К. А. Филиппов

О ПЕРИОДИЧЕСКИХ ГРУППАХ ШУНКОВА, НАСЫЩЕННЫХ ПРОСТЫМИ ТРЕХМЕРНЫМИ УНИТАРНЫМИ ГРУППАМИ*

Доказано, что периодическая группа Шункова, насыщенная множеством \Re всех простых трёхмерных унитарных групп размерности три $U_3(q)$, локально конечна и изоморфна $U_3(Q)$ для некоторого локального конечного поля Q.

Ключевые слова: группа Шункова, насыщенность.

Пусть \Re — множество всех простых трёхмерных унитарных групп $U_3(q)$ над конечными полями. Доказана следующая теорема.

Теорема 1. Периодическая группа Шункова, насыщенная группами из \Re , локально конечна и изоморфна $U_3(Q)$ для некоторого локального конечного поля Q.

Для доказательства данной теоремы используем следующие результаты.

Предложение 1. Пусть $D = \langle d \rangle \lambda \langle i \rangle$ — конечный полудиэдр, $d^{4n} = i^2 = 1$, $d^i = d^{2n-1}$. Тогда:

- 1) $z=d^{2n}$ центральная инволюция. Если n=1, то $D=\langle d \rangle \times \langle i \rangle$ абелева группа порядка 8;
- 2) пусть $f \in \langle d \rangle$. Элементы вида fi имеет порядок либо 4 и $f = d^k$, где k нечетное число, $(fi)^2 = z$; либо 2 и $f = d^k$, где k четное число;
- 3) имеет место разложение $D = (\langle v \rangle \times \langle h \rangle) \lambda \langle i \rangle$, где $V = \langle v \rangle$ циклическая 2-группа, $H = \langle h \rangle$ циклическая группа нечетного порядка. В частности, подгруппа $H\lambda \langle i \rangle$ является конечным диэдром, а подгруппа $V\lambda \langle i \rangle$ конечным полудиэдром;
- 4) если $n \neq 1$, то центр Z группы D содержится в $\langle d \rangle$, при этом, если n- нечетное число, то центр $Z = \langle d^n \rangle$ подгруппа порядка 4, если n- нечетное, то $Z = \langle z \rangle$;
- 5) любая циклическая подгруппа из D, порядок которой больше четырех, лежит в $\langle d \rangle$;
- 6) пусть A абелева подгруппа группы D порядка ≥ 4 . Тогда A либо циклическая, либо элементарная абелева группа $\langle z \rangle \times \langle i \rangle$ порядка 4, либо, в случае когда n нечетное, абелева подгруппа $\langle d^n \rangle \times \langle i \rangle$ порядка 8;

7) пусть D_1 и D_2 — полудиэдральные группы. Вложение $D_1 < D_2$ возможно, только если $\frac{\left|D_2\right|}{\left|D_1\right|}$ — нечетное число. В частности, полудиэдральная 2-группа не содержит собственных полудиэдров [1].

Пусть δ — переменная, принимающая значения + или —. Через $L_3^\delta(p^n)$ обозначается группа $L_3(p_n)$, если δ = + и группа $U_3(p_n)$, если δ = - .

Предложение 2. Пусть периодическая группа G насыщена группами из $M = \left\{L_3^{\delta_i}(p_i^{n_i}) \,|\, i=1,2,...,m\right\}$. Тогда группа G изоморфна группе $L_3^{\delta_i}(p_j^{n_j})$ для не-

которого $1 \le j \le m$ [2].

Предложение 3. Пусть q нечетно. Если q+1 не делится на 4, то силовская 2-подгруппа группы $U=U_3(q)$ изоморфна полудиэдральной группе $SD(m)=\{a,b\,|\,a^{2^{m+1}}=b^2=1,a^2=a^{-1+2^m}\}$, где 2^m делит q-1, 2^{m+1} не делит q-1. Если (q+1) делится на 4, то силовская 2-подгруппа из U изоморфна сплетенной группе $W_r(m)=\{a_1,a_2,b\,|\,a_1^{2^m}=a_2^{2^m}=b^2=1,a_1,a_2=a_2a_1,a_1^b=a_2,a_2^b=a_1\}$, где 2^m делит q+1, 2^{m+1} не делит q+1. В любом случае U содержит элемент порядка 8 и любая 2-подгруппа из U порядка ≥ 32 содержит элемент порядка 8 [3].

Доказательство. Доказательством теоремы 1 служат непосредственные вычисления.

Пусть G — противоречащий пример. Тогда по предложению 2, $|P\cap S|>|D|$ — бесконечное множество.

Пусть $\Re(G)$ — множество тех групп, которые изоморфны подгруппам из G.

Лемма 1. Возможны только следующие ситуации:

- 1) $\Re(G) \le \{U_3(q) \mid q \text{ четно}\};$
- 2) $\Re(G) \le \{U_3(q) \mid q \text{ нечётно и } q+1 \text{ не делится на 4}\};$
- 3) $\Re(G) \le \{U_3(q) \mid q \text{ нечётно и } q+1 \text{ делится на } 4\}.$

^{*}Работа выполнена при поддержке Российского фонда фундаментальных исследований (код проекта 10-01-00509-а).

