УДК 629.78.002.3

А. Е. Михеев, А. В. Гирн, В. В. Хартов, Е. В. Вахтеев, И. В. Евкин

СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ НАНЕСЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА КОНСТРУКЦИИ КОСМИЧЕСКИХ АППАРАТОВ МИКРОДУГОВЫМ ОКСИДИРОВАНИЕМ

Исследовано воздействие факторов хранения и эксплуатации, терморадиационных и антиэрозионных характеристик, электрического сопротивления на покрытия, полученные методом микродугового оксидирования (МДО). Исследования показали, что МДО-покрытия могут быть использованы в качестве защитных покрытий космических аппаратов.

Ключевые слова: антиэрозионные покрытия, микродуговое оксидирование.

Для обеспечения функционирования космического аппарата (КА) в течение всего срока активного существования (САС) необходимо, чтобы деградация ряда параметров аппаратуры и систем в процессе эксплуатации не приводила к нарушению его целевого использования.

Ужесточение требований по массе, энерговооруженности и повышение требований к ресурсу и надежности КА приводят к уплотнению его компоновочной схемы. Как следствие, возрастает эрозионное воздействие стационарных плазменных двигателей (СПД), используемых в качестве двигателей коррекции, на материалы элементов конструкции КА. Обострение конкуренции на рынке космической техники вызывает необходимость в разработке новых и модернизации существующих защитных покрытий с требуемыми характеристиками.

Эрозионное воздействие плазменных струй СПД, заключающееся в уносе материала конструкции в результате длительной бомбардировки ионами газа, приводит к загрязнению внешних поверхностей КА продуктами распыления. Основной характеристикой данного вида воздействия является глубина эрозии, т. е. толщина распыленного слоя.

Предварительная оценка эрозионно-загрязняющего воздействия плазмы, генерируемой стационарными плазменными двигателями, на поверхности панелей солнечных батарей и терморегулирующих покрытий (ТРП) радиатора системы терморегулирования (СТР) КА показала, что данное воздействие может существенно дестабилизировать функционирование КА [1].

Предварительная оценка уровня эрозии углепластика КМУ-4, из которого изготовлены штанги и каркас БС, составляет от 103,5 до 827,6 мкм при длительности работы СПД 4 500 ч. Максимальный уровень загрязнения терморегулирующего покрытия радиатора СТР продуктами эрозии панелей БС — $1,5\cdot10^{-3}$ г/см². Полученное значение деградации коэффициента поглощения покрытием солнечной радиации ΔA_S вследствие загрязнения продуктами эрозии панелей БС, равное 0,12, недопустимо высоко (допускаемое значение деградации коэффициента поглощения ΔA_S терморегулирующего покрытия радиатора СТР платформы «Экспресс-1000Н» от воздействия всех факторов составляет 0,16).

Еще одно негативное воздействие плазменных струй СПД проявляется в эрозии электропроводящего слоя (ПЭП) на терморегулирующих покрытиях КА, что приводит к накоплению статического заряда и возникновению электропробоев на поверхности КА.

При этом решить проблему эрозионного воздействия плазмы СПД на материалы элементов конструкции КА с помощью разуплотнения компоновочной схемы КА невозможно в связи с ужесточением требований по массе и энерговооруженности КА.

Таким образом, с целью повышения качества изготовления изделий космической техники необходимы разработка и применение на критичных поверхностях КА покрытий с повышенной стойкостью к эрозионному воздействию плазмы СПД.

Предварительный анализ показал, что к веществам, обладающим наибольшей стойкостью к воздействию струи плазмы инертных газов (аргона, ксенона), относится оксид алюминия (AL_2O_3). Оценочные расчеты показывают, что необходимая толщина защитного покрытия из AL_2O_3 должна быть не менее 33 мкм.

В данной работе предлагается защищать элементы конструкции КА, попадающие под действие плазмы СПД, тонкой (до 100 мкм) алюминиевой фольгой с антиэрозионным покрытием из оксида алюминия, нанесенного микродуговым оксидированием (МДО), что приемлемо и по весовым характеристикам [2–4].

