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For many real world problems we can observe the fol-

lowing situation. There is a big data base of the results of 
the complex system behavior observations but appropriate 
model of this system is not yet clear. Here we can use 
intelligent information technologies (IIT) to obtain the 
first stage model within short time in order to simulate the 
system and learn its properties that gives us a possibility 
to develop a full profile model of the system. However, 
the design of IIT can also be a problem.  

Currently, intelligent systems have got wide propaga-
tion in various fields of human activity connected with 
complex systems modeling and optimization. Artificial 
neural networks [25], fuzzy logic [31], symbolic regres-
sion [18], evolutionary algorithms [8] and other tech-
niques and technologies are the popular tools for the sys-
tem investigation due to their capability to solve complex 
intelligent problems that are difficult for the classic tech-
niques [17]. 

The highly increasing computing power and technol-
ogy made possible the use of more complex intelligent 
architectures, taking advantage of more than one intelli-
gent technique in a collaborative way. This is an effective 
combination of intelligent techniques that outperform or 
compete to simple standard intelligent techniques.  

One of the hybridization forms, the ensemble tech-
nique, has been applied in many real world problems. It 
has been observed that the diversity of members, making 
up a committee, plays an important role in the ensemble 
approach [5].  

Different techniques have been proposed for maintain-
ing the diversity among members by running on the dif-
ferent feature sets [14] or training sets (e. g. bagging [1] 
and boosting [11]).  

Some techniques, such as neural networks, can be run 
on the same feature and training sets producing the diver-
sity by different structures [20]. Simple averaging, 
weighted averaging, majority  voting, and ranking are 
common methods usually applied to calculate the ensem-
ble output. 

Johansson et al. [16] used genetic programming (GP) 
for building an ensemble from the predefined number of 
the artificial neural networks (ANN) where functional set 
consisted of the averaging and multiplying and the termi-
nal set included the models and constants. In [2], a similar 
approach was proposed where first a specified number of 
the neural networks is generated and then a genetic pro-
gramming algorithms applied to build an ensemble mak-
ing up symbolic regression from partial decisions of the 
specific members. 
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In this paper we apply the self-configuring genetic 
programming technique to construct formula that shows 
how to compute an ensemble decision using the compo-
nent IIT decisions. The algorithm involves different op-
erations and math functions and uses the models of differ-
ent kinds providing the diversity among the ensemble 
members. Namely, we use symbolic expressions and neu-
ral networks, automatically designed with our GP algo-
rithm, as the ensemble members. The algorithm automati-
cally chooses component IIT which are important for ob-
taining an efficient solution and doesn’t use the others. 

The rest of the paper is organized as follows. Section 
2 explains the idea of selective pressure during the stage 
of crossover in GP and briefly describes the result of the 
algorithms performance investigation. Section 3 describes 
the method for the GP self-configuring and its testing 
results that confirm the method usefulness. Section 4 de-
scribes the method of the ANN automated design and its 
performance evaluation. In Section 5 we describe the GP-
based approach to the IIT ensembles automated integra-
tion and the results of the performance comparative 
analysis. In Section 6 we apply developed approach to 
one problem from the speech recognition area. In Conclu-
sion section we discuss the results and directions of the 
further research. 

Uniform crossover operator with selective pressure 
for genetic programming algorithm. The uniform 
crossover operator is known as one of the most effective 
crossover operators in conventional genetic algorithm [30, 4]. 
Moreover, nearly from beginning, it was suggested to use 
a parameterized uniform crossover operator and it was 
proved that tuning this parameter (the probability for a 
parental gene to be included in the off-spring chromo-
some) can essentially improve ”The Virtues” of this op-
erator [4]. Nevertheless, in the majority of cases using 
uniform crossover the mentioned possibility is not 
adopted and the probability for a parental gene to be in-
cluded in an off-spring chromosome is given equal  
to 0.5 [8, 13]. 

