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STATISTICAL MODELING OF INTERACTION QUALITY IN SPOKEN DIALOGUE SYSTEMS:  

A COMPARISON OF (CONDITIONED) HIDDEN MARKOV MODEL-BASED  
CLASSIFIERS VS. SUPPORT VECTOR MACHINES 

 
The Interaction Quality (IQ) metric has recently been introduced for measuring the quality of an interaction with a 

Spoken Dialogue System (SDS). The metric allows for an estimation of a quality score at arbitrary points in a spoken 
human-machine interaction. While previous work relied on Support Vector Machines (SVMs) for classifying the score 
based on a static feature vector representing the entire previous interaction, we evaluate a Conditioned Hidden Markov 
Model (CHMM) which accounts for the sequential character of the data and, in contrast to a regular Hidden Markov 
Model (HMM), provides class probabilities. The results show that a CHMM achieves an Unweighted Average Recall 
(UAR) of 0.39. Thereby it is outperformed by a regular HMM with an UAR of 0.44 and an SVM with an UAR of 0.49, 
both trained and evaluated under the same conditions. 
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To evaluate the quality of Spoken Dialogue Systems 

(SDSs), different measures exist. Unfortunately, objective 
metrics like, e. g., task completion or dialogue duration 
are not human-centered. Subjective measures compensate 
for this by modeling the user’s subjective experience.  

However, in human-machine dialogues, there is no 
easy way of deriving the user’s satisfaction level. Fur-
thermore, a regular user does not want to spend time an-
swering questions about the performance of the system. 
Human-machine dialogues usually have no conversational 
character but are task oriented.  

Therefore, approaches for determining the satisfaction 
level automatically have been under investigation for sev-
eral years, most prominently the PARADISE framework 
by Walker et al. [1]. Assuming a linear dependency be-
tween objective measures and User Satisfaction (US), a 
linear regression model is applied to determine US on the 
dialogue level. This is not only very costly, as dialogues 
must be performed with real users, but also inadequate if 
quality on a finer level is of interest, e.g., on the exchange 
level. To overcome this issue, work by Schmitt et al. in-
troduced a new metric for measuring the performance of a 
SDS on the exchange level called Interaction Quality (IQ) 
[2].  

Human-machine dialogues may be regarded as a proc-
ess evolving over time. A well-known statistical method 
for modeling such processes is the Hidden Markov Model 
(HMM). Since HMMs do not provide class probabilities, 
we present an approach for determining IQ using Condi-
tioned Hidden Markov Models (CHMMs). They were 
originally introduced by Glodek et al. [3] who applied the 
model to laughter detection on audio-visual data.  

In Section 2, we discuss other work on determining 
qualitative performance of SDSs and in Section 3 we pre-
sent details about the definition of IQ and the data we use. 
Further, Section 4 presents a formal description of the 
CHMM. Evaluation is described in Section 5 and, finally, 
Section 6 concludes this work.   

Related Work. Work on determining User Satisfac-
tion using HMMs was performed by Engelbrecht et al. 
[4]. They predicted US at any point within the dialogue 

on a five-point scale. Evaluation was performed based on 
labels the users applied themselves during a Wizard-of-
Oz experiment. The dialogue course paused during label-
ing. They achieved a Mean Squared Error  
of 0.086.  

Further work which incorporates HMMs was pre-
sented by Higashinaka et al. [5]. The HMM was trained 
on US ratings at each exchange which were derived from 
ratings for the whole dialogue. The authors compare their 
approach with HMMs trained on manually annotated ex-
changes achieving a better performance for the latter.  

Higashinaka et al. also present work on the prediction 
of turn-wise ratings for human-human (transcribed con-
versation) and human-machine (text dialogue from chat 
system) dialogues [6].  

Ratings ranging from 1-7 were applied by two  
expert raters labeling smoothness, closeness, and willing-
ness.  

Dealing with true User Satisfaction, Schmitt et al. pre-
sented their work about statistical classification methods 
for automatic recognition of US [7]. The data was col-
lected in a lab study where the users themselves had to 
rate the conversation during the ongoing dialogue. Labels 
were applied on a scale from 1 to 5. By applying a Sup-
port Vector Machine (SVM), they achieved an Un-
weighted Average Recall (UAR) of 49.2.   

