
consider ωx satisfying (8), then ωx ∈μ (p, Аn) and                      
ωx ∈μ (p, Аn+1).  

As ωx belongs to set μ (p, Аn+1) we have: 
 

ωx = 1
1

n

n jj
j

a a+
=

+ β∑  = 1
1 1
( 1)

n n

k n jj
k j

p a a+
= =

⎛ ⎞
− + + βδ⎜ ⎟

⎝ ⎠
∑ ∑ , 

 

where βi∈Zp, I = 1…n, 0 < α < p–1. 
As ωx belongs to set μ (p, Аn) and validity (7) we 

have: 

ωx =
1

n

jj
j

a
=

γ∑  = 
1 1
( 1)

n n

jjk
k j

ap a
= =

− ϕ−∑ ∑ , 

 

where γi, ϕi∈Zp, I = 1…n.  
Thus, there is an equality: 
 

1 1
( 1)

n n

jjk
k j

ap a
= =

− ϕ−∑ ∑ = 1
1
( 1)

n

k n
k

p a +
=

− + +δ∑  

+ 
1

n

jj
j

a
=

β∑ – δn + 1=
1
( )

n

jj j
j

a
=

+β ϕ∑ . 

 

From the latter equality it follows that –δn + 1∈Wμ (2p–1, An). 
Hence, for injectivity of vector Аn + 1, |δn + 1|∉Wμ (2p-1, An) is 
necessary.  

Then we we will define an addition operation ⊕ οn set 
μ (p, A) of knapsack vector A = (а1, а2, …, аn) as follows: 

 

∀w1, w2 ∈μ (p,) w = w1⊕w2 = 

= 
1 1

n n

i i ii
i i

a a
= =

⊕ βα∑ ∑ =
1

n

ii
i

a
=

γ∑ ,          (9) 
 

where γi = (α i + β i) mod p; αi, βi ∈Zp, I = 1…n. 
The set μ(p, A) with an addition operation ⊕ forms an 

additive finite Abelian group (μ(p, A), ⊕). 
Definition. Two knapsack vectors A = (а1, а2, …, аn) 

and B = (b1, b2, …, bk), whose variation vectors ΔA and 
ΔB differ only in the value of the first component are 
isomorphic ones. We will denote them as A≈B if there is 
an isomorphism f: μ(p, A) →μ(p, B). 

Two knapsack vectors can be isomorphic only when 
they have identical dimension and |μ (p, A)| = |μ (p, B)|. 

Let’s consider two isomorphic knapsack vectors                
A = (а1, а2, …, аn) and B = (b1, b2, …, bk). From (4) we 
have:  

1 1a = δ , 
1

1

1
( 1)

i
i j

i i j
j

p pa
−

− −

=

= + −δ δ∑ , 

1 1b = ′δ , 
1

2 1
1

2
( 1) '

i
i i j

i i j
j

p p pb
−

− − −

=

⎛ ⎞
= + − +δ δ δ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ , I = 2…n. 

 

Let’s call value ε (A, B) = δ′1 – δ1 a coefficient of 
isomorphism of two vectors A and B. 

Then  

1 1b = + εδ , 
1

2 1

1
( 1)

i
i i j

i i j
j

p p pb
−

− − −

=

⎛ ⎞
= + − ε +δ δ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ , 

b1 = a1 + ε,   bi = ai + (p – 1) pi–2 ε, 
I = 2…n, ε = ε (A, B).                    (10) 

 
And the following correlation is valid : 
 

1 1
2

1
1 2

( 1) ( 1)( ) ( 1) ( 1) )(
j j

i
i i

i i
p p p pa pb a

− −
−

= =

− = − + ε + − + − ε∑ ∑  = 

= 
1 1

2

1 2
( 1) ( 1) (1 )

j j
i

i
i i

p p pa
− −

−

= =

− + − ε +∑ ∑ = 

= 
1

2

1
( 1) ( 1)

j
j

i
i

p p pa
−

−

=

− + − ε∑ .        (11) 
 

On the basis of properties of sequences Wμ (p, A) and 
Wμ (p, B) it is possible to draw a conclusion that Wμ (p, B) is 
received from Wμ (p, A) by “recursive scaling” on ε relative 
to nodal values (а2, …, аn), and each value ai is displaced 
according to (10). Sequence ΔWμ (p, B) is received from 
ΔWμ (p, A) by replacement of all occurrences δ1 on δ1 + ε. 

