УДК 544.18

А. О. Лыхин, А. А. Кузубов, С. А. Варганов, М. В. Сержантова, Н. С. Елисеева

ЗАВИСИМОСТЬ СПИНА ОСНОВНОГО СОСТОЯНИЯ АКТИВНОГО ЦЕНТРА Fe₂S₂ ФЕРРЕДОКСИНА ОТ ОРИЕНТАЦИИ ЛИГАНДОВ*

В рамках теории функционала плотности рассмотрено строение окисленной формы кластера [2Fe-2S-4(SCH₃)]²⁻, являющегося аналогом активного центра белка ферредоксина. Показана возможность неадиабатических спин-запрещенных переходов между конформерами кластера, находящимися в синглетном и триплетном спиновых состояниях. Полученные переходные структуры могут быть использованы при изучении механизма реакций кластера с участием вырожденных спиновых состояний.

Ключевые слова: ферредоксин, неадиабатические процессы, теория функционала плотности.

Широко используемое в квантовой химии адиабатическое приближение предполагает расчет энергии структуры при фиксированных положениях ядер атомов и нахождении системы в основном электронном состоянии. Однако в ряде случаев разница между основным и возбужденным состоянием может быть достаточно мала, в результате чего становится возможным переход на поверхность потенциальной энергии возбужденного состояния. Изучение таких неадиабатических процессов является одной из наиболее актуальных задач в области динамики химических реакций [1; 2].

Описание спинового состояния системы играет особую роль в элементоорганической и бионеорганической химии [3]. В частности, давно известно, что изменение спинового состояния напрямую связано с протеканием реакций, в которых участвуют гемопротеины [4]. Все большее значение приобретает контроль спинового состояния в каталитических процессах, например с участием железа [5]. Реализация неадиабатических эффектов в системах с переходными металлами напрямую связана со спин-орбитальным взаимодействиям между электронными состояниями с разными спинами. В этой связи особое внимание уделяется рассмотрению железосодержащих белков, например ферредоксина. В качестве активного центра этого белка чаще всего выступает биядерный кластер [2Fe-2S], который связан с четырьмя цистеиновыми остатками, формирующими близкое к тетраэдрическому окружение для каждого атома Fe. Такая модель активного центра характеризуется заменой цистеиновых остатков на тиометильные группы.

Применение теории функционала плотности в моделировании структуры активного центра ферредоксина показало возможность существования окисленной формы кластера [2Fe–2S–4(SCH₃)]²⁻ в виде одной из 17 равновесных конформаций, отличающихся величиной двугранного угла, образуемого атомами Fe– Fe–S–C [6]. Однако кристаллографические данные строения белков свидетельствуют об отклонениях рассчитанных значений углов в газовой фазе от экспериментальных, что, по мнению авторов, связано с аминокислотным окружением активного центра ферредоксина. Вместе с тем геометрические параметры системы оказывают определяющее влияние на спиновое состояние кластера, его нахождение в устойчивом, возбужденном или переходном состоянии. Установление возможности существования системы в вырожденном спиновом состоянии является важнейшим этапом на пути исследования механизма реакций, протекающих по неадиабатическому спин-запрещенному механизму [7].

На основании квантово-химических расчетов, приведенных в [6], были рассмотрены пять наиболее энергетически выгодных структур окисленной формы кластера [2Fe-2S-4(SCH₃)]²⁻, отличающихся величинами двугранных углов Fe-Fe-S(Cys)-C, где S(Cys) терминальные атомы серы. Моделирование отобранных конформеров выполнялось в рамках теории функционала плотности в квантово-химическом пакете GAMESS [8]. При расчетах использовался обменно-корреляционный функционал РВЕ [9] в базисном наборе def2-TZVP [10]. Выбор этого базисного набора был обусловлен высокой точностью приближения, характеризующегося стандартным отклонением в энергии атомизации на атом, равным 0,022 эВ при средней ошибке в длине связи менее 1 пм, и отклонением в величине угла менее 1°.

Оптимизация конформеров проводилась без наложения ограничений по симметрии до достижения стандартного критерия сходимости. Были рассмотрены конформеры в антиферромагнитном состоянии (S = 0) и триплетном спиновом состоянии. Для наиболее энергетически выгодных конформеров также рассчитывались состояния с более высокой мультиплетностью.

Геометрические параметры полученных конформеров представлены в табл. 1.