That is why it seemed interesting to us to modify the 
uniform crossover operator with a purpose of improving 
its performance. Having a desire to avoid real number 
parameter tuning, we introduced selective pressure during 
process of recombination [27] making the probability of a 
parental gene being passed to an off-spring depended on 
parent fitness values. Like the usual EA selection opera-
tors, fitness proportional, rank-based and tournament-
based uniform crossover operators were added to the con-
ventional operator which we now call the equiprobable 
uniform crossover. 

As about genetic programming, we use a tree repre-
sentation in our GP. To apply the crossover operator with 
selective pressure in GP, that was useful in GA [27], we 
first have to specify the uniform crossover operator for 
GP. Such an operator has been theoretically substantiated 
and introduced by Poli and Langdon in 1998 [22, 23]. 
See, also, the recent description in [24]. 

According to [23], the GP uniform crossover process 
starts at the tree’s root node and works its way down each 
tree along some path until finding function nodes of dif-

fering arity at the similar location. Interior nodes are se-
lected for crossover with some probability which is gen-
erally set to 0.5. Crossover involves exchanging the se-
lected nodes between the trees, while those nodes not 
selected for crossover remain unaffected. 

We organize the uniform crossover in slightly differ-
ent way. After parents selection, the uniform crossover 
operator produces one off-spring choosing nodes from 
parental trees with the given probability. Crossing over 
also has a place in the situation when parental nodes con-
tain functions with different arity because all arguments 
compete with each other. The described modification 
brings more flexibility to the crossover process and allows 
the potential for a change in the algorithms behavior. 

Having the appropriate uniform crossover operator we 
can introduce now a selective pressure in GP in the way 
described above. The off-spring can inherit every of its 
nodes from one of parents not only equiprobably but also 
with different probabilities determined by parent fitness 
values in one of the ways mentioned above: fitness pro-
portionally, according to ranks or through tournament. 

We have implemented the described approach and 
conducted numerical experiments to evaluate the useful-
ness of the developed operator. As a commonly accepted 
benchmark for GP algorithms is still an ”open issue” [21], 
we used the symbolic regression problem with test func-
tions usually used for the evaluation of evolutionary op-
timization algorithms. Having here no place to go into the 
detail, we just summarize results given in [28]. On this 
benchmark, the GP algorithm with our uniform crossover 
operator outperforms the conventional GP algorithm in 
the average reliability, i.e. proportion of 100 runs when 
approximation with sufficient precision was found, and its 
variance (0.53 vs. 0.43 and [0.31, 0.88] vs. [0.13, 0.77]) 
as well as in the solution quality, i.e. the percentage of the 
symbolically identical formulas found (78 % vs. 66 %). 
Testing with real world problems also confirmed the ap-
proach perceptiveness. 

Operator Rates based Self-Configuration of Algo-
rithms. Although EAs have been successful in solving 
many optimization and modeling problems, the perform-
ance of this technique depends on the selection of the EA 
settings and parameters tuning.Moreover, the process of 
settings determination and tuning parameters is known to 
be a time-consuming and a complicated task. Much re-
search has attempted to deal with this problem. Some 
approaches attempted to determine appropriate settings by 
experimenting over a set of well-defined functions or 
through theoretical analysis. Other approaches, usually 
applying a term such as ”self-adaptation”, try to eliminate 
the setting determination process by adapting settings 
through the algorithm execution. 

