#### УДК 532.5.032

П. Н. Смирнов, А. А. Кишкин, Д. А. Жуйков

## РАСЧЕТНОЕ МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ В ПОЛОСТИ ДИСКОВОГО НАСОСА\*

Рассматривается подход к построению математической модели дискового насоса трения путем разложения его гидравлического тракта на отдельные структурно-функциональные участки. На основе выражений для напряжений трения, полученных из уравнений импульсов турбулентного пространственнопограничного слоя, приведены решения уравнений движения вязкой несжимаемой жидкости в каждом из участков.

Ключевые слова: дисковый насос, напряжения трения, уравнения движения, математическое моделирование.

Дисковые насосы представляют собой простейшие турбомашины, в которых рабочему телу сообщается энергия за счет работы кориолисовых сил в форме сил терния. Основным элементом дискового насоса является расположенное в корпусе колесо, состоящее из нескольких дисков, скрепленных между собой. Дисковые насосы имеют ряд преимуществ по сравнению с лопастными машинами, а в некоторых областях они являются единственными работоспособными [1]. Учитывая, что дисковые насосы обладают исключительными антикавитационными свойствами, что позволяет более эффективно перекачивать двух- и трехфазные среды, имеют низкий уровень шума, они получили широкое применение в нефте- и горнодобывающей, химической, пищевой промышленностях, медицине. Кроме того, дисковые насосы эффективно работают в области малых коэффициентов быстроходности (при малых объемных расходах и высоких напорах), что в сочетании с антикавитационными качествами определяет их применение в энергосистемах малой мощности (< 100 кВт), использующих фазовый переход рабочего тела: паротурбинные генераторы на низкокипящем рабочем теле, системы терморегулирования различного назначения и т. п.

Для моделирования течения в рабочей полости дискового насоса целесообразно выделить структурно-функциональные участки гидравлического тракта, на которых реализованы различные типы течения. Причем течение на каждом участке условно делится на течение в ядре и пространственном пограничном слое (ППС) [2]. Решение задачи о течении в ППС сводится к определению напряжений трения на непроницаемых границах. Результатом решения задачи о течении в ядре потока являются поля угловой скорости вращения ядра потока и статического давления. Согласно принципиальной схеме дискового насоса (рис. 1), нами были рассмотрены два следующих участка: с течением между вращающимся диском и неподвижной стенкой (рис. 1, полость В) и с течением межу двумя вращающимися дисками (рис. 1, полость А). Рассмотрим каждый из этих участков по отдельности.

Рассмотрим элементарный объем жидкости в зазоре между двумя вращающимися дисками (рис. 2). На рисунке  $\tau_{0\alpha}^{n1}$ ,  $\tau_{0\alpha}^{n2}$  – окружные напряжения трения на первом и втором диске соответственно;  $\tau_{0R\alpha}^{n1}$ ,  $\tau_{0R\alpha}^{n2}$  – радиальные напряжения трения от окружной составляющей скорости на первом и втором диске соответственно;  $\tau_{0Rp}^{n1}$ ,  $\tau_{0Rp}^{n2}$  – радиальные напряжения трения от окружной составляющей скорости на первом и втором диске соответственно;  $\tau_{0Rp}^{n1}$ ,  $\tau_{0Rp}^{n2}$  – радиальные напряжения трения от расходной составляющей скорости на первом и втором диске соответственно. Элементарный объем представляет собой кольцо на текущем радиусе высотой  $dR \rightarrow 0$  и толщиной  $z_1$  – нормальный зазор полости.



Рис. 1. Принципиальная схема дискового насоса: 1 – рабочее колесо; 2 – приводной вал; 3 – корпус; 4 – радиальное отводящее устройство; А – рабочая полость между двумя вращающимися дисками; В – полость между вращающимся диском и неподвижной стенкой

<sup>\*</sup>Работа выполнена при финансовой поддержке Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России на 2009–2013 годы» (ГК № П657 от 15.09.09 г.).



Рис. 2. Расчетная схема для полости между двумя вращающимися дисками

Бесконечно малый элементарный объем делится на три участка: течение в ППС около двух вращающихся дисков и течение ядра потока. Течение на первом диске происходит в толщине пограничного слоя  $\delta_{\rm Al}$ , где окружная скорость жидкости изменяется от  $U_{\rm Al}$  – скорость вращения первого диска, до  $U_{\rm g}$  – скорость вращения ядра потока. Течение на втором диске происходит в толщине пограничного слоя  $\delta_{\rm A2}$ , где окружная скорость жидкости изменяется от  $U_{\rm g}$  до  $U_{\rm g2}$  – скорость вращения второго диска.

