УДК 535.31; 681.7; 53.082.5

С. А. Веселков

ОПТИЧЕСКАЯ СИСТЕМА ВЫСОКОГО РАЗРЕШЕНИЯ ДЛЯ ПОЛУЧЕНИЯ СНИМКОВ ЗЕМЛИ ИЗ КОСМОСА

Рассмотрены задачи фотографирования Земли из космоса с помощью оптической системы сверхвысокого разрешения. Приведены данные, полученные в результате детального расчета телескопа в специальной оптимизирующей программе.

Ключевые слова: спутник, разрешение, телескоп, спектральный диапазон, орбита.

Американская компания GeoEye объявила о начале разработки нового коммерческого спутника третьего поколения GeoEye-2, который будет снимать Землю с очень высокой детальностью. Находящиеся сегодня в эксплуатации коммерческие спутники первого поколения Ikonos, QuickBird и другие оснащены оптико-электронными системами с пространственным разрешением 0,6...1 м и точностью геопривязки изображений около 15...25 м без наземных контрольных точек. Спутники второго поколения WorldView-1, запущенный в сентябре 2007 г., и GeoEye-1, выведенный на орбиту 6 сентября 2008 г., имеют оптическую аппаратуру с пространственным разрешением около 0,5 м и точностью геопривязки 3...8 м (WorldView-1) и пространственным разрешением 0,41 м и точностью геопривязки 2...3 м (GeoEye-1) без наземных контрольных точек.

Черно-белые снимки, полученные спутником GeoEye-1, имеют разрешение 41 см, цветные – 1,65 м (табл. 2) (в данный момент это максимально возможное разрешение среди всех коммерчески доступных спутников). Облетая Землю со скоростью примерно 7,5 км/с, спутник GeoEye-1 собирает данные с площади более 700 тыс. км² в день.

Данные дистанционного зондирования Земли (Д33), полученные со спутника GeoEye-1, нашли широкое применение в следующих областях:

 в создании и обновлении топографических и тематических карт и планов вплоть до масштаба 1 : 2 000;

Таблица 1

Основные технические характеристики спутника

Орбита	Солнечно-синхронная		
Наклонение орбиты	98°		
Высота орбиты	681 км		
Время пересечения экватора	10:30		
Скорость над земной поверхностью	7,5 км/с		
Период обращения	98 мин		
Расчетное время работы спутника	До 15 лет		

Таблица 2

Основные характеристики снимков, полученных со спутника GeoEye-1

Разрешение	Надир:		
	панхроматический – 0,41 м;		
	многозональный – 1,65 м		
Максимальное отклонение от надира	60°		
Спектральный диапазон	Pan: 450900 нм (панхроматическая)		
	MS1: 450520 нм (голубая)		
	MS2: 520600 нм (зеленая)		
	MS3: 625695 нм (красная)		
	MS4: 760900 нм (ближняя ИК)		
Размер кадра	225 км ² (15 × 15 км)		
Ширина полосы обзора	15,2 км в надир		
Наибольшая полоса непрерывной съемки	15 000 км ² (300 × 15 км)		
Съемка ячейки 1 × 1° с одного витка	10 000 км ²		
Наибольшая площадь непрерывной стереосъемки	6 270 км ² (224 × 28 км)		
Повторяемость съемки	8,3 дня (панхроматический режим, разрешение		
	0,42 м, отклонение от надира 10°);		
	2,8 дня (панхроматический режим, разрешение		
	0,50 м, отклонение от надира 28°);		
	2,1 дня (панхроматический режим, разрешение		
	0,59 м, отклонение от надира 35°)		
Радиометрическое разрешение	11 бит		
Точность геопозиционирования	CE90 mono = 5 M ;		
	CE90 stereo = 4 m ;		
	LE90 stereo = 6 M		

– создании цифровых моделей рельефа с точностью
1...2 м по высоте;

 – инвентаризации и контроле за строительством объектов инфраструктуры транспортировки и добычи нефти и газа;

 выполнении лесоустроительных работ, инвентаризации и оценки состояния лесов;

 инвентаризации сельскохозяйственных угодий, создании планов землепользования, точного земледелия;

 обновлении топографической подосновы для разработки проектов генеральных планов перспективного развития городов и схем территориального планирования муниципальных районов;

области охраны окружающей среды;

 инвентаризации и мониторинге состояния транспортных, энергетических, информационных коммуникаций.

