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operator to translate the codes of WD values read from 
the IML. 

Introduction results of the automation procedures. The 
developed software has completely solved the tasks in 
view of independent working IML, and thanks to the 
automation procedures, allowing: 

– to automate the process of independent working 
IMLs to 90 %, leaving the operator only the performance 
and the analysis of specific checks; 

– to reduce time spent for working out concrete IMLs, 
from several weeks to 1–2 working days; 

– to spend simultaneous working to 8 IMLs as a part 
of a workplace, connected among each other on 
interblock sockets and connected to the CPM; 

– to check the working IML capacity during irregular 
situations, by their modelling; 

– to independently fulfill each complete the IML set 
(basic/reserve) connected to each complete the CPM set 
(basic/reserve); 

– to fulfill the BM in gathering, with use regular 
cables as the IML connections; 

– to use the РМ at any stage of REE tests thanks to 
flexibility and universality. 

Currently, the given software – the independent 
working IML is used in space vehicle management blocks – 
“Monsoon”, “Glonass-to”, “Amos-5”; and is used at the 
working SV “Luch-5”. During the tests, the correctness of 
the construction of the software and correctness of the 

approach connected with design of the automated 
procedures have been confirmed.  

Thus, the developed software has proved its 
reliability, universality, and simplicity in use, thanks to 
what it is applicable for the working of the subsequent 
IML management block of perspective SVs. The 
procedures of the automated software and their algorithms 
are applicable for designing the software of workings 
REEs. 
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A MULTIDIMENSIONAL ANALOG OF THE COOLEY-TUKEY FFT ALGORITHM 

 
In this article a recurring sequence of orthogonal basis in the n-dimensional case has been applied to derive 

formulas of n-dimensional fast Fourier transform algorithm, which uses 2
2 1

log
2

n
n

n N N−  complex multiplication and 

2lognnN N  complex addition; where = 2sN  – is a number of counts on one of the axes. 
 
Keywords: space of signals, orthogonal basis sequence, multidimensional discrete Fourier transform. 
 
Recurrent sequence of orthogonal bases in space of 

signals is well studied [1] and has numerous applications, 
including the derivation of Fourier’s formulas of fast 
transformation. 

In this article the recurrent sequence of orthogonal 
bases to a n-dimensional case is applied in order to           
derive formulas of a fast n-dimensional Fourier 

transformation variant, using 2
2 1

log
2

n
n

n N N−  complex 

multiplication and 2lognnN N  complex addition, where 

= 2sN  – is a number of counts on one of the axes 

(known in studies as in [2]). This variant n FFT contains 
a smaller number of complex multiplication operations 
than other algorithms, where the multidimensional 
Fourier transformation is carried out by repeated 
application of one-dimensional FFT (for example, see              
[3; 4]). 

Furthermore, we give definitions and basic statements 
from the theory of multidimensional signals, which are 
used in the article.  

To construct n-dimensional recurrent sequence of 
orthogonal bases we use the scheme of the statement, 
given in [1] for a one-dimensional case. 
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1. The space of periodic n-dimensional signals. 
Definition 1. With a fixed N , the n-dimensional 

periodic signal shall be a periodic complex function of 
integer argument, with the period N  on each variable.  

Define operations of adding the two signals 1x , 2x  and 
multiplying the signal x  by a complex number c :  

 

1 2( ) = ( ) ( );y j x j x j+  
( ) = ( )y j c x j⋅ , 

 

where ( )x j  – is the count of a signal x  at point nj ∈ Z . 

Then, a set of signals Cn
N  becomes a linear complex 

space. A zero element in Cn
N  is the signal O  such, that 

( ) = 0jO  for all is nj ∈ Z . Scalar produce and norm of 

space Cn
N  are:  

( )
, = ( ) ( )

j B Nn

x y x j y j
∈

〈 〉 ∑ , 

1/2|| ||= , ,x x x〈 〉  
 

where ( )nB N  – is a set of integer vectors from 

[0, 1]nN − . 
Definition 2. The unit n -dimensional periodic 

impulse, with the period N  on each variable, is a signal 
n
Nδ  such, that ( ) = 1n

N jδ , if each coordinate of a vector j  

divided by N and ( ) = 0n
N jδ  otherwise.  