Интегрированием системы уравнений импульсов турбулентного ППС в работе [3] получены составляющие напряжений трения на дисках в окружном и радиальном направлениях от окружной составляющей скорости:

- окружные напряжения трения на диске:

$$\tau_{0\alpha}^{\pi i} = 0,01256\rho \left(\omega_{\pi i} - \omega_{\pi}\right)^{2} \times R^{2} \left(\frac{\left(\omega_{\pi i} - \omega_{\pi}\right)R\delta_{\alpha,\pi i}^{**}}{\nu}\right)^{-0.25}, \qquad (1)$$

где  $\omega_{\pi i}$ ,  $\delta_{\alpha \pi i}^{**}$ ,  $i = \overline{1, 2}$  – угловые скорости вращения и толщины вытеснения пограничного слоя для первого и второго дисков соответственно;  $\omega_{\pi}$  – угловая скорость вращения ядра потока.

Поскольку радиальная составляющая напряжения трения формируется как окружным, так и расходным (радиальным) течением, выражение для радиального напряжения на диске имеет вид:

$$\tau_{0R}^{\pi i} = \tau_{0Rp}^{\pi i} + \tau_{0R\alpha}^{\pi i} , \qquad (2)$$

где  $\tau_{0R}^{ai}$ ,  $i = \overline{1, 2}$  – радиальная составляющая напряжения трения на первом и втором диске соответственно;

 – радиальные напряжения трения от окружной составляющей скорости на диске:

$$\tau_{0R\alpha}^{\Lambda i} = \varepsilon_{\Lambda i} \tau_{0\alpha}^{\Lambda i} , \qquad (3)$$

где  $\varepsilon_{di}$ ,  $i = \overline{1, 2}$  – тангенс угла скоса донной линии тока на первом и втором дисках соответственно;

 – радиальные напряжения трения от расходной составляющей скорости (определяются классическими выражениями [4]) на диске:

$$\tau_{0Rp}^{\pi i} = 0,01256\rho V_R^2 \left(\frac{V_R \delta_{\alpha,\pi i}^{**}}{\nu}\right)^{-0.25}.$$
 (4)

Полученные напряжения трения позволяют интегрировать уравнения движения вязкой несжимаемой жидкости в цилиндрических координатах [5] в граничных условиях полости между двумя вращающимися дисками:

$$V_{R}\frac{\partial V_{R}}{\partial R} + \frac{U_{\pi}}{R}\frac{\partial V_{R}}{\partial \alpha} + V_{z}\frac{\partial V_{R}}{\partial z} - \frac{U_{\pi}^{2}}{R} = -\frac{1}{\rho}\frac{\partial p}{\partial R} + \frac{1}{\rho}\frac{\partial \tau_{R}}{\partial z};$$

$$V_{R}\frac{\partial U_{\pi}}{\partial R} + \frac{U_{\pi}}{R}\frac{\partial U_{\pi}}{\partial \alpha} + V_{z}\frac{\partial U_{\pi}}{\partial z} + \frac{V_{R}U_{\pi}}{R} = -\frac{1}{\rho}\frac{\partial p}{\partial \alpha} + \frac{1}{\rho}\frac{\partial \tau_{\alpha}}{\partial z};$$

$$V_{R}\frac{\partial V_{z}}{\partial R} + \frac{U_{\pi}}{R}\frac{\partial V_{z}}{\partial \alpha} + V_{z}\frac{\partial V_{z}}{\partial z} = -\frac{1}{\rho}\frac{\partial p}{\partial z} + \frac{1}{\rho}\frac{\partial \tau_{z}}{\partial z};$$

$$\frac{\partial V_{R}}{\partial R} + \frac{1}{R}\frac{\partial U_{\pi}}{\partial \alpha} + \frac{\partial V_{z}}{\partial z} + \frac{V_{R}}{R} = 0,$$
(5)

где  $U_{\rm g}$ ,  $V_R$ ,  $V_z$ ,  $\tau_{\alpha}$ ,  $\tau_R$ ,  $\tau_z$  – проекции скорости и напряжения трения на оси цилиндрической системы координат  $\alpha$ , R, z соответственно.

