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MATHEMATICAL MODEL OF HEAT EXCHANGE PROCESSES 
IN HONEYCOMB PANELS WITH HEAT PIPES 

 
This article presents the analysis results of heat exchange processes in the honeycomb panel and depicts the results 

of temperature modelling modes for intensive heat loading modes. 
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Nowadays honeycomb panels (HP) are widely used in 

the design of spacecrafts. Honeycomb panels are 
characterized by high mechanical durability and very 
small density. They are used as spacecraft construction 
units. Electronics packages, assemblies, and heat pipes are 
placed on them. Normal functioning of electronics 
requires a special temperature mode corresponding to the 
external environment. The small density volume of the 
honeycomb panel construction leads to low heat-
transmitting properties of the panel. As a result it’s 
difficult to organize an effective heat rejection from 
electronics and to secure optimal thermal modes for them. 
The heterogeneous structure of a honeycomb panel makes 
the process of computations of the heat exchange and 
analysis of heat modes of electronics complicated.  

Different mathematical models are used for computing 
spacecraft temperature conditions. One of the most 
widespread approaches for spacecraft heat exchange 
process description is the use of heat-balance equations. 
Unsteady heat mathematical models for this approach had 
been considered in [1]. Research [2] contains a 
description of a mathematical model for thermal 
conditions of devices located on a honeycomb panel. This 
paper presents a mathematical model of the heat exchange 
in the honeycomb panel with heat pipes. The model is 
based on the numerical solution of unsteady heat 
conduction equations using a finite-difference space 
splitting scheme. The high efficiency of the methods 
permits to increase the level of detailing during 
temperature fields computations. The model is intended 
for computations of unsteady heat modes of electronics, 
optimization of the composition, and properties of the 
honeycomb panel, and also for the optimization of the 
quantity and arrangement of the heat pipes on the 
honeycomb panel. 

Heat exchange process analysis. A honeycomb panel 
is a plain panel which consists of two parallels plates 
(hems 1 and 2). The space between the plates is filled by 
honeycombs 3 made of metallic foil (honeycomb-filling) 
(fig. 1). Honeycombs have low heat-exchange abilities 
because of small density volume and therefore, heat pipes 
are used to improve the heat transfer. The highly effective 
heat-exchange in the heat pipes is reached due to 
circulation and phase changes of the coolant in the 
internal duct 4. Heat pipes are located internally in 
honeycomb. They are fixed to the hem using landing 
ground 5. Heat exchange in the honeycomb is 
significantly different from the heat transfer in a solid 

metal panel. First of all, the heat exchange in honeycombs 
is three-dimensional and anisotropic due to the presence 
of honeycomb-filling and heat pipes. Secondly, heat 
transfer in the honeycomb can be performed both by 
thermal conductivity and radiation.  

 
 

 
 

Fig. 1. Fragment of a honeycomb panel with a heat pipe 
 
To determine the process features, let us consider the 

importance of heat exchange in the volume of a 
honeycomb. Typically, the density of a honeycomb-filling 
is approximately 100 times less than the density of 
material from which the filling is made. Therefore, 
effective value of heat conduction coefficient λ* in the 
transverse location (“hem 1–hem 2”) is only 0.01 of the 
heat conduction coefficient value of solid material. If the 
value of thermal flux is 400 Wt/m2 and the honeycomb-
filling thickness is d = 0,03 m, then the value of the 
temperature drop is */T qdΔ = λ ≈ 8К. The density of 
radiant flux between hem 1 and hem 2 can be estimated 
using the following formula: 4 4

1 2( )R SBq T T= εσ − ; where 
σSB is the Stefan-Boltzmann constant. Assuming that               
ε = 0,2, T1 = 308 K, and T2 = 300 K, we get qR ≈1 Wt/m2. 
This value is a negligible quantity in comparison with the 
value of the heat flux which is transferred by the thermal 
conductivity. 

The insignificant hem thickness and the low density of 
honeycomb-filling leads to low honeycomb-filling 
thermal conductivity in longitudinal directions. At the 
same time the effective heat conduction coefficient of 
honeycomb-filling is 5–10 times less than the one on the 
hems. Thus, one may neglect heat transfer in longitudinal 
direction for approximate computations. In more exact 
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computations it should be considered as an addition to the 
heat conductivity of the hems. In general, the addition to 
the head conduction coefficient depends on direction of 
the honeycomb-filling’s anisotropy. The size of 
honeycomb has an order of several millimeters, so in the 
model it is a continuum, which has thermal resistance 
dependant on honeycomb’s parameters. 

The estimations witness that heat transfer in the 
longitudinal direction in honeycombs is carried out 
mainly on the hems due to the thermal conductivity. The 
heat transfer in crosswise direction between hems is 
achieved by thermal conductivity of honeycomb-filling’s 
material. In the presented computational model, the 
honeycomb panel is considered as two plain solid planes. 
These planes exchange thermal energy between each 
other through thermal resistivity of the honeycomb-
filling. Radiation is taken into account on the external 
plane of the honeycomb in the process of heat exchange 
with the environment. 

Mathematical problem definition and computational 
algorithm. In order to examine the temperature mode of a 
honeycomb panel, a mathematical model represents a 
system of two two-dimensional unsteady equations with 
variable coefficients, which give heat conduction in both 
hems: 
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where cm is the material specific volume heat, Ti is the 
temperature, i = 1, 2 is the index corresponded to the 
number of the hem, λ is the heat conduction coefficient,            
t is time, x, y are space coordinates, qν is the volume 
power of heat sources and sinks, αν  is coefficient of heat 
exchange with environment. 

Equations (1) are completed by boundary conditions: 
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where l = x, y, and entry conditions: 
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The value of the heat flux, which proceeded from one 
hem to another one, is defined as: 
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where T1 and T2 are temperatures of hems 1 and 2, R is 
the specific thermal resistance of the honeycomb-filling. 
Equation (2) describes the heat exchange between hems; 
this has been taken in account in equation (1) with the 
help of last two members. For example, in order to 
compute the temperature field of the first hem, the first 
member is computed as 2 1( , ) ( , ) /vq x y T x y Rd= , the 
second member as 1( , ) 1/v x y Rdα = , where d1 is the 
thickness of the first hem. Similar expressions are used 
for the second hem. This algorithm of heat exchange 

computations between honeycomb panel hems provides 
stability of the whole computational algorithm. Moreover, 
thermal flux from electronics, external thermal fluxes and 
radiation from hems’ surfaces is also included in qν. 

The mathematical model takes into account the heat 
pipes on the hems of honeycomb as zones with high 
unilateral thermal conductivity and its value of heat 
conduction coefficient is set for the axial direction, which 
is selected to be equivalent to the heat transport ability of 
the heat pipe. The thermal conductivity of the heat pipes’ 
landing ground is also taken into account because it can 
significantly influence the heat transfer in a crosswise 
direction. 

One of the main criteria when selecting a 
computational method to solve the problem is the 
efficiency and stability of the algorithm. Moreover, the 
nature of the task requires an algorithm which allows 
using one directional component of heat conduction 
coefficients λx and λy which are different because of the 
heat pipes presence. The algorithm of summary 
approximation [3] suits these requirements using task 
spatial coordinates splitting. A two-dimensional unsteady 
problem is solved in two steps at each time step. At every 
step a local one-dimensional problem is solved with the 
help of the implicit difference scheme. 

A grid function ,
j

n mT  and intermediate function ,
j

n mU  
are introduced. They correspond to the values of the 
temperature in the nodes of the computational coordinate 
grid: 

( 1)n xx n h= − , ( 1)m yy m h= − , ( 1)jt j= − τ . 
 

At the first step, a local one-dimensional problem is 
solved. It takes into account only the λx component of the 
heat conduction coefficient. The problem is solved for 
each ym in the direction x. In result, all values of the 
intermediate function ,

j
n mU are determined. 

For n = 1: 
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For n = 2, ..., N–1: 
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For n = N: 
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At the second step a similar local one-dimensional 
problem, which takes into account only the λy component 
of heat conduction coefficient, is solved. The problem is 
to solve xn in each the direction of y. In result, all values 
of the grid function 1

,
j

n mT +  on the next time step are 
determined. 

Algebraic equations (3)–(5) are solved by a sweep 
method. Entry parameters of the program include: the 
geometrical characteristics of honeycomb panel, 
materials, their thermo physical properties, and electronic 
heat generation parameters. 

Results of computations. The choice of differential 
steps sizes is very important in the computations. In order 
to obtain adequate computational results without 
significant smoothing of the temperature gradients, the 
step size shouldn’t exceed the typical scale of temperature 
fields’ heterogeneousness. In the present task, the typical 
scale is defined by heat pipes. So, the lateral dimension of 
the heat pipes, which is approximately equal to 10 mm,              
defines the value of the differential spatial steps as                 
hx = hy = 10 mm.  

First, specificities of the heat exchange in a 
honeycomb panel had been examined on the model task 
in which the honeycomb panel had the following 
parameters: lateral dimensions of the honeycomb panel 
were 600 × 300 mm2, hem thickness was 0.4 mm, the 
distance between hems was 30 mm, specific heat 
resistance of the honeycomb-filling was R = 10 m/Wt. 
The external hem of the honeycomb panel was a radiant 
surface. This surface emits a heat flux which corresponds 
to the radiation of outer space with emissivity equal to              
ε = 0.7. There is a heat-generating device on the left half 
of the internal hem. Its slot sizes are 300 × 300 mm2. The 
power of the device is 50 Wt. It’s assumed that the heat 
flux from the device is spread uniformly in the area of the 
slot. In order to improve the heat transfer, two heat pipes 
had been installed on the honeycomb panel. 