Доказательство. Если $\Re(G)$ содержит группу $U_3(q)$, где q нечётно и q+1 не делится на 4, то в соответствующей подгруппе из G силовская 2-подгруппа S является полудиэдральной (предложения 1 и 2). Легко понять, что S — силовская 2-подгруппа в G (в противном случае S — собственная подгруппа в полудиэдральной или сплетённой 2-подгруппе, что невозможно). Так как S конечна, то все силовские 2-подгруппы из G сопряжены с S и по предложению 3 мы попадаем в ситуацию 2. Можно считать, что $\Re(G)$ состоит из групп $U_3(q)$, q чётно или q+1 делится на 4. Предположим, что есть и другие. Пусть подгруппы S, T и G выбраны так, что силовская 2-подгруппа в $U \leq G$, T — силовская 2-подгруппа в $V \leq G$, $U \approx U_3(2^n)$, $V \approx U_3(q)$, q нечётно.

Поскольку ситуация 1 уже рассматривалась в [1], дальнейший анализ распадается на оставшиеся две ситуации из леммы 1.

Ситуация 2. G насыщена группами $U_3(q)$, где q+1 не делится на 4.

Ситуация 3. G насыщена группами $U_3(q)$, где q нечётно, q+1 делится на 4.

Поскольку S периода 4, то по предложению $3 \mid S \cap T \mid < 32$. Выбираем S и T так, чтобы порядок $D = S \cap T$ был наибольшим из возможных. Ясно, что $S \neq D \neq T$. Пусть aD — инволюция в $S \mid D$, bD — инволюция в $T \mid D$. Подгруппа $F = \langle a,b,D \rangle$ конечна и поэтому содержится в $H \approx U_3(r)$. Предположим, что r чётно. Тогда $\langle b,D \rangle \leq P$, где P — силовская группа 2-подгруппа в H и $|P \cap T > |D|$, что противоречит выбору. Точно так же, если r нечётно, то $\langle a,D \rangle \leq P$, и $|P \cap S| > |D|$. Лемма доказана.

Лемма 2. Группа Шункова, в которой все конечные подгруппы коммутативны, обладает абелевой периодической частью.

Доказательство. Действительно, пусть a — произвольный элемент конечного порядка из G. Предположим что |a| — простое число. Тогда $< a, a^g>$ — конечная абелева группа для любого $g \in G$. Следовательно, $< a^g>$ — абелева нормальная подгруппа группы G. В силу произвольного выбора a как элемента простого порядка, получаем, что все элементы простых порядков из G порождают абелеву нормальную подгруппу N_1 группы G. Далее по индукции. Лемма доказана.

Лемма 3. Все элементы порядка 4 в G сопряжены. Если f — элемент порядка 4 из G, то в случае A — $C_G(f)$ является абелевой счётной группой, а в случае B — $C_G(f)$ содержит подгруппу $F = \langle f \rangle \times \langle f_1 \rangle$, где f_1 — элемент порядка 4 и $C_G(F)$ — коммутативная счётная группа. Далее, $N_G(F)/C_G(F) \simeq S_3$ и $N_G(F)$ содержит силовскую 2-подгруппу из G . В частности, $N_G(F)$ локально конечна.

Доказательство. Пусть a, $b \in G$ |a| = |b| = 4. Так как все инволюции в G сопряжены, то $a^2 = g^{-1}b^2g$ для некоторого $g \in G$. Так как G — группа Шункова, то $\langle a, b^g \rangle$ — конечная группа. По условию насыщенности, $\langle a, b^g \rangle \subset L \simeq U_3(q)$, а в $U_3(q)$ все элементы порядка 4 сопряжены. Следовательно, $a = b^g$ для некоторого $g \in L$. Рассмотрим $C_G(f)$.

Случай 2: пусть $a,b\in C_G(f)$ и $ab\neq ba$. Предположим, что |a| — простое число. Тогда конечная группа $\Big\langle f,a,...,a^b\Big\rangle\subset L\simeq U_3\Big(q\Big)$. Следовательно, $\Big\langle a\Big\rangle=\Big\langle a\Big\rangle^b$ и в силу леммы 2 этот случай доказан.

Случай 3: очевидно, такое f_1 найдётся. Предположим, что $F = \langle f \rangle \times \langle f_1 \rangle$, элементы $a,b \in C_G(F)$, конечная группа $\left\langle F,a,a^b \right\rangle < L \simeq L_3\left(q\right)$. Следовательно, $\left\langle a \right\rangle = \left\langle a \right\rangle^b$ и по лемме 2 этот случай доказан.

Далее, существует такое K , что и $K \simeq S_3$ и, следовательно, $N_G\left(F\right) = C_G\left(F\right)$. Лемма доказана.

Лемма 4. Если f из леммы 3, то $C_G(f^2)$ — расширение $L \approx SL_2(Q)$ посредством локально циклической группы и $C_G(L)$ — подгруппа индекса 2 в $C_G(f^2)$. Здесь Q — некоторое локально конечное поле нечётной характеристики.