There exists much research devoted to ”self-adapted” 
EA based on a range of ideas, but all of them aimed at 
reducing the role of human expert in algorithm designing. 
Let us follow definitions given by Gabriela Ochoa and 
Marc Schoenauer, organizers of the workshop ”Self-
tuning, self-configuring and self-generating evolutionary 
algorithms” (Self* EAs) within PPSN XI [26]. According 
to this definition, ” The following 3 general paths toward 
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automated heuristic design will be distinguished: 1) tun-
ing: the process of adjusting the control parameters of the 
algorithm; 2) configuring: the process of selecting and 
using existing algorithmic components (such as variation 
operators); 3) generating: the process of creating new 
heuristics from existing sub-components borrowed from 
other search methods”. As the main ideas of the algo-
rithms discussed here rely on automated ”selecting and 
using existing algorithmic components”, these algorithms 
might be called self-configuring. Within this, the prob-
abilities with which will be the genetic operators used are 
subject to the tuning. This allows us to say that the algo-
rithms are partially self-tuning. 

In order to specify our algorithms more precisely, one 
can say that according to the classification [9], we use 
dynamic adaptation on the population level [19]. The 
probabilities of genetic operators to be applied are modi-
fied ”on the fly” as the algorithm executes. According to 
the classification given in [12] we use centralized control 
techniques (central learning rule) for parameters settings 
with some differences from the usual approaches. Opera-
tor rates (the probability to be chosen for generating off-
spring) are adapted according to the relative success of 
the operator during the last generation independently of 
the previous results. That is why our algorithm avoids 
problem of high memory consumption typical for central-
ized control techniques [12]. In some cases it results in 
situation where no operators have success (off-spring fit-
ness improvement) but nevertheless some of them 
(worked badly but better than others) will be rewarded. 
Operators’ rates are not included in individual chromo-
somes and they are not subject to the evolutionary proc-
ess. All operators can be used during one generation for 
producing off-springs one by one. 

As mentioned above, we apply operators probabilistic 
rates dynamic adaptation on the level of population with 
centralized control techniques. To avoid the issues of pre-
cision caused while using real parameters, we used setting 
variants, namely types of selection, crossover, population 
control and level of mutation (medium, low, high). Each 
of these has its own probability distribution. E.g., there 
are 5 settings of selection fitness proportional, rank-based, 
and tournament-based with three tournament sizes. Dur-
ing initialization all probabilities are equal to 0.2 and they 
will be changed according to a special rule through the 
algorithms execution in such a way that a sum of prob-
abilities should be equal to 1 and no probability could be 
less than predetermined minimum balance. The ”idle 
crossover” is included in the list of crossover operators to 
make crossover probabilities less than 1 as is used in con-
ventional algorithms to model a ”childless couple”.   

When the algorithm creates the next off-spring from 
the current population it first has to configure settings, i.e. 
to form the list of operators with using the probability 
operator distributions. The algorithm then selects parents 
with the chosen selection operator, produces an off-spring 
with the chosen crossover operator, mutates offspring 
with the chosen mutation probability and puts off-spring 
into the intermediate population. When the intermediate 

population is filled, the fitness evaluation is computed and 
the operator rates (probabilities to be chosen) are updated 
according to operator productivities. Then the next parent 
population is formed with the chosen survival selection 
operator. The algorithm stops after a given number of 
generations or if the termination criterion (e.g., given er-
ror minimum) is met. 

The productivity of an operator is the ratio of the av-
erage off-spring fitness obtained with this operator and 
the average fitness of the overall off-spring population. 
Successful operators having productivity more than 1 
increase their rates obtaining portions from unsuccessful 
operators. 

The described approach can be used both in GA and 
GP as well as in other EA techniques. In this paper, we 
used self-configuring GA (SelfCGA) for tuning parame-
ters of the symbolic regression formulas and training 
ANN weights. 

We have solved the same test symbolic regression 
problems with the proposed self-configuring GP 
(SelfCGP) and demonstrated competitive results with 
conventional GP (average reliability is 0.69, variance is 
[0.42, 1], and 74 % of the symbolically identical solu-
tions). Then we have solved two hard classification prob-
lems (German Credit and Australian-1 Credit from [10]) 
and compare our results with alternative approaches 
found in scientific literature. 