The Following statements are true for a unit impulse. 
1) 1 1( ,..., ) = (| |,...,| |)n n

N n N nj j j jδ δ ; 

2) 1 1
1 1( ,..., ) = ( ) ... ( )n

N n N N nj j j jδ δ ⋅ ⋅δ ; 

3) For Cn
Nx ∈  the equality is true: 

 

( )
( ) = ( ) ( ),n

N
t B Nn

x j x t j t
∈

δ −∑                      (1) 

for any ( )nj B N∈ . 

Let 2= exp( )N
iw

N
π . 

Lemma 1. Then 
 

 ( , )

( )

1( ) = ,n j t
N Nn

t B Nn

j w
N ∈

δ ∑                       (2) 

 

where ( , )j t  – is the scalar product of vectors j  and t .  
Equation is checked (2) by direct calculation.  
Definition 3. The n-dimensional discrete Fourier 

transform is called a depiction: : C Cn n
N N NF →  take each 

signal x  to a signal X  , where: 
 

( , )

( )
( ) = ( ) , ( ).j t

N n
t B Nn

X j x t w j B N−

∈

∈∑  

 

Note that, for DFT the formula of inversion is true: 
 

( , )

( )

1( ) = ( ) j t
Nn

j B Nn

x t X j w
N ∈

⋅∑  

 

and the Parseval identity:  
if = ( )NX F x , = ( )NY F y , 

1, = , .nx y X Y
N

〈 〉 〈 〉  
 

2. The recurrent sequences of orthogonal bases. 
Let = 2sN , = 2sN −ν

ν , 1= 2ν−
νΔ . We shall construct 

recurrent sequence of bases 0 1, ,..., sf f f , where tf  – t-th 

basis, consisting of nN  signals ( )tf k , ( )nk B N∈ . We 
will denote a value of a signal ( )tf k  at 
count 1= ( ,..., )nj j j , ( )nj B N∈  by ( ; )tf k j . 

Let 1 ( )nB N  by a set of integer vectors from 

[0, 1]nNν −  and 2 ( )nB N  by a set of integer vectors from 

[0, 1]n
νΔ − . We will define the sequence of orthogonal 

bases as:  
 

1
0 1 1
2 ( )

2 2

( ; ) = ( ) = ( )

( ) ... ( ), , .

n
N N

n N
N N n n n

f k j j k j k

j k j k k j B

δ − δ − ×

× δ − δ − ∈
 

1 1 1 1 2 2 2 1 1( , ,..., ) =n n nf l p l p l pν ν ν+ ν ν+ ν ν++ σ Δ + Δ + σ Δ + Δ + σ Δ + Δ

( )1 1
=0

11
=0 =01

= ...

n
li i i

i

n

w f
τ +σ Δν

ν−Δν+
τ τ

×
∑

∑ ∑  

1 1 1( 2 ,..., 2 ),n n nl p l pν ν ν ν× + Δ + τ Δ + Δ + τ Δ            (3) 

where 1 2
1 1= ( ,..., ) ( ), = ( ,..., ) ( ),n n n n ip p p B N l l l B N∈ ∈ σ     

is equal to 0 or 1 for all = 1,..., , = 1,...,i n sν . 
For studying the properties of recurrent sequence of 

bases, we can use reverse rearrangement [1]. 
Let j  by an integer from set = {0,1,..., 2 1}J ν −  be 

equal to 1
1 1 02 ... 2j j jν−

ν− + + +  in a binary system, where 
= 0,1ij  for all = 0,..., 1i ν − . A vector 1 1 0 2( ,..., , )j j jν−  is 

called a binary code of number j . We compare number 

1j J∈  with number j , which is set by a binary 
code 0 1 1 2( , ,..., )j j jν− . Rearrangement 1( ) =rev j jν  for set 
J  is called reverse rearrangement. For reverse 
rearrangements the following equalities are true:  

 

1

1

2 ( ) = ( );
2 ( ) 1 = ( ).

rev q rev q
rev q rev q

ν− ν

ν− ν ν+ Δ +
                       (4) 

 

Using a reverse rearrangement we can prove that:  
 

1 1 1 1

( )1 11 1
=0

0 1 1 1 11
=0 =01

( ,..., ) =

... ( ,..., ),

n n
n

l rev qi i
i

n n
q qn

f l p l p

w f q p q p

ν ν+ ν+

νΔ − Δ −ν+ ν+

ν+ ν+Δν+

+ Δ + Δ

= + Δ + Δ
∑

∑ ∑
 

 

where 1
1= ( ,..., ) ( )n np p p B N∈ , 2

1= ( ,..., ) ( )n nl l l B N∈ , 
= 1,..., sν . 
In particular, if = sν  we have:  

( ) ( )1 1
=1 =0

1 1
=0 =01

( ; ) = ... ( ,..., ) = .

n n
l rev q l rev ji i i iN N

ni i
s N N n n N

q qn

f l j w j q j q w
ν ν− −

δ − −
∑ ∑

∑ ∑  
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Theorem 1. For all = 0,..., sν , ( )nk B N∈ , a set of 

signals = ( )f f kν ν  is orthogonal and 2|| ( ) || = 2nf k ν
ν .  

The solution. Let = 0ν . Then: 
 

0 0
( )

( ), ( ) = ( ) ( )n n
N N

j B Nn

f k f k j k j k
∈

′ ′〈 〉 δ − ⋅δ −∑  

 

the last sum can be distinct from zero only when =k k ′ , 
in other case it is equal to 1 and the theorem is proved. 

Let’s now = 1,..., sν  and , ( )nk k B N′∈ , which are 
presented in the following way: 

 

1 1 1 1 1= ( ,..., ) = ( ,..., )n n nk k k l p l pν+ ν++ Δ + Δ , 

1 1 1 1 1= ( ,..., ) = ( ,..., )n n nk k k l p l pν+ ν+′ ′ ′ ′ ′ ′ ′+ Δ + Δ , 
 

where 1= ( ,..., )nl l l , 1= ( ,..., )nl l l′ ′ ′  belongs to 2 ( )nB N , and 

1= ( ,..., )np p p , 1= ( ,..., )np p p′ ′ ′  belongs to 1 ( )nB N . 
Then:  

 

1 1 1 1

1 1 1 1

( )1 11 1
=0

0 1 1 1 11
=0 =01

(1 11 1
=0

1
=0 =01

( ), ( ) = ( ,..., ),
( ,..., ) =

= ... ( ,..., ),

...

n n

n n
N

l rev qi i
i

n n
q qn

N
l rev qi i

i

q qn

f k f k f l p l p
f l p l p

w f q p q p

w

ν ν ν ν+ ν+

ν ν+ ν+

νΔ − Δ −ν+ ν+

ν+ ν+Δ +ν

′ ′νΔ − Δ −ν+ ν+

Δ +ν
′ ′

′〈 〉 〈 + Δ + Δ
′ ′ ′ ′+ Δ + Δ 〉

〈 + Δ + Δ
∑

∑ ∑

∑
∑ ∑

)

0 1 1 1 1

( ) ( )1 1 1 11 1 1 1
=1

1
=0 =0 =0 =01 1

1 1 1 1 1 1

( ,..., ) =

= ... ...

( ( ) ,..., ( ) ).

n n

n
l rev q l rev qi i i i

i

q q q qn n
n
N n n n n

f q p q p

w

q q p p q q p p

ν+ ν+

′ ′−ν νΔ − Δ − Δ − Δ −ν+ ν+ ν+ ν+

Δν+
′ ′

ν+ ν+

′ ′ ′ ′+ Δ + Δ 〉

×

′ ′ ′ ′× δ − + − Δ − + − Δ

∑
∑ ∑ ∑ ∑

 

 

Arguments of a unit impulse n
Nδ  on the module do not 

exceed 1N − . For =t tp p′  and at the some t  arguments 
are distinct from zero for all 1, 0 : 1i iq q ν+′ ∈ Δ − , 

= 1,...,i N , as 1| | 1i iq q ν+′− ≤ Δ − . Therefore 
( ), ( ) = 0f k f kν ν′ ′〈 〉 , if j jp p′≠ . 
Let =j jp p′ . For all = 1,...,j n  then:  
 

( ) ( )1 11 1
=1

1
=0 =01

1 11 1
=1

1 1 1 111
=0 =01

( ), ( ) = ... =

= ... = ... ( ,..., ).