If for knapsack vectors A = (а1, а2, …, аn), B = (b1, b2, …, 
bn) and C = (c1, c2, …, cn) A≈B and B≈C are carried out 
then A≈C. Really, due to bijectivity f:μ (p, A)→μ (p, B) 
and g:μ (p, B)→μ (p, C) it follows that h = g°f:                
μ (p, A) → μ (p, C) is bijective and ε (A, C) = ε (A, B) + 
+ ε (B, C). 

Isomorphism of knapsack vectors is an equivalence 
relation, and, hence, a set of isomorphic vectors forms an 
equivalence class. In each class there is a vector for which 
the coefficient of isomorphism with any other vector of 
this class is non-negative. Let’s call such a vector a base 
vector of an equivalence class.  

Let Θ = (θ1, θ2, …, θn) be a base vector of some 
equivalence class and A = (а1, а2, …, аn) be an arbitrary 
element of the same class, i. e. Θ≈ A, ε (Θ, A) > 0.              
As |μ (p, A)|=|μ (p, Θ)| from density definition of a 
knapsack vector in Zp we have: 

 

|μ (p,)| = dp (A) 
1

( 1)
n

i
i

p a
=

−∑  = 

=  dp (Θ) 
1

( 1)
n

i
i

p
=

− θ∑  = |μ (p, Θ)|. 
 

Owing to (11) it follows that: 
 

dp (A) 
1

( 1)
n

i
i

p a
=

−∑  =dp (A) 2

1
( ( 1) ( 1) )

n
n

i
i

p p p −

=

− + ε −θ∑  = 

= dp (Θ) 
1

( 1)
n

i
i

p
=

− θ∑ . 
 

From the latter we will express dp (Θ): 
 

dp (Θ) =dp (A) 
2

1

1
n

n

i
i

p −

=

⎛ ⎞
⎜ ⎟ε⎜ ⎟+
⎜ ⎟

θ⎜ ⎟
⎝ ⎠

∑
, where ε = ε (Θ, A). 
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dp (Θ) = dp (A)(1+k ε (Θ, A)), 
where  

k=
2

1

n

n

i
i

p −

=
θ∑

 = cont.              (12) 

 

Thus, the basic vector has the greatest density among 
all vectors of its equivalence class. 

In case if the basic vector Θ is supergrowing then 
vector A is also supergrowing. Really from (2) and (10) 
we have: 

 

1 1
2

1
1 2

( 1) ( 1)( ) ( 1) ( 1) )(
j j

i
i i

i i
p p p p pa

− −
−

= =

− = − + ε + − + − εθ θ∑ ∑  = 

= 
1 1

2

1 2
( 1) ( 1) (1 )

j j
i

i
i i

p p p
− −

−

= =

− + − ε +θ∑ ∑  <  

< 2( 1) j
j p p −+ − εθ = aj, ε = ε (Θ, A). 

 

From the latter inequality it follows that for any 
equivalence class with a basic supergrowing vector there 
is a knapsack vector from the given class for any positive 
coefficient of isomorphism. Generally the given statement 
is not true. For example, for an injective vector (15, 42, 
51, 83) there is no isomorphic vector in Z2 with an 
isomorphism coefficient equal to 10 since vector (25, 52, 
71, 123) is not injective. 