We concluded that the SelfCGP can produce competi-
tive results; it has the usual drawbacks of any general-
purpose technique losing to the problem specific algo-
rithms on corresponding problems, but has the advantage 
requiring no algorithmic details adjustment. 

ANN automated design with self-configuring ge-
netic programming algorithm. Usually, the GP algo-
rithm works with tree representation, defined by func-
tional and terminal sets, and exploit the specific solution 
transformation operators (selection, crossover, mutation, 
etc.) until termination condition will be met [24]. 

For the ANN automated design, the terminal set of our 
GP includes 16 activation functions such as bipolar sig-
moid, unipolar sigmoid, Gaussian, threshold function, 
linear function, etc. The functional set includes specific 
operation for neuron placement and connections. The first 
function is the placing a neuron or a group of neurons in 
one layer. There will no additional connections appeared 
in this case. The second function is the placing a neuron 
or a group of neurons in sequential layers in such a way 
that the neuron (group of neurons) from the left branch of 
tree preceded by the neuron (group of neurons) from the 
right branch of tree. In this case, new connections will be 
added that connect the neurons from the left tree’s branch 
with the neurons from the right tree’s branch. Input neu-
rons cannot receive any signal but have to send a signal to 
at least one hidden neuron. 

The GP algorithm forms the tree from which the ANN 
structure is derived. The ANN training is executed to 
evaluate its fitness that depends on its performance in 
solving problem in hand, e.g., approximation precision or 
number of misclassified instances. For training this ANN, 
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connection weights are optimized with selfconfiguring 
genetic algorithm (SelfCGA) that does not need any end 
user efforts to be the problem adjusted doing it automati-
cally. When GP finishes giving the best found ANN struc-
ture as the result, this ANN is additionally trained with 
again Self-CGA hybridized with local search. 

We compared the performance of the ANNs designed 
with our SelfCGP algorithm with the alternative methods 
on the set of problems from [10]. Materials for the com-
parison we have taken from [32] where together with re-
sults of authors’ algorithm (CROANN) the results of 15 
other approaches are presented on three classification 
problems (Iris,Wisconsin Breast Cancer, Pima Indian 
Diabetes) from [10]. 

Analyzing comparison results, we observed that the 
performance of the approach suggested in this paper is 
high enough comparing alternative algorithms (1st , 3rd 
and 4th positions, correspondingly). However, the main 
benefit from our SelfCGP algorithm is the possibility to 
be used by the end user without expert knowledge in 
ANN modeling and evolutionary algorithm application. 
Additional dividend is the size of designed ANNs. The 
ANNs designed with SelfCGP contain few hidden neu-
rons and connections and use not all given inputs al-
though perform well. It can be used for the discrimination 
of the unimportant inputs that could also give additional 
information for experts. 

Now we can conclude that the self-configuring genetic 
programming algorithm is the suitable tool for ANN 
automated design. It can also produce the competitive 
results based on symbolic regression approach. This algo-
rithm makes the end user free from the ANN structure 
design and the GP settings determination. We can use it 
for the design of IIT ensembles. 

5 Integration of IIT ensembles with self-configuring 
genetic programming algorithm 

Having the developed appropriate tool for IIT auto-
mated design that does not require the effort for its ad-
justment, we applied our self-configuring genetic pro-
gramming technique to construct formula that shows how 
to compute an ensemble decision using the component IIT 
decisions. The algorithm involves different operations and 
math functions and uses the models of different kinds 
providing the diversity among the ensemble members. In 
our numerical experiments, we use symbolic expressions 
and neural networks, automatically designed with our 
SelfCGP algorithm, as the ensemble members. The algo-
rithm automatically chooses the component IIT which are 
important for obtaining an efficient solution and doesnt 
use the others. The ensemble component IIT are taken 
from the preliminary IIT pool that includes 20 ANNs and 
20 symbolic regression formulas (SRFs) generated before 
handwith Self-CGP. For the designing every IIT, corre-
sponding data set was randomly divided into two parts, 
i.e., training sample (70%) and validation sample (30%). 