n
l l rev qi i i

i

q qn
n

qi
ni

n n
q qn

f k f k w

w l l l l

′− νΔ − Δ −ν+ ν+

ν ν Δν+

′Δ − Δ −ν+ ν+

ν+ ν+ ΔΔ ν+ν+

′〈 〉

′ ′Δ Δ δ − −

∑
∑ ∑

∑
∑ ∑

 

 

From the last formula it is concluded, that the                       
scalar product ( , ( )f k f kν ν ′〈 〉  is distinct from zero                 
only, if =j jp p′ , =i il l′ , where , = 1,...,i j n . In the           

last case 1 1 1|| ( ,..., ) || = ... = 2n
nf k k ν

ν ν+ ν+Δ Δ  for all 

1,..., = 0 : 1nk k N − . The theorem is now proved. 
 

3. Sequence application of orthogonal bases to denote 
the fast discrete Fourier transform.  

Let 1( ) = ( ,..., ) Cn
n Nx j x j j ∈ , ( )nj B N∈ . We compare 

a signal ( )x j  a to signal 0 1( ) = ( ( ),..., ( ))s s nx j x rev j rev j  
and we will spread out 0 ( )x j  on basis fν :  

 

0
( )

1= ( ) ( )
2n

k B Nn

x x k f kν νν
∈
∑                        (5) 

 

( 1
2nν  – is a normalizing multiplier). Multiplying both 

parts (5) by ( )f lν  scalar ( )nl B N∈ . Then  
 

0

0
( )

1
( )

, ( ) = ( ),
( ) = ( ) ( ) =

( ( ),..., ( )) ( ; ),
j B Nn

s s n
j B Nn

x f l x l
x k x j f k

x rev j rev j f k j

ν ν

ν ν
∈

ν
∈

〈 〉

=

∑

∑
 

 

and coefficients ( )x kν  in (5) are determined. 
In particular, for = 0ν  we have from (1):  
  

0 1
( )

1

( ) = ( ( ),..., ( ) ( )

= ( ( ),..., ( )).

n
s s n N

j B Nn

s s n

x k x rev j rev j j k

x rev k rev k
∈

δ − =∑
    (6) 

 

From (3) we get the following: 
 

1 1 1 1 1

0 1 1 1 1 1

( )1 1
=1

1 0 1 1 1 1
=0 =01

( )1 1
=1

1
=0 =01

( ,..., ) =
= , ( ,..., ) =

= ... , ( 2 ,...,

2 ) = ...

n n n

n n n
n

li i i
i

n
n

n
li i i

i
n n

n

x l p l p
x f l p l p

w x f l p l

p w

ν ν ν+ ν ν+

ν ν ν+ ν ν+

τ +σ Δν

Δ + ν− ν νν
τ τ

τ +σ Δν

ν ν Δ +ν
τ τ

+ δ Δ + Δ + δ Δ + Δ
〈 + δ Δ + Δ + δ Δ + Δ 〉

〈 + Δ + τ Δ +

+ Δ + τ Δ 〉 ×

∑
∑ ∑

∑
∑ ∑

1 1 1 1( 2 ,..., 2 ),n n nx l p l pν− ν ν ν ν× + Δ + τ Δ + Δ + τ Δ

  (7) 

 

where 1
1= ( ,..., ) ( )n np p p B N∈ , 2

1= ( ,..., ) ( )n nl l l B N∈ , 
= 1,..., sν  and 1,..., nσ σ  are equal to 0 or 1. 
As  

1

( )

=0
1

( )

=0

( )

( ) = ( ,..., ) =

( ( ),..., ( )) =

= ( ) = ( ),

n

s n
n

k rev ji s i
i

s s n N
j B N

n
k ji i

i
N

j B Nn

x k x k k

x rev j rev j w

x j w X k

−

∈

−

∈

= ⋅
∑

∑

∑
∑

 

 

where ( )nk B N∈ and coefficients ( )sx k  define 
components of a spectrum for a signal x  on a basic 
period. 