Атомы железа и связанные с ними мостиковые атомы серы S3 и S4 расположены практически в одной плоскости. Выход атома серы из плоскости трех атомов не превышает 4° (рис. 1). Для описания двугранных углов введен фиктивный атом X, такой, что прямая, проходящая через атомы X и Fe2, перпендикулярна прямым Fe1–Fe2 и S3–Fe2. Таким образом, два атома железа и фиктивный атом X вместе образуют плоскость σ , перпендикулярную к плоскости Fe1–Fe2–S3.

^{*}Работа выполнена при поддержке Министерства образования и науки Российской Федерации (соглашение 14.В37.21.0916).

Таблица 1

Двугранные углы оптимизированных	структур кластера	$[2Fe-2S-4(SCH_3)]^{2-}$
----------------------------------	-------------------	--------------------------

№ конформера	Атом	(0 1	Abs	Атом	(Do	Abs	(D ₂
ne nen popule pu	1110.11	ΨI	1100	1110.01	Ψ2	1105	43
Синглетное спиновое состояние							
	S5	23	23	C9	176	4	
Δ1	S6	-157	23	C10	-3	3	0.04
AI	S7	23	23	C11	-174	6	0,04
	S8	-157	23	C12	3	3	
	S5	-24	24	C9	176	4	0,2
D1	S6	158	22	C10	0	0	
DI	S7	22	22	C11	177	3	
	S8	-156	24	C12	-2	2	
	S5	-27	27	С9	154	26	
C1	S6	142	38	C10	118	62	2.1
CI	S7	21	21	C11	-5	5	2,1
	S 8	-157	23	C12	-3	3	
	S5	-2	2	С9	-112	68	
D1	S6	176	4	C10	19	19	
DI	S7	-5	5	C11	120	60	0,3
	S8	177	3	C12	120	60	
	S5	3	3	С9	112	68	
	S6	-175	5	C10	-18	18	
E1	S7	-3	3	C11	124	56	1,0
	S8	176	4	C12	118	62	-
	 S5	4	4	C9	117	63	
	<u>S6</u>		6	C10	125	55	1,7
X1		5	5	C11	25	2.5	
	S8	-174	6	C12	30	30	
			-	_			
		Три	плетное спиново	е состояние			
	S5	0	0	C9	-109	71	3,5
٨.2	S6	177	3	C10	23	23	
AS	S7	-11	11	C11	173	7	
	S8	165	15	C12	-3	3	
	S5	5	5	С9	108	72	3.4
B 3	S6	-173	7	C10	-19	19	
60	S7	17	17	C11	-176	4	5,4
	S8	-159	21	C12	4	4	1
	S5	5	5	С9	118	62	1,3
C2	S6	-174	6	C10	125	55	
03	S7	18	18	C11	6	6	
	S8	-162	18	C12	7	7	
D3	S5	-4	4	C9	-116	64	
	S6	175	5	C10	26	26	- 0,7
	S7	-16	16	C11	133	47	
	S8	165	15	C12	134	46	
	S5	3	3	C9	116	64	
52	S6	-176	4	C10	103	77	0,3
ES	S7	16	16	C11	135	45	
	S8	-165	15	C12	131	49	

Окончание	табл.	1

№ конформера	Атом	φ1	Abs	Атом	φ ₂	Abs	φ ₃
Переходное спиновое состояние							
Ι	S5	5	5	С9	118	62	1,5
	S6	-174	6	C10	125	55	
	S7	14	14	C11	12	12	
	S8	-166	14	C12	14	14	
II	S5	5	5	C9	119	61	1,4
	S6	-173	7	C10	125	55	
	S7	15	15	C11	20	20	
	S8	-166	14	C12	11	11	

Примечание. В таблице приняты следующие обозначения: ϕ_1 – двугранный угол X–Fe1–Fe2–S(Cys); ϕ_2 – двугранный угол Fe–Fe–S(Cys)–C; ϕ_3 – двугранный угол Fe–Fe–S3–S4; Abs – абсолютное значение углов; все величины приведены в градусах.