The first experiment was conducted for comparing  
the performance  of the  ensembling  method based on the 

SelfCGP with the others. We used the same three prob-
lems from [10] and the real world problem of the simula-
tion of the spacecraft solar arrays degradation (SAD) 
process [3] as the test bed. In Table 1 below we used fol-
lowing abbreviations: ANNE is the ANN ensemble, 
SRFE is the symbolic regression formulas ensemble, 
ANN+SRF is the integration of ANN and SRF, s.a. is the 
simple averaging, and w.a. is the weighted averaging. The 
last two rows contain the performance of non-ensembling 
models based on SelfCGP. Numbers in the first three col-
umns are the error measure calculated as it was given in 
[32] and the numbers in the last column are deviations 
from the correct value. 

Results in Table 1 demonstrate that the SelfCGP based 
ensembling methods used ANNs or ANNs and SRFs in-
tegration outperform other approaches. Although, 
GPNS+GPEN approach [2] for SAD problem demon-
strates the performance 0.0430 [28]. The statistical ro-
bustness of the results obtained was confirmed by 
ANOVA tests which were used for processing received 
evaluation of the performance.  

Within the second numerical experiment we solved 
two hard classification problems and compared our results 
with alternative approaches. 

The first data set, called the German Credit Data Set, 
includes customer credit scoring data with 20 features, 
such as age, gender, marital status, credit history records, 
job, account, loan purpose, other personal information, 
etc. The second data set includes Australian credit scoring 
data and contains 14 attributes, where six are continuous 
attributes and eight are categorical attributes.  

Both data sets are made public from the UCI Reposi-
tory of Machine Learning Databases [10], and are often 
used to compare the accuracy with various classification 
models. 

Results for alternative approaches have been taken 
from scientific literature. In [15] the performance evalua-
tion results for these two data sets are given for authors’ 
two-stage genetic programming algorithm(2SGP) as well 
as for the following approaches taken from other papers: 
conventional genetic programming (GP+SRF), classifica-
tion and regression tree (CART), C4.5 decision trees, k 
nearest neighbors (k-NN), linear regression (LR). Addi-
tional material for comparison we have taken from [29] 
where is evaluation data for authors’ automatically de-
signed fuzzy rule based classifier as well as for other ap-
proaches found in literature: Bayesian approach, boosting, 
bagging, random subspace method (RSM), cooperative 
coevolution ensemble learning (CCEL). 

The results of the comparison (proportion of the cor-
rectly classified objects in the validation set) are given in 
Table 2.  

As one can see, the ensembles automatically designed 
with the SelfCGP outperform other ensembles (Boosting, 
Bagging, CCEL) and single classifiers including these 
specially implemented for bank scoring problems solving 
(Fuzzy, 2SGP).  
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Table 1 
Ensembling methods comparison 

 

Classifier Iris Cancer Diabetes SAD 
SelfCGP ANNE 0 0 17.18 0.0418 
SelfCGP SRFE 0.0133 0.34 18.21 0.0548 

SelfCGP ANN+SRFE 0 0.06 17.43 0.0465 
ANN s.a. 0.0267 1.09 19.75 0.0542 
ANN w.a. 0.0267 1.03 19.03 0.0503 
SRF s.a. 0.0533 1.27 20.23 0.0628 
SRF w.a. 0.04 1.22 19.86 0.0605 

ANN+SRF s.a. 0.04 1.18 19.79 0.0617 
ANN+SRF w.a. 0.0267 1.09 19.34 0.0556 
SelfCGP SRF 0.0267 1.23 20.01 0.0621 
SelfCGP ANN 0.0133 1.05 19.69 0.0543 

 
 

Table 2 
Classification methods comparison 

 