Interaction Quality. For Interaction Quality recogni-
tion, we use the LEGO corpus published by Schmitt et al. 
[8]. It is based on 347 calls to the “Let’s Go Bus Informa-
tion System” of the Carnegie Mellon University in Pitts-
burgh [9] recorded in 2006. Labels for IQ have been as-
signed by three expert raters to 200 calls consisting of 
4,885 exchanges in total. IQ was labeled on a scale from 1 
(extremely unsatisfied) to 5 (satisfied). As the users are 
expected to be satisfied at the beginning, each dialogue’s 
initial rating  is 5.  

Parameters used as input variables for the IQ model 
have been derived from the dialogue system modules 
automatically for each exchange. Further, parameters on 
three levels have been created: the exchange level, the 
dialogue level, and the window level.  
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Fig. 1. General graphical representation of the CHMM model in the discrete time domain. For each time step t , ( )ty   represents  

the most likely label and ( )t
iw  the most likely hidden state given observation ( )tx . ib  represents the probability for the observation 

and ,i y  the label probability. ,ij ya  defines the probability of transitioning from state ( )t
iw to state ( 1)t

iw   

 
 
As parameters like ASRCONFIDENCE or 

UTTERANCE can directly be acquired from the dialogue 
modules they constitute the exchange level. Based on this, 
counts, sums, means, and frequencies of exchange level 
parameters from multiple exchanges are computed to con-
stitute the dialogue level (all exchanges up to the current 
one) and the window level (the three previous exchanges). 

Schmitt et al. [2] performed IQ recognition on this 
data using SVMs. They achieved an Unweighted Average 
Recall (UAR) of 0.58.   

CHMM. Conditioned Hidden Markov Models [3] are 
an extension of regular HMMs. They provide probabili-
ties for multiple classes. A sequence diagram illustrating 
the principle operation method of the CHMM in the time 
domain is shown in Figure 1.   

Model Description. Like the continuous HMM, the 
CHMM also consists of a discrete set of hidden states 

iw W  and a vector space of observations  nR  .  

A separate emission probability ( )( )t
ib x  is linked to each 

state defining the likelihood of observation ( )tx X at 
time t  while being in state iw . Further, 

( ) ( 1) ( )
, ( | , )t t t

ij y j ia p w w w w y y     defines the tran-

sition probability of transitioning from state iw  to jw . In 

contrast to the regular HMM, the transition probability 
distribution also depends on the class label y Y . This 

results in the transition matrix | | | | | |W W YA R   . 
Furthermore, the meaning of the initial probability 

(1) (1)
, ( | )i y ip w w y y    for state iw  is altered. It ad-

ditionally represents the label probability for label y at 

any time with the corresponding matrix | | | |W yR  . An 
schematic example of a CHMM with two labels and three 
hidden states is illustrated in Figure 2. 

 

 
Fig. 2. This is an example of a CHMM with 2 labels  

and 3 hidden states. The dashed lines representthe label depend-
ence of the hidden states, while the full lines illustrate state tran-

sitions. Please note that state transitions also depend  
on the labels which is not shown here 

 
According to Glodek et al. [3], the likelihood of an 

observation sequence ( )nx  with corresponding label se-

quence ( )ny  is given by 
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where ( )nw  denotes the sequence of the hidden states. 
Further, in this work, the emission probability 

( ) ( ) ( )( ) ( | , )t t t
j jb x p x w w    is modeled as a Gaussian 

Mixture Model (GMM) with the parameter set 

, , ,{{ } ,{ } ,{ } }K K K
j k k j k k j k k     . The parameter set   
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describing the complete CHMM is defined by 
{ , , }     . 

Learning. The learning phase consists of two parts: 
initialization and training. 

For initialization, the k-means algorithm [10] is used 
and the number of clusters k corresponds to the number of 
hidden states. After clustering initial observation se-
quences with their corresponding label sequences, the 
transition probabilities are updated according to the tran-
sitions between the clusters, given the labels. The initial 
probabilities are updated according to the cluster and the 
corresponding label that each element belongs to. 

Training is performed using the Baum-Welch algo-
rithm, which is heavily dependent on the initialization. 
When comparing the HMM explained by Rabiner et al. 
[11] to the CHMM, several changes (Changes in Eq.: 19, 
20, 24, 25, 27, 37, 40a, 40b and 40c from [11]) must be 
applied to the Baum-Welch algorithm.  