Доказательство. Пусть K — конечная подгруппа $C_G(f^2)$. По условию насыщенности, $\left\langle K, f^2 \right\rangle \subset L \simeq SL_2(q) \cdot \left\langle b \right\rangle$, где b — группа порядка q+1, получаем утверждение леммы. Несложно показать, что все $\left\langle b \right\rangle$ образуют локально циклическую подгруппу B в $C_G(f^2)$. Фактор-группа $C_G(f^2)/B$ насыщена $SL_2(q)$ и по [3] изоморфна $SL_2(Q)$ для подходящего локально конечного поля Q. Отсюда вытекает следующая факторизация: $C_G(f^2) = B \times SL_2(Q)$. Лемма доказана.

Лемма 5. В G есть подгруппа H, пересекающаяся с $C_G(f^2)$ по подгруппе индекса 3 в H и содержащая $C_G(f^2)$ (соответственно $C_G(f)$).

Доказательство. Проводится аналогицно доказательству для конечного множества \Re [1].

Теперь с помощью башни конечных подгрупп в $C_G(f^2)$, объединение которой совпадает с $C_G(f^2)$, и этой подгруппы H строим башню подгрупп, каждая из которых изоморфна элементу из \Re , такую, что объединение U этой башни содержит $C_G(f^2)$. Понятно, что тогда U=G. Теорема доказана.

Библиографические ссылки

- 1. Тухватулина Л. Р., Шлёпкин А. К. О периодических группах, насыщенных полудиэдрами // Журн. СФУ. Математика и физика. 2008. Т. 1. № 3. С. 329–334.
- 2. Лыткина Д. В., Тухватулина Л. Р., Филиппов К. А. О периодических группах, насыщенных конечным

множеством конечных простых групп // Сиб. матем. журн. 2008. Т. 49, № 2. С. 395–400.

3. Alperin J. L., Brauer R., Gorenstein D. Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups // Trans. AMS. 1970. Vol. 151. № 1. P. 1–261.

K. A. Philippov

THE PERIODIC SHUNKOV GROUPS SATURATED WITH SIMPLE THREE-DIMENSIONAL UNITARY GROUPS

It is proved that a periodic Shunkov group, saturated with the set \Re of all simple three-dimensional unitary group of dimension three $U_3(q)$, locally finite and isomorphic to $U_3(Q)$ for some locally finite field Q.

Keywords: group Shunkov, saturation.

© Филиппов К. А., 2012

УДК 681.34

Р. Ю. Царев, Д. В. Капулин, А. В. Штарик, Е. Н. Штарик

СИНТЕЗ И УПРАВЛЕНИЕ РАЗВИТИЕМ КЛАСТЕРНЫХ СТРУКТУР ААТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ КОСМИЧЕСКИХ СИСТЕМ*

Предложена оптимизационная модель планирования развития кластерной структуры ACV космической системы. Представлено описание разработанного программного комплекса анализа надежности и управления развитием кластерной структуры ACV космических систем.

Ключевые слова: космическая система, кластерная структура, автоматизированная система управления.

Жизнеспособность автоматизированных систем управления (АСУ) космическими системами (КС) в равной мере определяется как аппаратно-программными компонентами системы (надежностью их функционирования, сетевым и ресурсным обеспечением), так и информационными потоками и их возможностями. Очевидно, что информационное пространство АСУ КС должно выполнять роль средства, объединяющего пространственно разобщенные подразделения и службы, включая космический сегмент [1; 2].

Следовательно, коммуникационные и информационные технологии проектируемого пространства должны быть такими, чтобы, по меньшей мере, обеспечивать полноценный информационный обмен между структурными компонентами, такими как региональные станции, пункты контроля и управления, центральная станция и т. п.

Существенно, что ресурсы на создание компонентов структуры АСУ КС могут выделяться в разные периоды времени, т. е. допустимо поэтапное финансирование и поэтапная реализация системы без противоречия ее характеристикам полезности [3]. Таким образом, в связи с проектированием и созданием информационной среды для поддержки управления АСУ КС все большее значение и актуальность приоб-

ретает решение задачи синтеза и планирования развития ее структуры.

Постановка задачи. Управление развитием информационно-технической инфраструктуры АСУ КС требует разработки модельно-алгоритмических и программных средств, обеспечивающих формирование оптимального плана развития [4], и заключается в определении моментов ввода типов кластеров, формирующих структуру АСУ КС.

Рассматриваемая структура информационного пространства АСУ КС в рамках предлагаемой обобщенной модели включает в себя совокупность информационных центров (ИЦ), функционально соответствующих региональным/центральной станциям, и структурных подразделений, участвующих в информационном пространстве на правах пунктов управления (ПУ – пункты или устройства управления различных модификаций), связанных между собой коммуникационными каналами, обеспечиваемых сетью высокой готовности (для дисковых массивов предоставляется связь непрерывного доступа).

Каждый ИЦ характеризуется величиной потребности своих узлов в информационно-технических ресурсах и категорией катастрофоустойчивости для кластерной архитектуры в каждый период планирования развития кластерной инфраструктуры АСУ КС [5; 6].

^{*}Исследования выполнены в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг.