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the applied mathematical models are the most actual for 
the computation of the modes in the complex design of 
honeycomb panels, because these computational 
experiments permit to obtain the most detailed 
information about thermal mode results in various 
external conditions. 

 

 
 

Fig. 4. Temperature field of a thermal-loaded honeycomb  
panel internal surface 

 
It should be noticed that computational experiments 

for honeycomb panels with complex construction require 
a significant volume of different input information like 
thermophysical characteristics and geometric parameters 
of the constructions (sizes, coordinates of the device 
slots), mass, etc. The collection of such information 
requires much time. The time consumption increases 
significantly if it’s necessary to make a number of 
computational experiments for different honeycomb panel 

constructions in order to find the optimal temperature 
mode. To decrease the consumption it’s reasonable to 
automatize the process of input information gathering. 
The information should be read from the CAD-system 
database. To realize this approach, we are currently 
developing a software complex for the computation of 
honeycomb panel thermal modes on the base of the 
presented mathematical model. This complex is integrated 
with a CAD-system. It will allow significant simplifying 
of the input procedure, output, edition, and visualization 
of the input and calculated data. 

The developed computational model allows the 
conducting of computations for honeycomb panel hems’ 
temperature fields, considering the detailed information 
on the honeycomb panel design, heat generation of 
electronics, and external thermal conditions. In order to 
find the optimal thermal modes for electronics, it’s 
possible to use this model to optimize the honeycomb 
panel’s construction, and to select the most appropriate 
arrangements of the devices and heat pipes in the panel’s 
hems.  
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TESTING THE ALGORYTHM OF THE “CATERPILLAR”-SSA METHOD 
FOR TIME SERIES RECOVERY 

 
The basic algorithm of the “Caterpillar”-SSA method is considered and tested. 
 
Keywords: trend allocation, periodicals finding, silencing, decomposition of time series into components. 
 
One of the significant problems in the analysis of time 

series is the separation of trend and periodicals presses 
from the noise. This research is about a robust method of 
time series analysis: “Caterpillar”-SSA, which is currently 
being developed. 

Let’s investigate the functioning of this algorithm and 
state, in what its specificity is exactly. The variant of the 
algorithm described below doesn’t essentially differ from 
the basic one [1], it has only been simplified without any 
changes in result. 

We consider the given time series F: 
 

0 1 1, ,..., Nf f f − ,                                   (1) 
 

where N is its length. Further we assume that F is a 
nonzero series. 

The algorithm consists of four consistent steps: 
investment, singular decomposition, grouping, and 
diagonal averaging. 

The investment procedure converts the time series F 
into a sequence of multidimensional vectors called the 
trajectory matrix. 
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To analyze the time series we select parameter L 
called “the length of period”, which is in the open interval 
1 < L < N. Thus K = N−L−1 investment vectors are 
created: 

1 2( , ,..., ) ,  1 T
i i i i LX f f f i K− + −= ≤ ≤ .           (2) 

 

These vectors form the trajectory matrix of the series 
F the columns of which are the sliding parts of the series 
with length L: from the first point to L-th, from the second 
to (L + 1)-th and so on: 
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It’s known that univocal conformity exists between 
matrixes of dimension L × K like (2) and the series (1) of 
length N = L + K−1 [1]. 

The result of the following step will be a singular 
decomposition of the trajectory matrix (2) in the sum of 
elementary matrixes. 

Let S = X·XT. We will assign the eigenvalues of matrix 
S taken in nondecreasing order as λ1, λ2, …, λL, and the 
orthonormal system of eigenvectors of matrix S, 
corresponding to ordered eigenvalues, such as U1, U2, …, UL. 
Then the singular decomposition of trajectory matrix X is 
to be written as the following expression: 

 

iX V= ∑ ,                                   (4) 
 

where T
i i iV U U X= ⋅ ⋅ , I = 1, …, L. Considering that each 

of the matrixes Vi to have rank 1, they can be denoted as 
elementary matrixes. 

The initial time series is assumed to be a sum of 
several series. The results allow us under certain 
conditions, to define, according to the form of the 
eigenvalues and the eigenvectors, what kind of items they 
are and what combination of elementary matrixes 
corresponds to each of them. 

At the next stage there is a grouping, by 
decomposition (3) the set of indexes {1, 2, …, L} is 
divided into m non-crossing subsets I1, I2, …, Im. Thereby 
the decomposition (3) can be written down as: 
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where 
i

i k
k I

Y V
∈

= ∑  are the resultant matrixes for each 

subset Ii, I = 1, …, m. 
Actually, precisely at the grouping stage, the initial 

time series is divided into periodicals, noise, and trend. 
The basic criterion of the grouping is the importance of 
each elementary matrix Vk, to be corresponding to its 
eigenvalue λk. 

At the last stage of the algorithm each matrix of 
grouped decomposition (4) is converted into a series of 
length N. 

Let L* = min (L, K), K* = max (L, K). Also let y*ij = Yij,  
if L < K and y*ij = Yji, if L > K. Diagonal averaging 

converts each resultant matrix Y(s), s = 1, 2, …, m, into 
series f% (s) with the help of the following formula: 
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This formula corresponds to the averaging of the 
elements along “diagonals” I + j = k + 2. 

Thus, applying diagonal averaging (5) to resultants 
matrixes Y(s), we get a series ( ) ( ) ( ) ( )

0 1 1( , ,..., )s s s s
NF f f f −= % % %% . 

The initial time series F is decomposed into the sum of m 
series: 
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n = 0, 1, …, N–1, s = 1, 2, …, m.                (7) 
 

So, the result of the algorithm is the decomposition of 
the time series into interpreted additive components. For 
all this it doesn’t require stationarity from the series, 
knowledge of the trend modelor, or any data about the 
presence of periodicals in the series and their periods. 
With such simple assumptions, the “Caterpillar”-SSA 
method is able to solve various tasks, such as trend 
allocation, detection of periodical presses, number 
smoothing and the construction of the full decomposition 
of the series into the sum of trend, periodicals and      
noise [2]. 

Certainly, the given method also has some 
disadvantages. First of all, there isn’t an automatic 
grouping of the components of singular decomposition of 
the trajectory matrix to get the components of the initial 
series. At the same time successful decomposition 
depends on the correct grouping. Secondly, the absence of 
a model doesn’t allow to prove the hypothesis about the 
presence of this or that component in the time series (this 
disadvantage is objectively inherent in non-parametric 
methods). We should also state that the considered non-
parametric method in certain situations permits us to 
obtain the results, which frequently slightly differ in 
accuracy from many parametrical methods in the analysis 
of the series with the defined model [3]. 

Let’s look at the algorithm work on three various 
examples to investigate its advantages and disadvantages. 
There is a time series in the each example, consisting of 
the sum of the generated interferences Ri and given 
required function xi: 

i i if x R= + . 
 

Further, we define the criterion of efficiency by the 
formula: 
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where Ai is a restored (cleared of noise) series achieved 
with the help of the algorithm. In (7) the numerator is the 
sum of squares of deviations between restored series and 
“clear” series, and the denominator is the sum of squares 
of interferences. So, formula (7) shows the parts of the 
interferences are not separated after the application of the 
algorithm; we shall call it “silencing”. 

Example 1. A simple time series; weak interferences: 
 

xi = I + 10; I = 0, 1, …, 49; N = 50; L = 25. 
 

Ri is a random value with uniform distribution from the 
interval [–2; 2]. 

Matrix S has dimensions 25 × 25 and 25 eigenvalues 
λi (tabl. 1).  

The grouping of indexes 24-th and 25-th is chosen, as 
corresponding to the most significant components. 
Elementary matrixes V24 and V25 correspond to them. 
Calculating diagonal averaging for resultant matrix                  
Yo = V24 + V25, we get the restored series (fig. 1).  

 
 

 
Fig. 1. Graphs of series: “clear”, with noise and restored 
 
Noise clearing is 11.4 % W = of the initial 

interferences. 
Example 2. A series with periodicals, average 

interferences: 
( 60) 5sin ( )
100i

i ix i−
= + ;  

I = 0, 1, …, 59; N = 60; L = 30. 

Ri is a random value with uniform distribution from the 
interval [–3; 3]. 

Matrix S has dimensions of 30×30 and 30 eigenvalues 
λi (tab. 2). 

Grouping of ones indexes from 27-th to 30-th is 
chosen, as corresponding to the most significant 
components. Elementary matrixes V27, V28, V29 and V30 
correspond to them. Calculating the diagonal averaging 
for resultant matrix Yo= V27 + V28 + V29 + V30, we get the 
restored series (fig. 2). 

 

 
 

Fig. 2. Graphs of series: “clear”, with noise and restored 
 
Noise clearing is 25.6 % W = of initial interferences. 
Example 3. A series with several periodicals, high 

interferences: 
 

0.03 1.6sin (0.3 0.17) 1.3sin (2 0.57)ix i i i= + + + + ;  
I = 0, 1, …, 49; N = 50; L = 15. 

 

Ri is a random value with normal distribution, σ = 3 . 
Matrix S has dimensions 15 × 15 and 15 eigenvalues 

λi (tab. 3). 
In this situation due to the high interferences the 

choice of components for the grouping is inconvenient, 
and to recognize a trend and periodicals is difficult. The 
analysis has shown that the increase in index quantity in a 
similar situation results in the restoring of not only an 
additive component, but also that of non-separated noise. 

 
Table 1 

The contribution of eigenvalues λi of matrix S, in percentage of their sum 
 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 
λi, % 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,01 0,01 0,00 0,01 0,01 0,01 

i 14 15 16 17 18 19 20 21 22 23 24 25  

λi, % 0,02 0,02 0,02 0,02 0,03 0,03 0,03 0,04 0,08 0,08 2,76 96,8  
 

 
Table 2 

The contribution of eigenvalues λi of matrix S, in percentage of their sum 
 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
λi, % 0,03 0,03 0,03 0,03 0,04 0,05 0,02 0,07 0,07 0,07 0,08 0,01 0,00 0,00 0,12 

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
λi, % 0,11 0,12 0,12 0,17 0,20 0,21 0,21 0,22 0,26 0,29 0,33 4,14 5,97 7,58 79,44 
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Table 3 
The contribution of eigenvalues λi of matrix S,  

in percentage of their sum 
 

i 1 2 3 4 5 6 7 8 
λi, % 2,50 2,49 2,85 2,14 1,94 3,29 4,00 4,73 

i 9 10 11 12 13 14 15  
λi, % 5,26 6,83 7,78 9,99 11,31 13,83 21,07  

 
Noise clearing with the 3 most significant components 

is 21.8 %W = , for 4 it’s 29.2 %W =  and for 5 it’s 
34.6 %W = . 

The results for 3 selected components are shown 
below as graphs (fig. 3). 

 

 
 

Fig. 3. Graphs of series: “clear”, with noise and restored 

Concluding the given examples we can state that the 
basic algorithm of the “Caterpillar”-SSA method copes 
with the assigned task: for time series it separates trend 
and periodicals from interferences, reducing noise level 
down to 2–3 times; although the types of significant 
components aren’t defined, whether they are linear, 
periodic, logarithmic or other. This is an advantage of the 
method, which will make possible to create a powerful 
mechanism of non-parametric analysis of time series in 
the future, including computer programs. 

The disadvantage of the basic algorithm is the 
necessity of manual intervention for the divided 
components analysis; also there is a problem in selecting 
the length of period and the quality of additive 
components division, depending on that. Further research 
will be dedicated to the automation of analyzing processes 
and other methods, improving the quality of the algorithm 
work results and reducing the manual aspect in this 
process. 
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ALGORITHMS FOR CALCULATING COMPLEX INDICATORS IN DYNAMIC  

STRUCTURES OF DATA REPRESENTATION 
 
This paper presents algorithms for calculating complex indicators on set factual data, represented in dynamic 

structures with the application of the graph theory. 
 
Keywords: dynamic structures of the data, tripartite graph, algorithm of graph’s round, complex indicators. 
 
The problem of rupture between scientific methods of 

representing (describing) real world objects and the 
storage of this information in information systems has 
existed for a long time and has not yet been solved 
satisfyingly. The database management system (DBMS) 
is the best system available today, which allows the 
storage of information in the form of objects [1; 2] (the 
object-oriented approach [3]) or globals [1] (hierarchical 
representation of the information in the form of a tree). 
However, even such an approach can capture only part of 
the variety represented in the information of modern 
scientific methods [4]. Such rupture substantially slows 
the development of science and engineering in the field of 
information technology. 

According to this, the essential restriction for 
information system design is the standard way of data 
storage, which is based on static structures (i. e. for the 
description of a subjected field’s objects in order to store 
information, a database of the data storage structure is 
created in advance). This results in the fact that such 
structures should be created by the designer of 
information system during a stage of its designing and it 
(this structure) cannot change during the development of 
this system and its maintenance. It is not necessary to 
speak about the expenses at which changes in the system 
come… It is obvious that if such changes are possible, 
even in an insignificant part of this structure, it would 
come at the same expense as the original production of 