Преобразуем систему (5) с учетом следующих допущений:

- течение в осевой щели осесимметрично, члены с  $\frac{\partial}{\partial \alpha}$  равны нулю;

– в осевом направлении (в направлении z) течение отсутствует, следовательно  $\frac{\partial V_z}{\partial z} = 0$ ,  $\frac{\partial p}{\partial z} = 0$ ,  $V_z = 0$ ;

третье уравнение системы (5) обнуляется;

- свойства жидкости постоянны;

 жидкость течет по гидравлически гладким поверхностям;

течение происходит при турбулентном режиме.
 Получаем следующие выражения:

$$V_{R} \frac{dV_{R}}{dR} - \frac{U_{\pi}^{2}}{R} = -\frac{1}{\rho} \frac{dp}{dR} + \frac{1}{\rho} \frac{\partial \tau_{R}}{\partial z};$$

$$V_{R} \frac{dU_{\pi}}{dR} + \frac{V_{R}U_{\pi}}{R} = \frac{1}{\rho} \frac{\partial \tau_{\alpha}}{\partial z};$$

$$\frac{dV_{R}}{dR} + \frac{V_{R}}{R} = 0.$$
(6)

Третье уравнение системы (6) – уравнение неразрывности – интегрируется как уравнение с разделяющимися переменными:

$$\int \frac{dV_R}{V_R} = -\int \frac{dR}{R} \, .$$

В результате получаем:

$$V_R R = \text{const} = V_{R_0} R_0 = C_R ,$$
 (7)

где  $V_R$  – радиальная составляющая скорости в ядре потока;  $C_R$  – определяется граничными условиями на входе.

Сделанные допущения формулируют задачу в следующей постановке: поток разделяется на невязкое ядро, в котором члены не зависят от координаты *z* и тонкий пограничный слой, в котором  $\tau = \int \frac{\partial \tau}{\partial z} dz = \tau |_{\tau_0}^{\tau_\delta} = \tau_{\delta} - \tau_0 = -\tau_0$ . Проинтегрируем первые два уравнения системы (6) по *z* в пределах от 0

вые два уравнения системы (б) по 2 в пределах от о до  $z_1$  (причем в первом приближении не учитываем толщину вытеснения пограничных слоев). Подставив в полученную систему выражение (7), получаем:

$$z_{1}\left(\frac{C_{R}}{R}\frac{dU_{\pi}}{dR} + \frac{C_{R}U_{\pi}}{R^{2}}\right) = -\frac{\tau_{0\alpha}}{\rho};$$

$$z_{1}\left(-\frac{C_{R}^{2}}{R^{3}} + \frac{U_{\pi}^{2}}{R}\right) = \frac{z_{1}}{\rho}\frac{dp}{dR} + \frac{\tau_{0R}}{\rho}.$$
(8)

Перепишем систему (8) с учетом касательных напряжений трения, при этом учтем  $U = \omega_{g}R$ , где  $\omega_{g}$  – угловая скорость вращения ядра потока:

$$\begin{pmatrix} \frac{C_R}{R} \frac{d\left(\omega_{\mathfrak{g}}R\right)}{dR} + \frac{C_R\omega_{\mathfrak{g}}}{R} \end{pmatrix} z_1 = -\frac{1}{\rho} \left( -\tau_{0\alpha}^{\pi 1} - \tau_{0\alpha}^{\pi 2} \right); \\ \left( -\frac{C_R^2}{R^3} + \omega_{\mathfrak{g}}^2 R \right) z_1 = \frac{z_1}{\rho} \frac{dp}{dR} + \frac{1}{\rho} \left( \tau_{0R(\alpha)}^{\pi 1} + \tau_{0R(\alpha)}^{\pi 2} - \tau_{0R(p)}^{\pi 1} - \tau_{0R(p)}^{\pi 2} \right).$$

$$(9)$$

Заменим постоянный параметр  $C_R$  на более употребительный параметр  $\dot{V}$ , учитывая (7):

$$V_{R_0}R_0 = C_R$$
;  $V_{R_0} = \frac{\dot{V}}{2\pi R_0 z_1}$ .