Thus, KSPI with knapsack vector A is possible to 
transform into equivalent KSPI with a knapsack vector Θ, 
where Θ  is a basic vector of an equivalence class of 
vector A. The expediency of the given transformation is 
caused by smaller volume of calculations μ (p, Θ) and 
memory expenses. For example, to store each element 
μ (2, A) of supergrowing knapsack vector A = (45, 69, 
218, 415, 796, 1752, 3588, 7375, 17897, 36073) 17 bits of 
memory are necessary, and to store corresponding values 
of a basic vector Θ = (1, 25, 130, 239, 444, 1048, 2180, 
4559, 12265, 24809) 16 bits for each are enough. If 
values of a knapsack vector components are great and if 
there is corresponding dimension then the memory 
capacity necessary to store elements μ (р, A) can exceed 
the sizes of standard types of programming languages and 
consequently will demand additional procedures for 
storage and performance of operations with such “big” 
numbers which, naturally, causes the increase in time and 
memory expenses. In particular for the above-stated 
example to store values μ (2, B) of supergrowing vector  
B = (444444444, 444444468, 888889016, 1777778011, 
3555555988, 7111112136, 14222224356, 28444448911, 
56888900969, 11377780227) belonging to the same class 
of equivalence already 38 bits are necessary for each. 

Theorem. Let A = (а1, а2, …, аn) be an injective 
knapsack vector with dimension n and t ≠ 0 be an integer 
value. Then, an injective knapsack vector with dimension 
n by means of whose components in Zp all elements of a 
set are expressed {w + t|w ∈μ (p,)} does not exist. 

The proof. 
Let's assume that an injective knapsack vector                 

B = (b1, b2, …, bn) exists. Then {w+t|w ∈μ (p,A)} ⊆ μ (p, B). 

1. t > 0. Then |μ (p, B)| ≥ |μ (p, A)| + 1 since zero is 
included in μ (p, B), but is not included in {w + t|w ∈ μ (p,)}. 
But due to injectivity of vectors A and B |μ (p, B)| = |μ (p, A)| 
is carried out. As we can see there is contradiction. 

2. t < 0. Since 0 ∈ μ (p,A), t ∈ μ (p, B) that contradicts 
bi∈N, i=1, …, n.  

Thus, updating of KSPI by way of changing the 
numerical value of a crypto text leads to increase in the 
complexity of its crypto analysis. 

Definition. Two knapsack vectors A = (а1, а2, …, аn) 
and B = (b1, b2, …, bn) are similar, we will denote them 
A≅B only when there is a mutually single-valued 
transformation f: А→B such that: 

– ∀a∈А f (Сa) = Сf (a), where C∈ Z; 
– ∀a ′, a ′′∈ A , f (a ′ + a ′′) =f (a ′) + f (a ′′) is carried 

out. 
Two vectors one of which is received from another by 

strong modular multiplication can serve as an example of 
two similar injective knapsack vectors. 

Let us investigate the properties of two similar 
injective knapsack vectors A = (а1, а2, …, аn) and                 
B = (b1, b2, …, bn) the transformation of which is defined 
by function f (x) = cx in some field where c is some 
constant:  

f (ai) = cai= bi, I = 1…n, 

∀wa ∈μ (p,) f (wa) = f (
1

n

i i
i

a
=

α∑ ) 

=
1

)(
n

i i
i

f a
=

α∑ =
1

)(
n

i i
i

ca
=

α∑ =
1

n

i i
i

b
=

α∑ . 
 