The duration of the modeling process had been 
selected in such a way that the process had time to 
achieve a steady-state regime. The computation results are 
presented in fig. 2 and 3. The temperature fields for the 
internal and external honeycomb panel hems are marked 
by isolines and gradations of a gray color. The 
temperature interval between the isolines is 1 оC. As 
shown in fig. 2, the heterogeneity of temperature 
distribution in the internal hem is high. Maximal 
temperature drop in the hem is about 26 оC. This is due to 
low heat-exchange abilities of the hem in the normal 
direction of the heat pipes. The temperature range in the 
external honeycomb panel hem is more even (fig. 3). Its 
maximal temperature drop is approximately equal to 20 оC.  

Significant heterogeneities in temperature 
distributions make it almost impossible to ensure reliable 
control of optimal electronic mode temperature. In order 
to make the temperature range more even, special heat 
stabilized plates are placed on the honeycomb panel hem. 
The plates are made from a metal with a high heat 
conductivity coefficient. Temperature drop is decreased 
proportionally to the plate thickness. For example, using 

aluminum plates with a thickness of 6 mm, leads to a 
decrease in temperature drop to 2 оC.  

 
 

 
 

Fig. 2. Temperature field of a honeycomb  
panel internal surface 

 
 

 
 

Fig. 3. Temperature field of a honeycomb  
panel external surface 

 
The increase of the plates’ thickness leads to a 

significant increase of the whole construction’s weight. 
In the future, it seems reasonable to use hyper heat-
conducting materials for increasing heat-transmitting 
capabilities, instead of heat stabilized plates.                    
The results of the computations show, that hyper             
heat-conducting plates with a thickness of 2 mm and 
λef = 5 000 Wt/(m×K) provide almost homogeneous 
temperature ranges in the internal hem, with temperature 
drops of less than 0,5 оС, because the high heat-
transmitting ability of hyper heat-conducting plate 
effectively levels the influence of heat from devices and 
external heat fluxes on radiating surfaces. 

Real honeycomb panel constructions can contain a 
sufficiently larger number of heat-generating devices and 
heat pipes. An example of the computations is presented 
on the fig. 4; in it the distribution of temperature on the 
internal hem of honeycomb panel is presented. The 
boundaries of device slots are outlined in a white color. 
Given temperature ranges with heterogeneous “spotty” 
structure is a result of joint action of different 
mechanisms: the device’s heat generation, heat transfer in 
the hems, and heat pipes, heat-exchange between the 
hems and radiation from the external hem. In our opinion, 
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the applied mathematical models are the most actual for 
the computation of the modes in the complex design of 
honeycomb panels, because these computational 
experiments permit to obtain the most detailed 
information about thermal mode results in various 
external conditions. 

 

 
 

Fig. 4. Temperature field of a thermal-loaded honeycomb  
panel internal surface 

 
It should be noticed that computational experiments 

for honeycomb panels with complex construction require 
a significant volume of different input information like 
thermophysical characteristics and geometric parameters 
of the constructions (sizes, coordinates of the device 
slots), mass, etc. The collection of such information 
requires much time. The time consumption increases 
significantly if it’s necessary to make a number of 
computational experiments for different honeycomb panel 

constructions in order to find the optimal temperature 
mode. To decrease the consumption it’s reasonable to 
automatize the process of input information gathering. 
The information should be read from the CAD-system 
database. To realize this approach, we are currently 
developing a software complex for the computation of 
honeycomb panel thermal modes on the base of the 
presented mathematical model. This complex is integrated 
with a CAD-system. It will allow significant simplifying 
of the input procedure, output, edition, and visualization 
of the input and calculated data. 

The developed computational model allows the 
conducting of computations for honeycomb panel hems’ 
temperature fields, considering the detailed information 
on the honeycomb panel design, heat generation of 
electronics, and external thermal conditions. In order to 
find the optimal thermal modes for electronics, it’s 
possible to use this model to optimize the honeycomb 
panel’s construction, and to select the most appropriate 
arrangements of the devices and heat pipes in the panel’s 
hems.  
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TESTING THE ALGORYTHM OF THE “CATERPILLAR”-SSA METHOD 
FOR TIME SERIES RECOVERY 

 
The basic algorithm of the “Caterpillar”-SSA method is considered and tested. 
 
Keywords: trend allocation, periodicals finding, silencing, decomposition of time series into components. 
 
One of the significant problems in the analysis of time 

series is the separation of trend and periodicals presses 
from the noise. This research is about a robust method of 
time series analysis: “Caterpillar”-SSA, which is currently 
being developed. 

Let’s investigate the functioning of this algorithm and 
state, in what its specificity is exactly. The variant of the 
algorithm described below doesn’t essentially differ from 
the basic one [1], it has only been simplified without any 
changes in result. 

We consider the given time series F: 
 

0 1 1, ,..., Nf f f − ,                                   (1) 
 

where N is its length. Further we assume that F is a 
nonzero series. 

The algorithm consists of four consistent steps: 
investment, singular decomposition, grouping, and 
diagonal averaging. 

The investment procedure converts the time series F 
into a sequence of multidimensional vectors called the 
trajectory matrix. 