From (6) and (7) we have received the recurrent 
scheme for the calculation of a spectrum for a 
signal Cn

Nx ∈ :  
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0 1

1 1 1 1 1

( )1 1
=0

11
=0 =01

1 1 1

( ) = ( ( ),..., ( ));
( ,..., ) =

= ...

( 2 ,..., 2 ),

s s n

n n n
n

li i i
i

n

n n n

x k x rev k rev k
x l p l p

w x

l p l p

ν ν ν+ ν ν+

τ +σ Δν

ν−Δν+
τ τ

ν ν ν ν

+ σ Δ + Δ + σ Δ + Δ

⋅ ×

× + Δ + τ Δ + Δ + τ Δ

∑
∑ ∑

     (8) 

 

where 1
1= ( ,..., ) ( )n np p p B N∈ , 2

1= ( ,..., ) ( )n nl l l B N∈ , 
= 1,..., sν  and 1,..., nσ σ  are equal to 0 or 1. 
Let’s find a number of complex addition and 

multiplication operations necessary for finding a spectrum 
of the signal for scheme (8). 

Lemma 2. For some r  vectors 1= ( ,..., )rt t t  and 

1= ( ,..., )rσ σ σ , where , 0,1i it σ ∈ . Then the calculation 
of all the values of some function:  

 

,( ) = ( )( 1) t

t
S f t 〈σ 〉σ −∑  

requires 2rr ⋅  additions (subtractions).  
The solution. To prove we apply an induction on r . 
Let = 2r . Then:  
 

1 1
11 2 2

1 2 1 2
=0 =01 2

1 2

1 2

( ) = ( , ) = ( , ) ( 1) =

= (0,0) (1,0)( 1) (0,1)( 1)

(1,1)( 1) .

t t

t t
S S f t t

f f f

f

σ +σ

σ σ

σ +σ

σ σ σ ⋅ −

+ − + − +

+ −

∑∑
 

 

Let’s define: 
 

1
* *
1 3

2
* *
2 4

3

( ) = (0,0) = (0,0) (1,0) (0,1) (1,1) =
= ( (0,0) (1,0)) ( (0,1) (1,1)) = ;
( ) = (1,0) = (0,0) (1,0) (0,1) (1,1) =
= ( (0,0) (1,0)) ( (0,1) (1,1)) = ;
( ) = (0,0) = (0,0) (1,0) (0,1) (

S S f f f f
f f f f S S

S S f f f f
f f f f S S

S S f f f f

σ + + +
+ + + +

σ − + −
− + − +

σ + − −
* *
1 3

1
* *
2 4

1,1) =
= ( (0,0) (1,0)) ( (0,1) (1,1)) = ;
( ) = (0,0) = (0,0) (1,0) (0,1) (1,1) =
= ( (0,0) (1,0)) ( (0,1) (1,1)) = ,

f f f f S S
S S f f f f

f f f f S S

+ − + −
σ − − +

− − − −

 

where:  
* *
1 2
* *
3 4

= (0,0) (1,0), = (0,0) (1,0),

= (0,1) (1,1), = (0,1) (1,1).

S f f S f f

S f f S f f

+ −

+ −
 

 

For calculating *
iS , = 1,2,3, 4i  it is required to apply 

4 additions (subtractions); to calculate all values S  it 
requires 8 such operations and then the statement of the 
lemma is correct. 

Let the statement of the lemma be correct, if =r k ; for 
any function ( )g t  i. e. all values of the function:  

 

,
1( ,..., ) = ( )( 1) t

k
t

S g t 〈σ 〉σ σ −∑  

 

are calculated by 2 2k⋅  additions (subtractions), where 
1= ( ,..., )kt t t . 

Let’s consider = 1r k + .  