Наибольшим спросом в 2008 г. пользовались данные высокого и сверхвысокого пространственного разрешения американских спутников QuickBird, Ikonos, WorldView-1, а также спутников ДЗЗ Франции, Индии, Израиля и Канады.

Основным двигателем рынка спутников сверхвысокого разрешения является конкуренция компаний DigitalGlobe (спутники QuickBird, WorldView-1) и GeoEye (Ikonos, GeoEye-1). Новые многоспутниковые системы устраняют недостатки одиночных космических аппаратов, обеспечивая более высокую производительность съемки, глобальный контроль с минимальным временем реакции и высокой частотой просмотра любого региона Земли (рис. 1). В результате за 2008 г. спутник WorldView-1 отснял только по России около 20 % территории страны с разрешением 50 см, в то время как все остальные зарубежные спутники метрового разрешения вместе взятые – около 5 %.

Рис. 1. Снимок, полученный спутником GeoEye-1 в панхроматическом режиме

Следует отметить, что в печати представлены различные аспекты и технические характеристики этих спутников, но ничего не говорится об их оптических системах.

Рассмотрим далее вопрос о том, какая оптическая система должна стоять на самом современном и совершенном спутнике GeoEye-1, для которого заявлено разрешение в 0,41 м с высоты орбиты 681 км на поле зрения шириной 15 км (рис. 2)

Рис. 2. Схема спутника GeoEye-1 с телескопом и его поле зрения

Хорошо рассчитанный объектив с малыми аберрациями может практически ничем не отличаться от идеального объектива. И все же он не способен построить изображение точки в виде точки же. Это происходит изза такого физического явления, как дифракция света [1].

Согласно теории дифракции, радиус дифракционного кружка

$$R = 1,219 \ 7\lambda f/D,$$
 (1)

где λ – длина волны света; f – фокусное расстояние оптической системы; D – ее диаметр.

Угловая величина радиуса дифракционного кружка определяется по формуле (1) следующим образом:

$$\alpha = r/f = 1,2197\lambda/D.$$
 (2)

Если полученное значение угла α умножить на коэффициент 206 262, то ответ окажется выраженным в секундах дуги. Принимая $\lambda = 0,52$ мкм и учитывая, что отрезок в 0,41 м с расстояния в 681 км виден под углом -0,131 секунды дуги, вычислим диаметр телескопа, который способен разрешить такой угол:

$$D = 131/\alpha. \tag{3}$$

Подставив значения, получим результат – ровно 1 м.

На поверхности Земли спутник GeoEye-1 обеспечивает поле зрения шириной 15 км, это немногим менее 1,5°. Таким образом нам нужна оптическая система диаметром 1 м с достаточно большим фокусным расстоянием, способная на поле зрения почти в 1,5° обеспечить дифракционное качество изображения в диапазоне длин волн 0,45...0,9 мкм. Попробуем решить эту задачу с помощью расчета хода лучей в специальной программе. За основу возьмем систему Ричи–Кретьена (рис. 3), которая была рассчитана автором совместно с Г. М. Поповым (Крымская астрофизическая обсерватория) в 1988 г., и с помощью оптимизирующей программы доведена до нужного качества. Конструктивные элементы системы приведены в табл. 3. не. Полезное поле (плоское) составляет $2\omega = 82$ угловые минуты. Все лучи удалось уложить в кружок размером 4,5 мкм, или 0,13 угловых секунды по всему полю (рис. 4, 5)

Полученные графики аберраций показывают, что сферическая аберрация и астигматизм исправлены в значительной степени (рис. 6).

Рассчитанная нами оптическая система содержит три асферические поверхности (зеркала – гиперболоиды, вы-

Зеркала телескопа можно изготовить из ситалла марки CO-115М – материала с практически нулевым коэффициентом температурного расширения, а мениск – из плавленого кварца. Диапазон длин волн, в котором проводился расчет, составляет 0,45...0,9 мкм, хотя система может работать в значительно более широком спектральном диапазо-