Таблица 2

Относительные энергии оптимизированных структур

Структура	Е, ккал/моль	Атомная спиновая плотность		Cuu S	S^2
		Fe1	Fe2	Clinh S_Z	3
A1	11,4	-0,367	0,365	0	2,266
A3	5,5	-0,343	0,498	1	4,051
B1	11,0	-0,369	0,360	0	2,207
В3	5,5	-0,347	0,499	1	4,076
C1	1 865,9	-0,721	0,348	0	2,165
C3	3,8	-0,349	0,504	1	4,042
D1	0	-0,504	0,503	0	4,000
D3	9,0	-0,320	0,490	1	4,065
E1	0,1	-0,504	0,503	0	4,001
E3	9,4	-0,324	0,492	1	4,029
X1	0,9	-0,505	0,504	0	4,007

Двугранные углы φ_1 показывают отклонение плоскости Fe1–Fe2–S(Cys) от σ , в свою очередь двугранные углы φ_2 Fe–Fe–S(Cys)–С характеризуют выход углерода из плоскости, формируемой атомами железа и терминальным атомом серы, с которым углерод непосредственно связан. При определении углов φ_2 первый атом железа выбран как наиболее удаленный от атома углерода. В соответствии с нумерацией атомов в соединении к терминальным атомам серы S(Cys) относятся атомы S5 и S6, связанные с Fe1, а также S7 и S8, связанные с Fe2.

Согласно значениям, представленным в табл. 2, наиболее энергетически выгодную конфигурацию в синглетном спиновом состоянии имеют два конформера: D1 и E1, в триплетном состоянии – конформер C3.

В случае конформеров в синглетном состоянии распределение спиновой плотности на атомах железа свидетельствует об антиферромагнитном упорядочении спинов, при котором неспаренные электроны с одинаковыми спинами локализованы на разных атомах Fe. Рассчитанные спиновые плотности для Fe1 и Fe2 равны по абсолютным значениям и противоположны по знаку. Отклонение, наблюдаемое в случае конформера C1, обусловливает его высокую неустойчивость по сравнению с другими структурами.

Рис. 1. Строение конформера A1 кластера $[2Fe-2S-4(SCH_3)]^{2-}$

Вместе с тем для конформеров в синглетном спиновом состоянии характерны исчезающе малые величины спиновой плотности на мостиковых атомах S около 1 · 10⁻⁴ электрон/атом, которые возрастают в среднем на два порядка при переходе системы в триплетное состояние. Значительная делокализация спиновой плотности проявляется лишь на мостиковых атомах S, в то время как у терминальных атомов S подобного эффекта не наблюдается. Используя значения квадратов длины вектора спинового момента, можно определить величину суммарного спинового числа, которая для значений S², равных 4 и 2, округленно составит 3/2 и 1. Поскольку заряды атомов железа равны, то в случае S² ≈ 2 каждый из электронов локализуется на одном из атомов железа. При этом проекции спина у электронов направлены в противоположные стороны, что дает суммарную проекцию спина, равную 0. В случае $S^2 \approx 4$ электронное облако третьего электрона делокализовано между атомами железа и мостиковыми атомами серы.

В соответствии с данными об относительной энергии состояний с различной мультиплетностью для структур фиксированной геометрии С3 и Е1, представлеными на рис. 2, устойчивость состояний иной мультиплетности в сравнении со спиновым состоянием оптимизированной структуры ниже, что свидетельствует о том, что для конформеров С3 и Е1 основными являются соответственно триплетное и синглетное спиновые состояния.

Рис. 2. Относительные энергии основных и высокоспиновых состояний конформеров С3 и Е1 в сравнении с синглетным спиновым состоянием С3: темные столбцы – исходный конформер Е1; светлые столбцы – исходный конформер С3

Оптимизация геометрии конформеров C3 и E1 в состояниях с различной мультиплетностью приводит к понижению энергии высокоспиновых состояний. Однако в целом они остаются менее энергетически выгодными по сравнению с состояниями C3 и E1 (рис. 3). При этом в случае оптимизации синглетного состояния структуры C3 получен конформер X1, близкий по энергии к конформерам D1 и E1 и вместе с тем имеющий геометрию, наиболее сходную со структурой C3 (см. табл. 1).

Рис. 3. Относительные энергии оптимизированных структур в сравнении с конформером Е1 в синглетном состоянии: темные столбцы – исходный конформер Е1; светлые столбцы – исходный конформер С3

Геометрические различия между конформерами C3 (S = 1) и X1 (S = 0) состоят в том, что внешние атомы серы одного из атомов железа выходят из плоскости σ при сохранении положения метильных групп (рис. 4). Таким образом, триплет-синглетный переход с изменением геометрии осуществляется за счет смещения внешних атомов серы, связанных с одним центром. С другой стороны, переходы между конформерами D1 или E1 и C3 зависят от перемещений как атомов S, так и связанных с ними CH₃-групп.