1 1
...1 1 1 1

1 1 1 1
=0 =01 1

1 1
...1 1

1
=0 =01

1 1
...1 1 1

1
=0 =01

( ,... ) = ... ( ,..., ) ( 1) =

= ... ( ,..., ,0) ( 1)

... ( ,..., ,1) ( 1) .

t tk k
k k

t tk

t tk k
k

t tk

t tk k k
k

t tk

S f t t

f t t

f t t

σ + +σ + +
+ +

+

σ + +σ

σ + +σ +σ +

σ σ ⋅ −

⋅ − +

+ ⋅ −

∑ ∑

∑ ∑

∑ ∑

 

Let’s denote: 
1 2 1 1 2

1 1
...1 1

1
=0 =01

( , ,..., ,0) = ( , ,..., ) =

... ( ,..., ,0) ( 1)

k k

t tk k
k

t tk

S S

f t t σ + +σ

σ σ σ σ σ σ

= ⋅ − +∑ ∑  

1 1
...1 1

1
=0 =01

... ( ,..., ,1) ( 1) =t tk k
k

t tk

f t t σ + +σ+ ⋅ −∑ ∑  

1 1
...1 1

1 1
=0 =01

= ... ( ( ,..., ,0) ( ,..., ,1)) ( 1) ;t tk k
k k

t tk

f t t f t t σ + +σ+ ⋅ −∑ ∑  

1 2 2 1 2
1 1

...1 1
1

=0 =01

( , ,..., ,1) = ( , ,..., ) =

... ( ,..., ,0) ( 1)

k k

t tk k
k

t tk

S S

f t t σ + +σ

σ σ σ σ σ σ

= ⋅ − −∑ ∑  

1 1
...1 1

1
=0 =01

... ( ,..., ,1) ( 1) =t tk k
k

t tk

f t t σ + +σ− ⋅ −∑ ∑  

1 1
...1 1

1 1
=0 =01

= ... ( ( ,..., ,0) ( ,..., ,1)) ( 1) t tk k
k k

t tk

f t t f t t σ + +σ− ⋅ −∑ ∑ . 

Let’s define how many operations of addition 
(subtraction) are required for calculating 1S  and 2S . 

Let’s denote 1 1( ,..., ) = ( ,..., ,0)k kf t t f t t+ + , 

+ 1( ,..., ,1)kf t t 1 1 1( ,..., ) = ( ,..., ,0) ( ,..., ,1)k k kf t t f t t f t t− − . 

For calculating all values f +  required are 2k  additions 

and to calculate 
1 1

...1 1
1 1

=0 =01

= ... ( ,..., ) ( 1) t tk k
k

t tk

S f t t σ + +σ+ ⋅ −∑ ∑  

required are 2kk  according to the induction assumption. 
Then the total sum of addition (subtraction) operations 

for calculation 1S  requires 2 2k kk + . Such a number of 
operations it is necessary for 2S . 

Therefore, to calculate of all values S  1( 1)2kk ++  
additions (subtractions) are required; this needed to be 
proved. 

Theorem 2. To calculate the recurrent scheme for a 
signal spectrum Cn

Nx ∈  ( = 2sN )  

0 1

1 1 1 1 1

( )1 1
=0

11
=0 =01

1 1 1

( ) = ( ( ),..., ( );
( ,..., ) =

= ...

( 2 ,..., 2 ),

s s n

n n n
n

li i i
i

n

n n n

x k x rev k rev k
x l p l p

w x

l p l p

ν ν ν+ ν ν+

τ +σ Δν

ν−Δν+
τ τ

ν ν ν ν

+ σ Δ + Δ + σ Δ + Δ

⋅ ×

× + Δ + τ Δ + Δ + τ Δ

∑
∑ ∑

     (9) 

demands 2
2 1

log
2

n
n

n N N−  complex multiplications and 

2lognnN N  complex additions.  
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The solution. First, we will find a number of complex 
multiplications. Complex multiplication is multiplication 

only by
( )

=0

n
li i i

i
Nw

τ +σ Δν∑
. We shall define the number of 

products required in (9) for all parameters 
* * * *

1, = ( ,..., )nl l lν  and * * *
1= ( ,..., )np p p . For this purpose 

we shall consider products:  
 

*( )*
=0

** 11
* * * *
1 1 1 * *( 2 ,..., 2 ),

n
li i i

i

n n n

w x

l p l p

τ +σ Δ
ν

Δ ν −ν +

ν νν ν

⋅ ×

× + Δ + τ Δ + Δ + τ Δ

∑
 

 

where 0,1iσ ∈ . 
We have to notice that:  
 

* *( )* *
=0 =0

* *1 1

* *
*

=0 =0 =0=0
* * *1 1 1

= =

= ( 1) .

n n
l li i i i i i i

i i

n n nn
l li i i i i ii i

i i ii

w w

w w w

τ +σ Δ τ +τ σ Δ
ν ν

Δ Δ
ν + ν +

τ τ σ Δ ττ σ
ν

Δ Δ Δ
ν + ν + ν +

= ⋅ − ⋅

∑ ∑

∑ ∑ ∑∑
         (10) 

 

That is product:  
 

*( )*
* * * *=0

* 1 1 1 * ** 11
( 2 ,..., 2 )

n
li i i

i
n n nw x l p l p

τ +σ Δ
ν

Δ ν νν − ν νν +
⋅ + Δ + τ Δ + Δ + τ Δ

∑
. 

