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MAGNETIZATION OF MULTILAYER FERROMAGNETIC 
FILM WITH A NONMAGNETIC INTERLAYER 

 
The magnetization of magnetic film, consisting out of two ferromagnetic layers with a nonmagnetic interlayer 

applied to antiferromagnetic substrate is considered in this paper. 
 
Keywords: ferromagnetic, antiferromagnetic, interlayer interaction. 
 
Currently, the issue we consider is of great 

significance because there is an international interest in 
multilayer magnetic systems. Such systems are used in 
magnetoresistive sensors, components of magnetic send-
receive, spin diodes. The magnetization of a multilayer 
magnetic system consisting of two ferromagnetic layers 
with a nonmagnetic interlayer applied to 
antiferromagnetic substrate is considered in the presented 
paper. The theoretical model used for the investigation of 
the stated process had been introduced in paper [1]. 
Inhomogeneous distribution takes place in this system 
because of substrate influence. This is why we use a 
stated model. 

Physical properties of the film are defined by its 
boundaries. A bilayer system with the ferromagnetic-on-
antiferromagnetic-substrate type is investigated in 
research paper [1] where the boundary condition of 
clamped magnetization vector type had been considered.  

In paper [2] it had been demonstrated that the 
magnetization process of such a system has a threshold 
type. The author [2] points out an analogue between the 
magnetization process and the bending of elastic rod 
considered in paper [3]. It is also necessary to refer to 
paper [4]. 

Later the boundary condition of the clamped vector 
type was replaced by condition of elastically restrained 
vector type by introducing an effective interlayer at the 
ferromagnetic-antiferromagnetic boundary [5]. In later 
research of bilayer ferromagnetic film, the layers of which 
were rigidly bond with an antiferromagnetic substrate was 
overlooked in [6]; using an analog of a two-part elastic 
shank clamped at one edge and free at the other [7]. 

Today the presence of a nonmagnetic interlayer in 
ferromagnetic systems and its influence on threshold 
fields and the distribution of magnetization aren’t being 
studied.  

The potential energy of the magnetic system is given 
as expression [8]: 
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where, the first summand represents the quadratic form of 
derivatives, wa(M) is the magnetic anisotropy energy, 
f(M2) is some function of M2. We only overlook isotropic 
ferromagnetic films where magnetization inhomogeneous 
is present along thickness of the object. Thereby, the 
second summand turns into zero and the first summand 
turns into the following expression: 
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Axis z is directed perpendicularly to the layers.                    
A variation of the third summand results in zero because 
the magnetization vector length doesn’t change; therefore 
we shall not consider it. Thereby, the energy of the 
ferromagnetic layer may be represented as: 
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where d1, d2 are the thicknesses, M1, M2 are the 
magnetization densities, α1, α2 are the exchange constants 
of first and second layers respectively; ds is the interlayer 
thickness, H is the applied magnetic field. 

The energy of interlayer is given in the expression: 
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where αs is the interlayer exchange constant. 
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The total energy of the ferromagnetic system is: 
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The value of thickness ds is negligible in comparison 
to thicknesses d1 and d2. It’s rather convenient to proceed 
to the generalized coordinates, which represent the 
rotation angles between the magnetization vectors and x 
axis directed along the applied field. Then, 
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The minimum condition of potential energy gives: 

( ) ( )

1 2

1

1

2

1

1

2 21 2
1 1 1 2 2 2

0

2
2 1

1 1 1 1 12
0

2
2 2

2 2 2 2 22

1 2 2 1 2 1

sin

sin

sin 0.

d d

d

d

d

d

s

s d

d d
U M M

dz dz

d
M M H dz

dz

dM M H dz
dz

M M
d

ϕ ϕ
δ = α δϕ + α δϕ −

⎛ ⎞ϕ
− α + ϕ δϕ −⎜ ⎟

⎝ ⎠

⎛ ⎞ϕ
− α + ϕ δϕ +⎜ ⎟

⎝ ⎠

α
+ ϕ − ϕ δ ϕ − ϕ =

∫

∫
     (6) 

Differential equations set follows from (6) as long as 
variations δϕ1 and δϕ2 contained in integral are arbitrary: 
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Matching of condition at point d1 follows from (6): 
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Here z is a normalized variable. Then we will use 
designation С = (αsM2)/( dsM1). This quantity 
characterizes the degree of the layer’s fixity. The 
infinitely large value of C gives ϕ1 = ϕ2, substituting for 
first equation of (8).  

The boundary conditions are also given from (6): 
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Angle ϕ1 equals zero at the antiferromagnetic 
boundary because the applied magnetic field we consider 
is solidly joined to the antiferromagnetic anisotropy field. 
Where the vacuum border is angle ϕ2 shall be subject to 
free magnetic momentums. Mathematically, this looks 
like: 
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For example let’s examine a magnetic film consisting 
of two ferromagnetic with equal thickness d and with a 
nonmagnetic interlayer: 
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In these equations z is normalized variable. The 
solution of these equations could be represented as [1]: 
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where sn(u, k) is the Jacobi sine. Equations (11) amplified 
with the matching condition: 
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and the border conditions: 
 

( )

( )

2

1

1
0,

0 0.

d
dz

⎧ ϕ
=⎪

⎨
⎪ϕ =⎩

                               (13) 

 

Fig. 1 represents the system of coordinates. A new 
coordinate system is introduced for each layer. The spiral 
emphasizes the interlayer interaction. 

 

 
 

Fig. 1. Coordinate system 
 
Applying the border conditions and matching the 

condition to the solution gives: 
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where: 

1 4 c

hu
h

π
= , ( ) 2

2 2 2
14 c

M hu F K k
M h

π
= = −

γ
, 

2
1
22ch

d
απ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 

3
2 2

3
1 1

M
M

α
γ =

α
, 1

Cd
α

ρ = , 

 
 

cn(u, k), sn(u, k), dn(u, k) are the Jacobi cosine, sine and 
delta-function respectively. Constant F1 equals zero. To 
define the threshold fields, elliptic modules k must be 
turned to zero in (14). Then, after some transformations, 
the transcendental equation derives from (14):  
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where htr = Htr/M is the threshold field. The solution             
of (15) relative to htr/hc by different values of parameters 
γ  and ρ gives surface shown in fig. 2. 

 
 

 
 

Fig. 2. Threshold field dependence on γ  and ρ 
 
If there is no nonmagnetic interlayer (ds = 0), and the 

ferromagnetic system consists of two equal layers (γ = 1), 
the equation (15) will depict the known expression: 

 

2

22 4
thh

d
π α⎛ ⎞= ⎜ ⎟

⎝ ⎠
. 

 

In other extreme cases ( ρ → ∞ ) the second equation 
of (14) gives: 
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This result corresponds to the ferromagnetic layer the 
thickness of which equals d as expected. 

It’s also necessary to investigate the behavior of 
magnetization curves. Let’s examine a particular case 
where two identical ferromagnetic layers are separated by 
a nonmagnetic interlayer. Only variable ρ varies. The 
average value of the magnetization vector projection is 
presented by the following expression: 
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The integration gives: 
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where am(u, k) is the Jacobi amplitude (fig. 3): 
 
 

 
 

Fig. 3. The magnetization x-projection dependence  
on the applied field: 

1 – ρ = 0; 2 – ρ = 1,4; 3 – ρ = 2,8 
 
Parabola 1 corresponds to the magnetic system 

consisting of one ferromagnetic layer with a thickness of 
2d because ρ and, consequently ds equals, zero in this 
case. Parabolas 2 and 3 correspond to the magnetic 
systems involving a non-magnetic interlayer and the 
curve shifted to less values of the applied magnetic field 
at the beginning of magnetization; corresponds to a 
greater thickness of the interlayer. 

Currently, a research on interlayer influence on 
threshold fields in systems of ferromagnetic-interlayer-
ferromagnetic-antiferromagnetic types has been 
conducted. Also, parabolas of magnetization with 
different values of effective parameter ρ, characterizing 
the interlayer exchange interaction have been plotted.  
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ON APPLICATION OF FACTORIAL ANALYSIS IN PROBLEMS 
OF SECURITY ESTIMATION OF AUTOMATED SYSTEMS ELEMENTS 

 
The possibility of factorial analysis application in theestimation of the state of information systems security is 

considered. The procedure of selection and classification of factors as well as calculation of factors influence on the 
resultant indicator size are described. 

 
Keywords: risk management, information risk, factorial analysis. 
 
Factorial analysis is one of the possible methods of 

automated systems security analysis. This method of 
analysis allows both to establish cause-and-effect 
relations between negative events and to characterize 
them quantitatively. 

Let’s consider the application peculiarities of a 
security estimation factorial model (further a factorial 
model) in the problem of security estimation of electronic 
document management system (EDMS). At the same time 
we will introduce universality elements into the offered 
model which will allow to use it for the estimation of 
various elements of both EDMS and other automated 
systems. We will especially note the applicability of the 
offered model and the solutions found on its basis for a 
human factor estimation. 

The model description. Let there be an information 
system IS which consists of N numbers of E elements, 
each of which in its turn consists of K components. A 
component of each element in a certain period of time can 
accept х of states s with probability r: 
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where  
l ∈ [1…N].                                     (1) 

 

Let x be the quantity of degrees of a component 
freedom. It is obvious that in using a similar model of the 
system it is possible to use the method of a morphological 
box of Zwicky [1, p. 196] in various variants. At the same 
time it is possible to calculate the quantity of cause-and-
effect relations between the states of information system 
elements if we calculate them as a number of placings 
with repetitions: 
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where m is the quantity of interlinks between system 
elements components. During such calculation a number 
of assumptions was made which is necessary to mention 
as these assumptions restrict the model application range:  

– it is necessary to reduce the quantity of freedom 
degrees to some uniform value which assumes a standard 
set of states of system elements components; 

– it is necessary to provide the completeness of an 
initial set of freedom degrees of each system element 
component which assumes a certain approach to the 
choice of indicators defining freedom degrees; 

– the private function of utility should be calculated 
for each system element separately, thus resorting to 
simplification of calculations; 

– it is necessary to possess the information about 
internal connections of analyzed system elements. 
Without updating such approach is inapplicable for a 
system with incomplete information about internal 
connections. 

Let’s consider basic elements of an applied factorial 
model: 

– the private function of element E utility for 
performing the main task of IS system (further – private 
function of utility): 
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