Исследования проводились на установке ИАТ-Т, источник питания которой позволяет осуществлять независимую регулировку анодной и катодной составляющих тока и одновременно стабилизировать средние величины этих токов, что существенно упрощает проведение процесса МДО и ведет к улучшению качества получаемых покрытий. Источник имеет следующие технические характеристики: диапазон регулируемых токов (0...120) А/дм²; погрешность стабилизации тока до 5 %.

В качестве подложки использовались образцы фольги АД размерами 160×130 мм и толщиной 100 мкм. Микродуговое оксидирование образцов проводили в слабощелочных водных электролитах различных составов.

Покрытия формировали при соотношениях $I_{\rm k}/I_{\rm a}$ от 0,6 до 1,4, плотностях тока в диапазоне от 10 до 40 ${\rm A/gm^2}$, в течение 10...60 мин. Толщину покрытий

контролировали толщиномером TT260 и на поперечных шлифах при помощи оптического микроскопа. Микроструктуру защитного покрытия, нанесенного МДО, изучали с использованием металлографического исследовательского комплекса SIAM на базе оптического микроскопа ЛабоМет И2.

С ростом плотности тока наблюдается увеличение твердости оксидного слоя защитных покрытий, это происходит за счет повышения содержания модификации α -Al₂O₃ в покрытии, что подтверждают исследования фазовых составляющих покрытия. Увеличение катодной составляющей тока приводит к увеличению твердости покрытия и снижению его толщины, это объясняется повышением температуры в канале пробоя. При уменьшении соотношения I_{κ}/I_{a} до 1 и более микротвердость покрытия снижается, а толщина увеличивается.

Выявлено, что оптимальными режимами получения защитных покрытий являются режимы обработки при высоких плотностях тока (более 20 А/дм²) и соотношении анодной и катодной составляющей тока менее 1. Оптимальное время обработки от 30 до 45 мин.

Для проведения испытаний защитных покрытий на воздействие факторов хранения и эксплуатации были изготовлены образцы защитного покрытия из алюминиевой фольги АД по ГОСТ 4784—74 с МДО поверхности размером не менее 100×100 мм.

Защитные покрытия подверглись следующим видам испытаний:

- цикличному сгибанию на диаметре 20 мм;
- ускоренным климатическим испытаниям (УКИ);
- радиационному воздействию;
- термоциклированию.

Перед УКИ образцы защитных покрытий были подвергнуты циклическому сгибанию по боковой поверхности цилиндра диаметром 20 мм и последующему разгибанию в плоскость. Количество циклов 50. Внешний вид покрытий после воздействия не изменился.

Измерение терморадиационных коэффициентов поглощения солнечной радиации A_s и степени черноты E_n проводилось в соответствии с ОСТ92-0909–69. Измерение коэффициента A_s проводилось фотометром ФМ-59М, коэффициента E_n — терморадиометором ТРМ-И. В качестве образца сравнения при измерении коэффициента A_s защитного покрытия с МДО использовали образец АД с анодным оксидированием, $A_s = 0,47$.

Измерение поверхностного сопротивления проводилось на тераомметре E6-13A с использованием электрода из резины, обернутого оловянной фольгой. Толщина фольги 0.02 мм. Площадь электрода 20×20 мм. Давление на образец при измерении $100~\text{г/cm}^2$, напряжение 100B. Погрешность измерения не более 5~%.

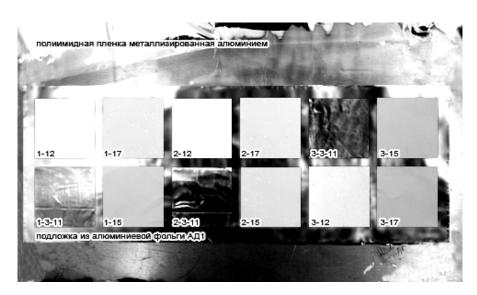
Осмотр внешнего вида образцов проводился визуально. При этом контролировалось наличие трещин, отслоений покрытия, сохранение цвета.

Результаты измерения характеристик образцов показали, что A_s образцов с покрытием равно 0,53...0,36 и зависит от режимов обработки, E_n – 0,8...0,33. Отношение A_s/E_n составляет более 0,5, что соответствует требованиям, предъявляемым к материалам для KA.