Тогда

$$C_R = \frac{\dot{V}}{2\pi z_1} \,. \tag{10}$$

Выразим производную по  $\omega_{\pi}$  из первого уравнения системы (9) с учетом (10). Согласно расчетной схеме при течении от центра к периферии получим:

$$\frac{d\omega_{\pi}}{dR} = \frac{2\pi}{\rho \dot{V}} \left( \tau_{0\alpha}^{\pi 1} + \tau_{0\alpha}^{\pi 2} \right) - \frac{2\omega_{\pi}}{R} \,. \tag{11}$$

Аналогично изложенному выше, выразим из второго уравнения системы (9) производную по *p*:

$$\frac{dp}{dR} = \rho \omega_{\pi}^{2} R + \frac{\rho \dot{V}^{2}}{4\pi^{2} n_{0}^{2} R^{3}} + \frac{1}{n_{0}} \left( \tau_{0R(\alpha)}^{\pi l} + \tau_{0R(\alpha)}^{\pi 2} - \tau_{0R(p)}^{\pi l} - \tau_{0R(p)}^{\pi 2} \right).$$
(12)

Полученные выражения позволяют провести численное интегрирование и получить поле угловой скорости в ядре потока и поле статического давления, которые в достаточной мере позволяют оценить характер движения рабочего тела в полости между двумя вращающимися дисками.

Приращение по радиусу выбираем в зависимости от количества шагов расчетного алгоритма (требуемой точности):

$$\Delta R = \frac{R}{N} ,$$

где *R* – радиус диска; *N* – число шагов алгоритма.

Тогда радиус на *i*-м шаге:  $R_i = R_{i-1} + \Delta R$ ,  $i = \overline{1...N}$ .

Далее для определения напряжений трения необходимо вычислить толщины потери импульса на дисках.

Толщина потери импульса на первом диске:

$$\left( \delta_{\mu l}^{**} \right)_{i} = \left( \delta_{\mu \mu l}^{**} \right)_{i} \frac{\left| \omega_{\mu l} - \left( \omega_{\mu} \right)_{i-1} \right|^{2} R_{i}^{2}}{\left| \omega_{\mu l} - \left( \omega_{\mu} \right)_{i-1} \right|^{2} R_{i}^{2} + \left( C_{R} / R_{i} \right)^{2}} + \left( \delta_{p}^{**} \right)_{i} \frac{\left( C_{R} / R_{i} \right)^{2}}{\left| \omega_{\mu l} - \left( \omega_{\mu} \right)_{i-1} \right|^{2} R_{i}^{2} + \left( C_{R} / R_{i} \right)^{2}},$$

$$(13)$$

где

$$\left[\delta_{p}^{**}\right]_{i} = 0,036 \left(\frac{C_{R}}{R_{i}\nu}\right)^{-0,2} \left|R_{i} - R_{0}\right|^{0,8}; \quad (14)$$

$$\left(\delta_{u \exists 1}^{**}\right)_{i} = k \left(\frac{\left|\omega_{\exists 1} - \left(\omega_{\exists}\right)_{i-1}\right|}{\nu}\right)^{-0,2} R_{i}^{0,6}, \quad k = 0,362 \text{ при}$$
$$\omega_{\exists 1} < (\omega_{\exists})_{i-1}, \quad k = 0,3018 \text{ при} \quad \omega_{\exists 1} > (\omega_{\exists})_{i-1}.$$

Толщина потери импульса на втором диске:

$$\left( \delta_{\mu2}^{**} \right)_{i} = \left( \delta_{\mu\mu2}^{**} \right)_{i} \frac{\left| \omega_{\mu2} - (\omega_{\mu})_{i-1} \right|^{2} R_{i}^{2}}{\left| \omega_{\mu2} - (\omega_{\mu})_{i-1} \right|^{2} R_{i}^{2} + (C_{R}/R_{i})^{2}} + \left( \delta_{p}^{**} \right)_{i} \frac{(C_{R}/R_{i})^{2}}{\left| \omega_{\mu2} - (\omega_{\mu})_{i-1} \right|^{2} R_{i}^{2} + (C_{R}/R_{i})^{2}},$$

$$\left( \delta_{\mu\mu2}^{**} \right)_{i} = k \left( \frac{\left| \omega_{\mu2} - (\omega_{\mu})_{i-1} \right|}{\nu} \right)^{-0.2} R_{i}^{0.6}, \quad k = 0,362 \quad \text{при}$$

 $\omega_{{}_{\mathrm{Z}2}} < (\omega_{{}_{\mathrm{S}}})_{i-1}$ , k = 0,3018 при  $\omega_{{}_{\mathrm{Z}2}} > (\omega_{{}_{\mathrm{S}}})_{i-1}$ .