 

Let parameters * * * *
1, = ( ,..., )nl l lν  and * * *

1= ( ,..., )np p p  
by fixed; then product (10) can possibly be replaced with 
complex product:  

 

*

* * * *=0
* 1 1 1 * ** 11

( 2 ,..., 2 )

n
li i

i
n n nw x l p l p

τ

Δ ν νν − ν νν +
⋅ + Δ + τ Δ + Δ + τ Δ

∑
    (11) 

as =0( 1)

n

i i
i

τ σ

−
∑

 can accept values only 1± . 
The number of complex products of a kind (11) is 

equal to a number of every possible vector 1= ( ,..., )nτ τ τ , 

where 0,1iτ ∈ , i. e. 2 1n − , since we have a product of 
real numbers for = 0r . As parameter 1: sν ∈ , vectors 

1= ( ,..., )nl l l  and 1= ( ,..., )np p p  (where 

= 0,1,..., 1ip N ν −  ( = / 2N Nν ν )), = 0,1,..., 1il νΔ −  

( 1= 2ν−
νΔ ), then the total complex multiplications is 

equal to: 1
2

2 1( 2 ) (2 1) = log
2 2

n
n n n

n

Ns N Nν−
ν

−
⋅ ⋅ − . 

Let’s find the amount of complex addition in the 
algorithm. For fixed *ν  and * * *

1= ( ,..., ),nl l l  
* * *

1= ( ,..., )np p p  we have: 
 

* * * *
1 1 * 1 * * *1 1

* *( )1 1
=0

** 11=0 =01
* * * *
1 1 1 * *

( ,..., ) =

= ...

( 2 ,..., 2 ).

n n n

n
li i i

i

n

n n n

x l p l p

w x

l p l p

ν ν ν + ν ν +

τ +σ Δν

Δ ν −ν +τ τ

ν νν ν

+ σ Δ + Δ + σ Δ + Δ

⋅ ×

× + Δ + τ Δ + Δ + τ Δ

∑
∑ ∑     (12) 

 

From (10) follows, that for calculation (12) we need to 
calculate expressions: 

*

* * * *=0
* 1 1 1 * ** 11

( ) = ( 2 ,..., 2 )

n
li i

i
n n nf w x l p l p

τ

Δ ν νν − ν νν +
τ + Δ + τ Δ + Δ + τ Δ

∑
 

which depend only on 1= ( ,..., )nτ τ τ , where 0 :1iτ ∈ . 
Then (12) can be presented as: 

 

* * * *
1 1 * 1 * * *1 1

1 1
=0

=0 =01

( ,..., ) =

= ... ( 1) ( ).

n n n

n

i i
i

n

x l p l p

f

ν ν ν + ν ν +

τ σ

τ τ

+ σ Δ + Δ + σ Δ + Δ

− ⋅ τ
∑

∑ ∑
 

 

This way, complex addition is required from Lemma 2 
to calculate:  

 

* * * *
1 1 * 1 * * *1 1

( ,..., )n n nx l p l pν ν ν + ν ν +
+ σ Δ + Δ + σ Δ + Δ  2nn . 

 

As parameter 1: sν ∈ , vectors 1= ( ,..., )nl l l  

and 1= ( ,..., )np p p , where = 0,1,..., 1ip N ν −  

( = / 2N Nν ν ), = 0,1,..., 1il νΔ −  ( 1= 2ν−
νΔ ), then the 

sum of complex additions are equal to: 
1

2( 2 ) ( 2 ) = log
2

n n nNs n nN Nν−
ν ⋅ ⋅ . The theorem is now 

proved. 
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