Сопротивление поверхности составляет $7,1\cdot10^7...8,6\cdot10^7,1$ Ом/ Υ . Величина поверхностного электрического сопротивления после испытаний незначительно увеличилась на отдельных образцах. Внешний вид образцов после испытаний не изменился.

Испытания на радиационное воздействие проводились на электронном ускорителе ЭЛУ-4 в НИИ интроскопии. Образцы облучались электронами в среде азота до поглощенной дозы $6\cdot 10^8$ рад. Средняя энергия электронов в плоскости размещения образцов — 4 МэВ, средняя плотность потока электронов $4.2\cdot 10^{10}~{\rm cm}^{-2}{\rm c}^{-1}$.

Испытание на воздействие термоциклов проводилось в вакуумной камере УКГ-1000 при остаточном давлении не более 5.10^{-6} мм рт. ст. Образцы располагались на термостоле, сверху закрывались ЭВТИ. Нагрев и охлаждение осуществлялись за счет теплового контакта и радиационного излучения с поверхности термостола. Нагрев термостола осуществлялся лампами типа КГ-127-1000, а охлаждение - жидким азотом. Скорость нагрева-охлаждения составляла от 5 до 10 градусов в минуту. Излучение от ламп на поверхность образцов не попадало. Температура контролировалась с помощью датчиков типа «термометры платиновые ТП 018-03». Выдержка при крайних температурах в течение 10 мин. Термоциклирование проводилось в диапазоне температур от -150 до +170 °C в количестве 100 циклов.


Образцы защитных покрытий из алюминиевой фольги АД по ГОСТ 4784—74 с оксидным слоем, нанесенным МДО, выдержали испытания на воздействие радиации дозой $6\cdot 10^8$ рад и последующее воздействие 100 термоциклов в вакууме в диапазоне температур от -150 до 170 °C.

Для испытания МДО покрытия на стойкость к воздействию плазмы отделом материаловедения ОАО «ИСС» была разработана испытательная установка имитационной аргоновой плазмы на базе вакуумной камеры «Булат», которая позволяет сравнивать характеристики стойкости материалов к воздействию плазмы, и на этой основе получать предварительную оценку распыления материалов, выбирать из них наиболее стойкие и рекомендовать их на КА. При проведении испытаний сравнивали стойкость трех материалов: алюминиевой фольги (алюминий покрывает большинство поверхностей КА,) полиимидной пленки (которая в настоящее время используется в качестве защитного покрытия от воздействия плазмы СПД) и алюминиевых образцов с МДО-покрытием (табл. 1).

Из каждого материала были изготовлены по 4 образца размером 30×30 мм, которые укладывались в зоне облучения в шахматном порядке (см. рисунок).

Режимы микродуговой обработки и толщина покрытий

Электролит	Ток анода,	Ток катода	Время обра-	Толщина образ-	Толщина покры-
электролит	$A/дм^2$	$A/дм^2$	ботки, мин.	ца, мм	тия, мм
$KOH - 4 г/л Na2SiO3 - 10 г/л KMnO_4 - 13 г/л$	15	15	40	0,125	0,027
$Na_6P_6O_{12}-40$ г/л	15	15	30	0,1	0,022
	15	18	30	0,1	0,008
NaH2PO4 12H2O – 40 г/л Na2B4O7 10H2O – 30 г/л NaF – 10 г/л	15	15	60	0,111	0,013

Подложка с образцами после воздействия плазмы

Режимы испытания в камере «Булат»: ток на катушке соленоида -2,5 A, напряжение на аноде - в переделах 800 B, ток разряда -15 мА. Расчетное значение плотности теплового потока, создаваемого плазменной струей ионного источника, составило 0,008 BT/cm². Расстояние от столика с образцами до генератора плазмы равно 150 мм. Угол падения ионов на поверхности образцов - около 90° . Длительность обработки -60 мин.

До и после воздействия пучком ионов на образцы производилось взвешивание образцов на прецизионных электронных весах HR-202, а также измерение толщины контактным способом с использованием многооборотного индикатора (табл. 2, 3). Толщину образцов измерили в нескольких точках, затем вычисляли среднее значение. Процентное значение изменения массы образца в результате распыления плазмой рассчитывали по формуле

$$\Delta M = \frac{M_{\text{до}} - M_{\text{после}}}{M_{\text{до}}} \cdot 100 \%,$$

где $M_{\text{до}}$ — масса образца покрытия до испытаний, г; $M_{\text{после}}$ — масса образца покрытия после испытания, г.