Окружные напряжения трения и суммарные радиальные напряжения трения на дисках определяем по выражениям (1)–(4).

Новые значения на шаге интегрирования для угловой скорости ядра потока и статического давления в узлах  $R_i$  получим из выражений (11) и (12) соответственно при помощи модифицированного метода Эйлера с пересчетом.

Следующий структурно-функциональный участок, который необходимо рассмотреть - торцевой зазор между вращающимся диском и неподвижной стенкой (рис. 1, полость В). Фактически, характер течения в этой полости определяет утечки из основного гидравлического тракта дискового насоса терния. Рассмотрим элементарный объем жидкости в торцевом зазоре между неподвижной стенкой и вращающимся диском (рис. 3). На рисунке  $\tau_{0\alpha}^{cr}, \tau_{0\alpha}^{a}$  – окружные напряжения трения на стенке и на диске соответственно;  $\tau_{0R\alpha}^{cr}, \tau_{0R\alpha}^{d}$  – радиальные напряжения трения от окружной составляющей скорости на стенке и на диске соответственно;  $\tau_{0Rp}^{cr}, \tau_{0Rp}^{a}$  – радиальные напряжения трения от расходной составляющей скорости на стенке и на диске соответственно. Элементарный объем представляет собой кольцо на текущем радиусе высотой  $dR \rightarrow 0$  и толщиной  $z_1$  – нормальный зазор полости. Бесконечно малый элементарный объем делится на три участка: течение в ППС около неподвижной стенки, течение в ППС у вращающегося диска и течение в ядре потока. Течение на неподвижной стенке происходит в толщине пограничного слоя  $\delta_{cr}$ , где окружная скорость жидкости изменяется от 0 до  $U_{\mathsf{g}}$ . Течение на вращающемся диске происходит в толщине пограничного слоя  $\delta_n$ , где окружная скорость жидкости изменяется от  $\,U_{\rm s}\,$  до  $\,U_{\rm g}\,$  – скорость вращения диска.

Для решения системы уравнений движения вязкой несжимаемой жидкости необходимо определить напряжения от расходного и вращательного течения жидкости [6].

Для полости между вращающимся диском и неподвижной стенкой проведем аналогичную процедуру, как и для полости между двумя вращающимися дисками. Путем интегрирования системы уравнений импульсов турбулентного (ППС), определяем окружные и радиальные напряжения трения от окружной и расходной составляющих скорости на диске и на стенке:

– окружные напряжения трения на стенке [6]:

$$\mathbf{t}_{0\alpha}^{c_{\rm T}} = 0,01256\rho\omega_{\rm g}^2 R^2 \left(\frac{\omega_{\rm g} R \delta_{\alpha \, c_{\rm T}}^{**}}{\nu}\right)^{-0.25}; \qquad (16)$$

- окружные напряжения трения на диске [3]:

$$\tau_{0\alpha}^{\pi} = 0,01256\rho(\omega_{\pi} - \omega_{\pi})^{2} \times R^{2} \left( \frac{(\omega_{\pi} - \omega_{\pi})R\delta_{\alpha\pi}^{**}}{\nu} \right)^{-0,25}.$$
(17)

Поскольку радиальная составляющая напряжения трения формируется как окружным, так и расходным (радиальным) течением, то выражение для радиального напряжения на стенке имеет вид:

$$\tau_{0R}^{\rm cr} = \tau_{0Rp}^{\rm cr} + \tau_{0R\alpha}^{\rm cr} ; \qquad (18)$$

- радиальное напряжение трения на диске:

$$\tau_{0R}^{\mu} = \tau_{0Rp}^{\mu} + \tau_{0R\alpha}^{\mu}; \qquad (19)$$

 – радиальные напряжения трения от окружной составляющей скорости на стенке:

$$\tau_{0R\alpha}^{\rm cr} = \varepsilon_{\rm cr} \tau_{0\alpha}^{\rm cr} ; \qquad (20)$$

 – радиальные напряжения трения от окружной составляющей скорости на диске:

$$\tau^{\mathcal{A}}_{0R\alpha} = \varepsilon_{\mathcal{A}} \tau^{\mathcal{A}}_{0\alpha} ; \qquad (21)$$

 – радиальные напряжения трения от расходной составляющей скорости (определяются классическими соотношениями [4]) на стенке:

$$t_{0Rp}^{\rm cr} = 0,01256\rho V_R^2 \left(\frac{V_R \delta_{\alpha\,\rm cr}^{**}}{\nu}\right)^{-0.25};$$
(22)