The αs and βs of the Forward-Backward algorithm as 
given by Glodek et al. [3] are 

( )
, , 1,( ) ( ) ( )t

t y j ij y t y
i W

a j b x a a i


                (2a) 

(1)
1, ,( ) ( )y j j ya j b x                         (2b) 
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, , 1,( ) ( ) ( )t

t y ij y j t y
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                               (3c) 

The state beliefs , ( )t y j  and the transition beliefs 

1, , ( , )t t y i j  are then computed by using 
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where 
1

,1
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T
t yt
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  is the expected number of transitions 

from iw  given y  and 
1

1, ,1
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  is the expected 

number of transitions from iw  to jw  given y . 

Parameter learning is performed after evaluation of 
N sequences, updating the initial probabilities using the 
following formula 
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where ,1
1

n
i yi
   and   is the Kronecker delta. 

The update for the transition probabilities after evalu-
ating N sequences is 
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where  

,
1

1
n

y Y ij y
j

a


  . 

The emission probabilities can be computed in accor-
dance with the methods presented by Rabiner et al. [11]. 
As the state beliefs depend on y, a sum over all labels has 
to be applied in order to create label independent emission 
probabilities. 

Evaluation. The Viterbi algorithm generates a se-
quence of expected labels which are evaluated with the 
metrics, which described in the following. 

 
Results for CHMM experiments according to the number  

of hidden states along with results for regular HMM  
and SVM classification. The ’*’ indicates the best result 

 

Class # states UAR Kappa Rho 
SMO - 0.49 0.61 0.77 
HMM 5 0.44 0.56 0.72 

0.38 0.40 0.56 
0.38 0.39 0.57 
0.35 0.40 0.59 
0.37 0.41 0.59 
0.39 0.43 0.60 
0.37 0.39 0.55 

CHMM 

5 
6 
7 
8 
9* 
10 
11 0.36 0.41 0.58 

 
Metrics. The Unweighted Average Recall (UAR) for 

multi-class classification problems is the accuracy cor-
rected by the effects of unbalanced data. 

To measure the relative agreement between two corre-
sponding sets of ratings we apply Cohen’s Kappa [12]. It 
is defined by the number of label agreements corrected by 
the chance level of agreement divided by the maximum 
proportion of times the labelers could agree is computed. 
In order to take account for ordinal scores, a weighting 
factor w is introduced reducing the discount of disagree-
ments the closer the ratings are together [13]: 

1 2| |r r
w

range


                                      (8) 

Here, 1r  and 2r  denote the rating pair and range the 

maximum distance which may occur between two ratings. 
This results in 0w   for agreement and 1w   if the rat-
ings differ the most. 

For measuring the correlation between two variables, 
Spearman’s Rank Correlation Coefficient is used [14]. It 
is a non-parametric method assuming a monotonic func-
tion between the two variables, defined by 

2 2

( )( )

( ) ( )

i ii
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where ix  and iy  are corresponding ranked ratings and x  

and y  the mean ranks. Therefore, two sets of ratings may 

have total correlation even if they never agree. This would 
happen if all ratings are shifted by the same value, for 
example. 

Setup and Results. For the experiments, we used the 
LEGO corpus presented in Section 3. Since the values of 
multiple parameters are constant for most exchanges, they 
are excluded. Otherwise, this would have resulted in rows 
of zeros during computation of the covariance matrices of 
the feature vectors. A row of zeros in the covariance ma-
trix will make it irreversible, which will cause errors dur-
ing the computation of the emission probabilities. 

The model operated with a vector of 29 dimensions. 
Results of the experiments are presented in Table 1. The 
data is ranked according to the number of hidden states 
used for the model. The accuracy decreased remarkably 
after passing the threshold of 9 states, where the highest 
values for UAR, κ, and ρ could be achieved. 

The results are computed using 6-fold cross valida-
tion. When evaluating the performances for each fold, 
best performance was achieved for 9 states with  
an UAR of 0.45, Cohen’s κ of 0.58, and Spearman’s ρ  
of 0.74. 

To define a baseline, we rely on the approach by 
Schmitt et al. [2]. Using the same features, we trained a 
Support Vector Machine (SVM) with a linear kernel. The 
results are shown in Table. Unfortunately, the CHMM 
approach was not able to outperform the baseline. This is 
most likely caused by the fact that only little training data 
was available. 

Furthermore, we conducted an experiment using regu-
lar HMMs. Using 5 hidden states, we assigned a label to 
each hidden state. As depicted in Table 1, the CHMM 
performed worse than the HMM approach. Though per-
formance of both models is dramatically influenced by the 
lack of data, the CHMM is rather prone to this, as (num-
ber of labels) · (number of hidden states) additional prob-
ability models have to be estimated. 