После воздействия плазмы у образцов алюминиевой фольги с микродуговым оксидированием поверхности внешний вид остался без изменений. Макси-

мально изменились масса и толщина у образцов полиимидной пленки. Образцы МДО потеряли массу большую, чем образцы алюминиевой фольги, что можно объяснить некоторой гигроскопичностью МДО-покрытий. Толщина покрытий практически не изменилась. Исследования показали, что покрытия, полученные методом МДО, могут быть использованы в качестве защитных покрытий на КА.

Библиографические ссылки

- 1. Исследование загрязняющего воздействия собственной внешней атмосферы и плазмы стационарных плазменных двигателей на космическом аппарате «Экспресс-АМ» / В. А. Смирнов, А. Б. Надирадзе, И. А. Максимов и др. // Вестник СибГАУ. 2006. Вып 2 (9). С. 46–50.
- 2. Микродуговое оксидирование (теория, технология, оборудование) / И. В. Суминов [и др.]. М. : Экомет, 2005.
- 3. Технологические возможности микродугового оксидирования алюминиевых сплавов / А. Е. Михеев, [и др.] // Вестник машиностроения. 2003. № 2. С. 56–63.
- 4. Технология нанесения антиэрозионных покрытий на элементы конструкций космических аппаратов / А. В. Михеев [и др.] // Вестник СибГАУ. 2010. Вып. 4 (30). С. 130–134.

Изменение массы образцов до и после испытания

Таблица 2

Образцы		Масса образ	вцов, г	Изменение, г	ΔM , %
		$M_{ m до}$ $M_{ m после}$		$(M_{ m дo}-M_{ m пocлe})$	ΔM , 70
ПМ	1	0,228 37	0,226 79	0,001 58	0,692
	2	0,231 80	0,230 21	0,001 59	0,686
	3	0,238 60	0,237 13	0,001 47	0,616
	4	0,230 80	0,229 51	0,001 29	0,559
	Сред	0,001 48	0,638		
мдо	1	0,427 91	0,427 28	0,000 63	0,147
	2	0,428 08	0,427 51	0,000 57	0,133
	3	0,467 58	0,466 83	0,00075	0,160
	4	0,451 92	0,450 72	0,000 120	0,265
	Сред	0,000 79	0,177		
АД1	1	0,419 36	0,419 04	0,000 32	0,076
	2	0,421 35	0,421 04	0,000 31	0,073
	3	0,423 58	0,423 29	0,000 29	0,068
	4	0,425 82	0,425 52	0,000 30	0,070
Среднее значение				0,000 31	0,072

Изменение толщины образцов до и после испытания

Таблица 3

Образцы		Толщина об	Изменение		
		$T_{\mu o}$	Тпосле	$(T_{\text{до}} - T_{\text{после}})$, мм	
ПМ	1	0,097	0,096	0,001	
	2	0,105	0,098	0,007	
	3	0,103	0,099	0,004	
	4	0,100	0,0,97	0,003	
	Среднее значение				
мдо –	1	0,100	0,099	0,001	
	2	0,100	0,099	0,001	
	3	0,125	0,125	0	
	4	0,111	0,110	0,001	
	0,000 75				
АД1	1	0,096	0,095	0,001	
	2	0,096	0,095	0,001	
	3	0,096	0,092	0,004	
	4	0,096	0,094	0,002	
	0,002				

A. E. Mikheev, A. V. Girn, V. V. Khartov, E. B. Vakhteev, I. V. Evkin

PERFECTION OF TECHNOLOGY OF APPLICATION OF SHEETINGS ON FRAMES OF SC BY MICROARC OXIDATION

The authors investigated factors of storage and running, thermo-radiating and anti-erosive characteristics, electric resistance, and influence of all these factors on the coverings, produced by a method of microarc oxidation (MAO). The investigations have shown that MAO clothing can be used as protective coatings of space vehicles.

Keywords: antierosive coverings, microarc oxidation.

© Михеев А. Е., Гирн А. В., Хартов В. В., Вахтеев Е. В., Евкин И. В., 2011