 – радиальные напряжения трения от расходной составляющей скорости на диске:

$$\tau_{0Rp}^{\pi} = 0,01256\rho V_R^2 \left(\frac{V_R \delta_{\alpha \pi}^{**}}{\nu}\right)^{-0.25}.$$
 (23)

Полученные напряжения трения позволяют интегрировать уравнения движения вязкой несжимаемой жидкости в заданных граничных условиях. При помощи этой системы дифференциальных уравнений, состоящей из уравнения движения вязкой несжимаемой жидкости в проекциях на цилиндрические оси координат и уравнения неразрывности, можно решить задачу о течении в ядре потока. Для этого введем допущения, аналогичные принятым при решении системы (5):

$$V_{R} \frac{dV_{R}}{dR} - \frac{U_{\pi}^{2}}{R} = -\frac{1}{\rho} \frac{dp}{dR} + \frac{1}{\rho} \frac{\partial \tau_{R}}{\partial z};$$

$$V_{R} \frac{dU_{\pi}}{dR} + \frac{V_{R}U_{\pi}}{R} = \frac{1}{\rho} \frac{\partial \tau_{\alpha}}{\partial z};$$

$$\frac{dV_{R}}{dR} + \frac{V_{R}}{R} = 0.$$
(24)



Рис. 3. Расчетная схема для полости между неподвижной стенкой и вращающимся диском

Проинтегрировав уравнения движения методами, аналогичными использованным при решении задачи течения между двумя вращающимися дисками, рассмотренными выше, и проведя соответствующие преобразования, получим (согласно расчетной схеме при течении от периферии к центру) дифференциальные уравнения для угловой скорости в ядре потока:

$$\frac{d\omega_{\pi}}{dR} = \frac{2\pi}{\rho \dot{V}} \left( \tau_{0\alpha}^{\pi} - \tau_{0\alpha}^{cr} \right) - \frac{2\omega_{\pi}}{R} \,. \tag{25}$$

Статического давления:

$$\frac{dp}{dR} = \rho \omega_{\rm g}^2 R + \frac{\rho \dot{V}^2}{4\pi^2 n_0^2 R^3} + \frac{1}{n_0} \left( -\tau_{0R(\alpha)}^{\rm a} + \tau_{0R(\alpha)}^{\rm cr} + \tau_{0R(p)}^{\rm a} + \tau_{0R(p)}^{\rm cr} + \tau_{0R(p)}^{\rm cr} \right).$$
(26)

Полученные выражения позволяют вести численное интегрирование и получить поле угловой скорости в ядре потока и поле статического давления, необходимые для оценки характера движения рабочего тела в полости между неподвижной стенкой и вращающимся диском.

Далее для определения напряжений трения необходимо вычислить толщины потери импульса на диске и неподвижной стенке. Толщина потери импульса на диске определяется аналогично выражению (13). Определим толщину потери импульса на стенке:

$$\left(\delta_{\rm cr}^{**}\right)_{i} = \left(\delta_{\rm ucr}^{**}\right)_{i} \frac{\left(\omega_{\rm g}\right)_{i-1}^{2} R_{i}^{2}}{\left(\omega_{\rm g}\right)_{i-1}^{2} R_{i}^{2} + \left(C_{R}/R_{i}\right)^{2}} + \left(\delta_{p}^{**}\right)_{i} \frac{\left(C_{R}/R_{i}\right)^{2}}{\left(\omega_{\rm g}\right)_{i-1}^{2} R_{i}^{2} + \left(C_{R}/R_{i}\right)^{2}},$$

$$rge \left(\delta_{\rm ucr}^{**}\right)_{i} = 0,3018 \left(\frac{\left(\omega_{\rm g}\right)_{i-1}}{\nu}\right)^{-0.2} R_{i}^{0.6}.$$

$$(27)$$

Компонента толщины потери импульса от расходной составляющей течения определяется по выражению (14).

Новые значения на шаге интегрирования для угловой скорости ядра потока и статического давления в узлах *R<sub>i</sub>* получим из выражений (25) и (26) соответственно при помощи модифицированного метода Эйлера с пересчетом.

Таким образом, на основе выражений для напряжений трения выполнено интегрирование уравнений движения вязкой несжимаемой жидкости в граничных условиях торцевой щели и полости между двумя вращающимися дисками, которые являются основными участками гидравлического тракта дискового насоса трения, что позволяет при необходимой экспериментальной верификации разработать расчетную математическую модель дискового насоса.