Classifier Australian 
credit 

German credit Classifier Australian 
credit 

German 
credit 

SelfCGP ANN+SRFE 0.9094 0.8126 Fuzzy 0.8910 0.7940 
SelfCGP ANNE 0.9046 0.8075 2SGP 0.9027 0.8015 
SelfCGP SRFE 0.9046 0.8050 GP+SRF 0.8889 0.7834 
SelfCGP+SRF 0.9022 0.7950 LR 0.8696 0.7837 
SelfCGP+ANN 0.9022 0.7954 Bayesian 0.8470 0.6790 

GP+ANN 0.8969 0.7863 RSM 0.8660 0.7460 
Boosting 0.7600 0.7000 k-NN 0.8744 0.7565 
Bagging 0.8470 0.6840 CART 0.8986 0.7618 
CCEL 0.7150 0.7151 C4.5 0.8986 0.7773 

 
 
Certainly, the last two methods give not only calcula-

tion formula but also the production rules that might be 
more important for end user. It means that we have to 
focus our further research on this direction. 

SelfCGP applications in speech recognition. Suc-
cessful application of our approach in the area of classifi-
cation brought us to the idea of adapting to the most com-
plex problems such as speech recognition. We have cho-
sen the ISOLET problem ([10]) for the first attempt to 
check our approach in this field due to its relative simplic-
ity and the availability of the data set and other ap-
proaches known results for comparison. 

ISOLET problem is the recognition problem of Eng-
lish letters pronounced by 150 different speakers those 
spoke the name of each letter of the alphabet twice. The 
features include spectral coefficients; contour features, 
sonorant features, presonorant features, and  
post-sonorant features. Exact order of appearance of the 
features is not known. It gives the data set with  
617 attributes (all of them are continuous, realvalued at-
tributes scaled into the range –1.0 to 1.0), 26 classes, and 
7797 instances. 

Having in mind the necessity to verify the ensembles, 
we have randomly divided the data set in three parts  
4679 instances for single ANNs training, 1559 instances 
for single ANNs testing and 1559 instances for the en-
sembles cross-validation. Ensembles training was exe-
cuted on the first 6238 instances. Both ANN-based classi-
fiers and their ensembles were automatically designed 

with SelfCGP algorithm. Preliminary pool of classifiers 
consisted of 10 members although usually ensembles in-
volved from 2–3 till 7 classifiers. 

Alternative approaches for performance comparison 
have been taken from [6, 7, 10]. In table 3 bellow OPT 
means conjugate-gradient implementation of back propa-
gation, C4.5 means Quinlan’s C4.5 system, OPC means 
one-per-class representation, ECOC means error-
correcting output code, raw means unpruned decision 
trees, pruned means pruned decision trees (CF = 0.25), 
hard means default trees, soft means trees with softened 
thresholds, multiclass means one tree to do all 26-way 
classifications [7, 6], SelfCGP+ANN means single best 
ANN-based classifier automatically generated with our 
self-configuring genetic programming algorithm, 
SelfCGP+ANN+Ens means the ensemble of ANN-based 
classifiers automatically designed with SelfCGP. 

As one can see from Table 3, both our approaches 
demonstrate competitive results (2nd and 8th position  
of 39).  

ANN-based classifier automatically generated with 
SelfCGP can be considered as enough powerful tool for 
speech recognition problems but our ensembling tech-
nique can essentially improve the classifier performance 
making it to be one of the best. 

The SelfCGP based automatic designing the ensem-
bles of heterogeneous IIT allows improving the reliability 
and effectiveness of data analysis. The obtained results 
are approved by solving some real-world problems. 
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Table 3 
Performance comparison for ISOLET problem 

 

Algorithms and their configurations % errors % correct 
OPT 30-bit ECOC 3.27 96.73 
SelfCGP+ANN+Ens 3.40 96.60 
OPT 62-bit ECOC 4.04 95.96 
OPT OPC 4.17 95.83 
C4.5 107-bit ECOC soft pruned 6.61 93.39 
C4.5 92-bit ECOC soft pruned 6.86 93.14 
C4.5 45-bit ECOC soft pruned 6.99 93.01 
SelfCGP+ANN 7.21 92.79 
C4.5 107-bit ECOC soft raw 7.44 92.56 
C4.5 92-bit ECOC soft raw 7.57 92.43 
C4.5 107-bit ECOC hard pruned 8.08 91.91 
C4.5 92-bit ECOC hard pruned 8.15 91.85 
C4.5 62-bit ECOC soft pruned 8.40 91.60 
C4.5 30-bit ECOC soft pruned 8.60 91.40 
C4.5 62-bit ECOC soft raw 8.60 91.40 
C4.5 77-bit ECOC hard pruned 8.85 91.15 
C4.5 45-bit ECOC soft raw 9.30 90.70 
C4.5 62-bit ECOC hard pruned 9.88 90.12 
C4.5 45-bit ECOC hard pruned 9.94 90.06 
C4.5 30-bit ECOC soft raw 11.23 88.77 
C4.5 30-bit ECOC hard pruned 11.87 88.13 
C4.5 multiclass soft pruned 15.33 84.67 
C4.5 multiclass soft raw 15.91 84.09 
C4.5 multiclass hard pruned 16.29 83.71 
C4.5 15-bit ECOC soft pruned 16.61 83.39 
C4.5 multiclass hard raw 16.93 83.07 
C4.5 OPC soft pruned 18.99 81.01 
C4.5 15-bit ECOC soft raw 20.59 79.41 
C4.5 107-bit ECOC hard raw 21.42 78.58 
C4.5 92-bit ECOC hard raw 22.39 77.61 
C4.5 OPC soft raw 24.31 75.69 
C4.5 15-bit ECOC hard pruned 24.57 75.43 
C4.5 77-bit ECOC hard raw 27.20 72.80 
C4.5 OPC hard pruned 28.03 71.97 
C4.5 62-bit ECOC hard raw 29.70 70.30 
C4.5 OPC hard raw 33.29 66.71 
C4.5 45-bit ECOC hard raw 36.43 63.57 
C4.5 30-bit ECOC hard raw 43.04 56.96 
C4.5 15-bit ECOC hard raw 63.57 36.43 

 
Certainly, the computational efforts for the implemen-

tation of the described approach and the model complex-
ity are severely increasing comparing to each single learn-
ing model. However it is usual drawback of any ensem-
bling when one has to implement many members of en-
semble. There are no additional problems with our ap-
proach here. Advantages of the ensembling are better per-
formance and reliability that essentially compensates ex-
tra computational efforts. In fact, really additional compu-
tational effort for our approach is the necessity to run the 
genetic programming algorithm that combines single 
models outputs into an output of the ensemble. Our ex-
periments showed that it is less than the efforts for evolu-
tionary generating one single model, i.e., could be consid-
ered as acceptable disadvantage. 

As about the model complexity, again our approach 
does not bring much extra drawback comparing with any 
other ensemble technique. Of course, a computational 
model given by the genetic programming algorithm might 

be much more complicated compared to the usual ensem-
bling methods such as weighted sum of outputs or voting. 
However, our experiments show that the genetic pro-
gramming algorithm never includes all possible single 
models into an ensemble taking usually a few of them. As 
the greater part of the ensemble computational complexity 
is given by the computational efforts needed for calculat-
ing the output for each model, our approach has the ad-
vantage upon usual ensembling methods that include in 
the ensemble all available single models. 

The further development of the system is aimed  
to the expansion of its functionality by including the other 
types of IITs (fuzzy logic systems, decision trees, neuro-
fuzzy systems, other kinds of ANNs, multiobjective selec-
tion, etc.). 
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ПРОЕКТИРОВАНИЕ АНСАМБЛЕЙ ИНТЕЛЛЕКТУАЛЬНЫХ ИНФОРМАЦИОННЫХ  
ТЕХНОЛОГИЙ САМОКОНФИГУРИРУЕМЫМ АЛГОРИТМОМ  

ГЕНЕТИЧЕСКОГО ПРОГРАММИРОВАНИЯ 
 
Самоконфигурируемый алгоритм генетического программирования с модифицированным оператором рав-

номерного скрещивания, использующим селективное давление на этапе рекомбинации, применяется для авто-
матического формирования ансамблей интеллектуальных информационных технологий. Символьные выраже-
ния, нейронные сети или их комбинации являются членами ансамблей, которые генерируются также автома-
тически при помощи самоконфигурируемого алгоритма генетического программирования. Сравнительный 
анализ  эффективности подхода был проведен на тестовых и реальных практических задачах. 

 
Ключевые слова: генетическое программирование, само-конфигурация, нейронные сети, символьная регрес-

сия, ансамбли, автоматическое проектирование, задачи классификации. 
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EFFECTIVENESS COMPARISON OF ANT COLONY AND GENETIC ALGORITHMS  

FOR SOLVING COMBINATORIAL OPTIMIZATION PROBLEMS* 
 
This paper considers ant colony optimization, genetic algorithm  and parallel versions of these methods for solving 

traveling salesman problem. 
 
Keywords: Genetic algorithm, Ant colony optimization, Traveling Salesman Problem, Parallelization. 
 
One of the most interesting and topical methods for 

optimization problems solving are stochastic algorithms 
working with many current solutions at the same time. 
This paper considers ant colony optimization (ACO) [1] 
and genetic algorithm (GA) [2] and also parallel versions 
of these methods. These algorithms can be very useful for 
finding approximate solutions of complex optimization 
problems. Both algorithms are nature-inspired optimiza-
tion metaheuristics, where ACO is based on the behavior 
and organization of ant colonies in their search for food 
whereas GA is based on some principals of evolution. 

Investigation of effectiveness of ACO and GA was 
conducted by solving well-known problem of combinato-
rial optimization namely Traveling Salesman Problem 
(TSP). Software implementation of these algorithms was 
programmed in C++ and the library MPICH2 was used 
for parallelization. 

In the genetic algorithm for the TSP a chromosome is 
represented as permutation of the n numbers (numbers of 
cities). That is why some standard operations have a few 
changes, but many adjustable parameters in GA remains 
such as mutation probability, the type of selection – tour-
nament selection (parameter is the size of the tourna-
ment), proportional and rank selection (linear  
or exponential ranking), population size and number  
of generations.  Solutions in ACO are also represented as  

permutation of n cities and ants chose next city using ta-
boo-list and pheromone matrix at every stage. The same to 
GA, ACO have rather adjustable parameters: ant colony size 
(m), number of iteration, evaporation rate (), relatively im-
portance of previous search experience () and relatively 
importance of the distance between cities (). 

At first efficiency of each algorithm on a test task was 
investigated (a grid 5 on 5 cities) and regularities in de-
pendence of algorithms efficiency on its settings were 
revealed. ACO algorithm shows the best results at the 
following settings:  = 1,  = 10, ϵ[0.5, 0.7] and quantity 
of ants approximately equals to number of the cities. The 
best settings for GA are tournament selection with small 
tournament size and low or very low mutation rate. This 
test task solution ACO showed better results than the GA 
because ACO rely on distance between the cities at ini-
tialization and begins to work with rather a quite good 
route while GA begins with an absolutely random popula-
tion. Therefore, ACO requires considerably less computa-
tional resources on the problem with a lot of decisions. 
Therefore reliability of algorithms was investigated on 
more complex test task with a number of the cities equals 
to 30 and called Oliver30. After the completion of algo-
rithms work local search was applied to the best solutions. 
For both algorithms identical number of calculations, 
namely 30 individuals (ants) and 10000 generations (it-
erations) was given.  
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