As dialogues have a sequential structure, an approach 
for estimating Interaction Quality on the exchange level 
has been evaluated using Conditioned Hidden Markov 
Models. Experiments were conducted for measuring its 
performance. The best result with 9 hidden states is out-
performed vastly by previously presented methods based 
on SVM classification. We identified the lack of training 
data as the cause for this. 
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СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КАЧЕСТВА ВЗАИМОДЕЙСТВИЯ  
В РЕЧЕВЫХ ДИАЛОГОВЫХ СИСТЕМАХ: СРАВНЕНИЕ КЛАССИФИКАТОРОВ,  

ОСНОВАННЫХ НА (УСЛОВНЫХ) СКРЫТЫХ МАРКОВСКИХ МОДЕЛЯХ,  
И МАШИН ОПОРНЫХ ВЕКТОРОВ 

 
В последнее время была представлена метрика качества диалога для оценки качества взаимодействия c 

языковой диалоговой системой. Эта метрика позволяет получить оценку качества в произвольный момент 
взаимодействия человека с машиной. В то время как предыдущая работа базировалась на методе опорных 
векторов (SVM) для классификации качества взаимодействия на основе статического характеристического 
вектора, представляющего всю предысторию взаимодействия, здесь мы исследуем условные скрытые марков-
ские модели (CHMM), которые принимают во внимание последовательный характер данных и, в отличие от 
стандартных скрытых марковских моделей (HMM), высчитывают вероятности классов. Экспериментальные 
результаты показали, что CHMM достигла значения невзвешенного среднего вызова (UAR) равного 0.39. Та-
ким образом, алгоритм уступает HMM c UAR равным 0.44 и SVM с UAR равным 0.49. Все алгоритмы трени-
ровались и исследовались в равных условиях. 

  
Ключевые слова: качество взаимодействия, машины опорных векторов. 
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LANGUAGE STYLE MATCHING AND VERBAL INTELLIGENCE 
 
In this paper language style matching of speakers yielding different verbal intelligence was analyzed. The work is 

based on a corpus consisting of 100 descriptions of a short film (monologues), 56 discussions about the same topic 
(dialogues) and verbal intelligence scores of the test persons. According to the results, higher verbal intelligent speak-
ers showed a greater degree of language style matching when describing the film and were able to better adapt to their 
dialogue partners compared to lower verbal intelligent participants. 

 
Keywords: spoken dialogue system, linguistic analysis, ANOVA .  
 
Statistical approaches are often applied to text analysis 

and information retrieval problems. For example, TF-IDF 
measures may be used for classification of documents into 
a fixed number of predefined categories. Comparing a 
document with special dictionaries may be helpful for its 
content and semantic analysis. Linguistic analysis of texts 
allows researchers to determine additional information 
about authors: age, social status, emotions, psychological 
state, etc. In this research we applied a relatively new 
statistical method, tokens n-gram distributions, to the 
analysis of language style matching (LSM). 

When two speakers are talking to each other, they try 
to adapt to their dialogue partner and to somehow syn-
chronize their verbal behaviors. This phenomenon was 
investigated in [1]. In [2] linguistic style matching in hu-
man-human conversations was analyzed. For the linguis-
tic analysis all the utterances were compared with a spe-
cial dictionary which contained words sorted by a number 
of categories. The usage of each category was analyzed 
on conversation and turn-by-turn levels and showed that 
speakers synchronized their words when talking to each 

other. In [3] college students were asked to write answers 
to several questions formulated in different styles. It was 
shown that students followed the language styles of writ-
ten questions. 

In this paper we analyzed LSM of speakers with dif-
ferent verbal intelligence. This investigation may be help-
ful for improvement of user-friendliness of spoken lan-
guage dialogue systems (SLDSs). SLDSs which auto-
matically adapt to users’ language styles and change their 
dialogue strategies may help users to feel more comfort-
able when interacting with them. However, it is necessary 
to know how different speakers change their own lan-
guage styles in order to adapt to their dialogue partners. In 
[3] it was shown that students with higher grades matched 
the linguistic styles of asked questions closer than other 
students participated in the experiment. In this research 
we analyzed spoken utterances of people with different 
verbal intelligence. In the first part of this research we 
analyzed similarity between language styles of verbal 
descriptions of a short film (monologues) made by test 
persons who participated in our experiments (German 