Densities of such vectors are connected by a 
correlation: 

 

dp (B) =

1

( )

( 1)

p
n

i
i

B

p b
=

μ

−∑
=

1

( )

( 1)

p
n

i
i

A

p ca
=

μ

−∑
=

1

( )

( 1)

p

n

i
i

A

c p a
=

μ

⎛ ⎞
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⎝ ⎠
∑

, 

dp (A) = c dp (B).    (13) 
 

Sequences Wμ (p, A) and Wμ (p, B) possess properties 
defined by a correlation (10). The elements of sequences 
ΔWμ (p, A) and ΔWμ (p, B) are connected as follows: 

 

mi = chi, I = 1…n, where mi ∈Δ W μ (p, B), hi ∈Δ W μ (p, A) 
 

The most widely known are systems of information 
protection with an open key and with a knapsack on the 
basis of a secret key [2] in which a vector received from a 
knapsack vector by strong modular multiplication by 
values of a secret key is used as an open key. It is possible 
to perform the crypto analysis of such systems by 
analytical or statistical methods, or by means of the 
analysis of an open key.  

Analytical methods are based on methods of decisions 
of equation (1) on the basis of known values from μ(p,). 
Applicability of the given methods is based on volumes of 
done calculations. The upper boundary of a number of 
solutions (1) is presented in [3] and generally is a NP-full 
problem. 
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Statistical methods are based on statistical 
characteristics of elements of a natural language or other 
language of the original text and the statistics of crypto 
text elements. The main objective of such methods is to 
find a mutually single-valued correspondence between the 
elements of an original text and a cipher text rather than 
to find a knapsack vector. They are applicable only in the 
presence of statistical volumes of cipher texts. 

Methods of crypto analysis of an open key consist in 
restoration of a KSPI knapsack vector according to an 
open key vector. In particular, for two supergrowing 
knapsack vectors, received one from another by means of 
strong modular multiplication, A. Shamir offers an 
algorithm of finding a knapsack vector A KSPI if vector B 
[2] is known. 

On the basis of knapsack vectors properties described 
above it is possible to formulate the following results: 

1. Crypto analysis of KSPI can be made not only on 
the basis of statistics of cipher texts elements values, but 
also on distribution of values. As the probability of 
occurrences of elements ΔWμ (p, A) sequences of knapsack 
vector A = (а1, а2, …, аn) in Zp is a constant value for the 
set dimension n, the table of probabilities is calculated at 
the stage of preliminary preparation of crypto analysis. 
The analysis of cipher texts is made on the basis of 
differences between pairs of values of its elements. In this 
case a number of various values of a cipher text elements 
is more important than the volume of known cipher texts. 
The construction of an injective knapsack vector is carried 
out on the basis of properties Wμ (p, A) and Lemma 1. 

2. The applicability of statistical methods of cipher 
texts analysis is based on its volume. Therefore if 
volumes of such information are small then the given 
methods are practically inapplicable. Updating KSPI with 
one knapsack vector into a system with dynamically 
generated knapsack vectors [4; 5] leads to practical 
inapplicability of statistical methods of cipher texts 
analysis. 

To increase the cryptographic security of classical 
systems of information protection with an open key and 
with a knapsack it is necessary not only to use isomorphic 
and similar knapsack vectors, but also to change values of 
exits of the enciphering  block  of KSPI  by value of some  

constant. For example, having altered a classical system 
of information protection with an open key and with a 
knapsack on the basis of a secret key (m, t) [2], it is 
possible to raise the system cryptographic security 
essentially.  

Let’s consider a simple example. Let A = (2, 5, 6) be 
an injective increasing knapsack vector. Before the 
definition of an open key – vector B, we will apply 
function f (x) = x2 – х to the elements of vector A and 
considering that f (2) = 2, f (5) = 20, f (6) = 30, we will 
receive A′ = (2, 20, 30). Using pair m = 220 and t = 17 as 
a secret key [2] we will receive open key B = (34, 120, 
70) by strong modular multiplication [2]. A crypto 
analysis of vector B according to A. Shamir’s algorithm 
can lead only to reception of a supergrowing vector A′ [2] 
in which cipher texts w = 7 is inadmissible. Thus, the use 
of a secret key (m, t, f (x)) leads to the fact, that known 
methods of the analysis of an information protection 
system with an open key, in particular, those using strong 
modular multiplication, are inapplicable or demand 
additional expenses concerning transformation search f(x). 
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