Рис. 4. Основные и высокоспиновые состояния конформеров C3 и E1 [2Fe-2S-4(SCH₃)]²⁻ кластера

Переход между конформерами был разделен на 10 промежуточных геометрий. Плавное изменение положений атомов при переходе от одной структуры к другой достигалось путем интерполяции геометрических параметров системы во внутренних координатах [11] (рис. 5, 6).

Перегибы, наблюдаемые в случае C3–E1-перехода (см. рис. 6), связаны с вращением метильных групп. Геометрия, соответствующая пересечению кривых, использовалась в качестве исходной при поиске минимума энергии на пересечении синглетной и триплетной поверхностей потенциальной энергии. Поиск минимума проводился при помощи процедуры MEX пакета GAMESS по стандартным критериям. Полученные переходные состояния близки по геометрическим параметрам и отличаются лишь расположением одной метильной группы.

Рис. 5. Относительные энергии структур, характеризующие триплет-синглетный переход I:

Рис. 6. Относительные энергии структур при триплетсинглетном переходе II: геометрия 0 – конформер С3; геометрия 11 – конформер Е1

В случае перехода II геометрия, отвечающая минимуму энергии на пересечении синглетной и триплетной поверхностей потенциальной энергии, оказалась ниже точки пресечения кривой на рис. 6 на 2,8 ккал/моль. В результате разница между энергией конформера С3 в триплетном спиновом состоянии и энергией переходного состояния при переходах I и II равна 0,95 и 0,91 ккал/моль соответственно.

Таким образом, незначительные энергетические различия в полученных структурах обусловливают высокую вероятность переходов между устойчивой конформацией СЗ в триплетном спиновом состоянии и конформерами E1 и X1 с одновременным понижением мультиплетности системы до синглетного состояния. Подобные переходы являются очень важными в процессах спин-орбитального взаимодействия. При воздействии на геометрические параметры модельного кластера активного центра ферредоксина $[2Fe-2S-4(SCH_3)]^{2-}$, в частности положения лигандов, можно достичь изменения мультиплетности системы. С одной стороны, такие переходы обусловливают возможность существования кластера в различных спиновых состояниях, с другой – открывают широкие возможности по их применению в спин-запрещенном неадиабатическом катализе.

Библиографические ссылки

1. Cui G., Sun Z., Fang W. // J. of Phys. Chemistry. A. 2011. Vol. 115, № 36. P. 10146–10153.

2. Mahapatra S. // Accounts of Chemical Research. 2009. Vol. 45, № 8. P. 1004–1015.

3. Harvey J. N. // Structure and Bonding. 2004. Vol. 112. P. 151–183.

4. Scheidt W. R., Reed C. A. // Chem. Rev. 1981. Vol 81. P. 543–555.

5. Shaver M. P. [et al.] // Angewandte Chem. Inttrn. Ed. 2006. Vol. 45. P. 1241–1244.

6. De Oliveira F. T., Münck E., Bominaar E. L. // Inorganica Chimica Acta. 2008. Vol. 361. P. 1192–1196.

7. Harvey J. N., Poli R. // Coordination Chemistry Rev. 2003. Vol. 238–239. P. 347–361.

8. Schmidt M.W. [et al.] // J. of Computational Chemistry. 1993. Vol. 14. P. 1347–1363.

9. Perdew J. P., Burke J., Ernzerhof M. // Phys. Rev. Letters. 1996. Vol. 77. P. 3865–3868.

10. Weigend F., Ahlrichs R. // Phys. Chemistry Chem. Physics. 2005. Vol. 7. P. 3297–3305.

11. Bode B. M., Gordon M. S. // J. of Molecular Graphics and Modeling. 1998. Vol. 16. P. 133–138.

A. O. Lykhin, A. A. Kuzubov, S. A. Varganov, M. V. Serzhantova, N. S. Eliseeva

CONNECTION OF GROUND STATE SPIN OF FERREDOXIN ACTIVE CENTER POINT $\rm Fe_2S_2$ ON LIGANDS ORIENTATION

The article considers oxidized state of the cluster $[2Fe-2S-4(SCH_3)]^{2-}$, which is an analog of active center point in ferredoxin proteins, in the framework of DFT and reveals probability of non-adiabatic spin-inhibited junctions between the cluster conformers in singlet and triplet states. Junction structures obtained can be used for study of reaction mechanism of the cluster with a confluent spin states.

Keywords: ferredoxin, non-adiabatic processes, density functional theory (DFT).

© Лыхин А. О., Кузубов А. А., Варганов С. А., Сержантова М. В., Елисеева Н. С., 2012