Рис. 4. Зависимость пятна рассеяния от угла поля зрения

WAVELENGTH	WEIGHT	POINTS TRACED	POINTS ATTEMPTED	
900.0 520.0 450.0	1 1 1	56 56 56	70 70 70	
Field 1, (0.00, Displacement of centr X: 0.00000E+00	0.00) deg oid from d Y: 0.5:	grees. Foc chief ray 1629E-20	us 0.03000	RMS spot diameter 0.42858E-02 MM
Field 2, (0.00, Displacement of centr X: 0.00000E+00	0.25) deg oid from d Y: 0.73	grees. Foo chief ray 1848E-03	us 0.03000	RMS spot diameter 0.40734E-02 MM
Field 3, (0.00, Displacement of centr X: 0.00000E+00	0.50) deg oid from d Y: 0.69	grees. Foc chief ray 9814E-03	us 0.03000	RMS spot diameter 0.36286E-02 MM
Field 4, (0.00, Displacement of centr X: 0.00000E+00	0.68) deg oid from d Y: -0.19	grees. Foc chief ray 9062E-03	us 0.03000	RMS spot diameter 0.44079E-02 MM

Рис. 5. Зависимость пятна рассеяния от угла поля в числовом виде

Таблица 3

Конструктивные элементы системы Ричи–Кретьена с предфокальным асферическим мениском $(D = 1\ 000\ \text{мм}, \text{A} = 7, 1, \text{s}' = 576, 4\ \text{мм})$

<i>г</i> , мм	<i>d</i> , мм	e^2	<i>г</i> , мм	<i>d</i> , мм	e^2
- 8 326	-2 384	1,679 7	671,3	18 (SiO ₂)	0,774 3
- 8 326	2 400	36,340 8	655,8		0,0

пуклая поверхность мениска – эллипсоид вращения). Все поверхности – конического сечения, удобные в изготовлении и контроле.

Рис. 6. Графики продольной сферической аберрации, астигматизма и дисторсии В заключение отметим, что наибольшее распространение в мире (особенно США) получили системы Ричи–Кретьена с корректором Гаскойна, напоминающим линзу системы Шмидта [2], основным недостатком которого является хроматизм, вносимый корректором Гаскойна. На снимках, полученных спутником GeoEye-1 и опубликованных на различных интернет-ресурсах, также присутствует заметный хроматизм. Предложенная нами оптическая система имеет пренебрежимо малый хроматизм и плоское поле размером 1,4°. В качестве светоприемной аппаратуры можно использовать ПЗС линейки различной длины, при этом важно, чтобы размер пикселя соответствовал размеру кружка рассеяния, создаваемого оптической системой.

Библиографический список

1. Максугов, Д. Д. Астрономическая оптика / Д. Д. Максугов. Л. : Наука. Ленингр. отд-ние, 1979.

2. Попов, Г. М. Современная астрономическая оптика / Г. М. Попов. М. : Наука, 1988.

S. A. Veselkov

OPTICAL SYSTEM OF HIGH RESOLUTION FOR EARTH-IMAGING FROM SPACE

The space-photographyc targets of the Earth with ultra-high resolution optical system are reviewed. The data received by detailed pre-calculation of the telescope in especial optimizing program are given.

Keywords: satellite, resolution, telescope, spectral range, orbit.

© Веселков С. А., 2009

УДК 681.5

М. В. Карасева, М. А. Селиванова, П. В. Зеленков, Е. Е. Шукшина

ИСПОЛЬЗОВАНИЕ ТЕЗАУРУСОВ ПРИ ПОСТРОЕНИИ МУЛЬТИЛИНГВИСТИЧЕСКИХ МОДЕЛЕЙ РАСПРЕДЕЛЕННЫХ ИНФОРМАЦИОННЫХ СИСТЕМ

Предложена модификация существующих моделей распределенных информационных систем, основанных на тезаурусах. Модификация направлена на решение проблемы мультилингвистичности представления информации в современных системах. Показаны две модели: первая основана на мультилингвистическом тезаурусе, вторая – на частотном мультилингвистическом тезаурусе.

Ключевые слова: мультилингвистическая модель, тезаурус, частотный словарь.

В настоящее время разработано множество моделей для представления распределенных систем вычисления и (или) обработки информации. К ним, в частности, относятся информационные системы, корпоративные информационные системы и интенсивно развивающиеся системы поддержки принятия решения [1]. Однако большинство моделей распределенных систем строятся на основе одноязычного представления информации или учитывают многоязычие неявно [2]. Одним из перспективных направлений при разработке новых моделей является применение словарей, или тезаурусов. При этом необходимо отметить, что в современных системах подобные словари очень редко встречаются представленными в мультилингвистической реализации.

Авторский подход, отраженный в работах [2; 3], направлен в первую очередь на решение проблемы мультилингвистического представления информации в инфор-