### Библиографические ссылки

1. Мисюра В. И., Овсянников Б. В., Присняков В. Ф. Дисковые насосы. М. : Машиностроение, 1986.

2. Кишкин А. А., Черненко Д. В., Черненко Е. В. Уравнения импульсов трехмерного пограничного слоя // Изв. вузов. Сев.-Кавк. регион. Техн. науки. 2007. № 4. С. 35–41.

3. Краев М. В., Кишкин А. А., Майдуков А. В. Вращение диска в потоке, закрученном по закону твердого тела // Известия вузов. Авиационная техника. 1996. № 4. С. 42–47.

4. Шлихтинг Г. Теория пограничного слоя. М. : Наука, 1969.

5. Кочин Н. Е., Кибель И. А., Розе Н. В. Теоретическая гидромеханика. М. : Физматлит, 1963. Т. 2.

6. Вращение жидкости над неподвижным основанием по закону твердого тела / А. А. Кишкин, А. А. Зуев, Е. В. Черненко, П. Н. Смирнов // Известия вузов. Сев.-Кавк. регион. Техн. науки. 2011. № 1. С. 126–131. P. N. Smirnov, A. A. Kishkin, D. A. Zhuykov

# MATHEMATICAL MODELING OF FLOW IN THE WORKING CAVITY OF THE DISC PUMP

An approach to constructing a mathematical model of the friction disk pump by means of expansion of its hydraulic path into individual structural-functional areas is considered. On the basis of the friction pressure obtained from the momentum equations of turbulent three-dimensional boundary layer, the solutions of the motion equations of viscous incompressible fluid in each of the sites are made and presented in the article.

Keywords: disc pump, pressure of friction, motion equations, mathematical model.

© Смирнов П. Н., Кишкин А. А., Жуйков Д. А., 2011

УДК 66.095.262-911.48; 539.25

О. В. Шабанова, А. В. Шабанов, И. В. Немцев

### ИССЛЕДОВАНИЕ УСЛОВИЙ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ МОНОДИСПЕРСНЫХ СФЕРИЧЕСКИХ ЧАСТИЦ ПОЛИМЕТИЛМЕТАКРИЛАТА

Исследуются условия синтеза водных дисперсий сферических частиц полиметилметакрилата с узким распределением по размерам. Морфология частиц анализируется методом растровой электронной микроскопии.

Ключевые слова: полимеризация метилметакрилата, сферические частицы полиметилметакрилата, монодисперсность, инициатор полимеризации, растровая электронная микроскопия.

Анализ научных публикаций показывает все возрастающий интерес к созданию технологий, основанных на способности монодисперсных сферических частиц к самосборке с формированием новых материалов с иерархической структурой, в частности, искусственных опалоподобных структур [1; 2]. Теоретические и экспериментальные работы позволяют утверждать, что трехмерные периодические опалоподобные структуры, проявляющие свойства фотонных кристаллов, составят основу микрофотоники и оптоэлектроники. Соответственно технологии получения монодисперсных сферических частиц, а также заполнения межсферических пустот различными материалами будут одним из важнейших направлений в нанотехнологии [3]. Перспективным достижением в этой области является получение молекулярных кристаллов на основе полимерных монодисперсных сфер, синтезированных путем полимеризации стиролов, акрилатов и метакрилатов и др.

Целью данной работы было исследование методом растровой электронной микроскопии зависимости размеров и монодисперсности органических частиц полиметилметакрилата (ПММА) от условий их получения путем полимеризации метилметакрилата (ММА), эмульгированного в водной среде в присутствии инициатора (2,2'-азобис-2-метилпропионамидин).

Необходимое условие формирования макромолекул с узким молекулярно-массовым распределением (в том числе и блок-сополимеров) – это короткая фаза интенсивного множественного зародышеобразования, сменяющаяся медленным контролируемым ростом частиц с сохранением их числа [4].

Процесс цепной радикальной полимеризации метилметакрилата можно условно разделить на три этапа: активация инициатора, реакция мономера с радикалом инициатора и рост молекулы, обрыв цепи полимера [5]. При нагревании инициатор разлагается с образованием активных радикалов, являющихся инициаторами реакции полимеризации MMA:



Радикал присоединяется к молекуле MMA и активирует ее, образуя начальное звено цепи полимера:

