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hand, the increase in the savings amortization leads to
increase of cumulative expenses Z, that reduces balance profit
W, , cumulative profit tax N, and, finally, net profit /¥, and
reducing efficiency of the project.

On the other hand, the amortization directly influences
the parameter NPV aside its increase. Thus, the size change
of amortization Am influences the NPV in three directions at
the same time. Therefore during the use of the nonlinear
method the efficiency of the project will increase, as negative
influence of amortization on expenses will be compensated,
first, by the positive influence of reduction of the wealth tax,
and, secondly, direct influence of amortization on NPV.

Due to the fact that the size increase of amortization Am
will lead to increase in general expenses Z, it will be reflected
in the price of production F, aside its increase, that, in turn,
will influence the demand again. Therefore the problem of
how much the parameter NPV will finally change after a
change in the amortization charge method will depend on
elasticity of demand for an exact production, a competitive
position of the enterprise in the market.

An account of considered factors during the preparation
of this project and during its realization makes the management

of its efficiency possible. Thus it is necessary to consider
interaction of factors and change of production demand.

In conclusion we can say that the offered classification
of investment projects modeling methods and the lead
comparative analysis allows the choosing of toolkit which
will correspond to purposes of the user. The investment
project efficiency factors, allocated on the basis of the net
profit calculation algorithm enable to operate the project
efficiency at the stage of planning and during its realization.
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A MODIFIED PROBABILISTIC GENETIC ALGORITHM

FOR THE SOLUTION OF COMPLEX CONSTRAINED
OPTIMIZATION PROBLEMS*

A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic
algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard

genetic algorithm are presented.

Keywords: probabilistic genetic algorithm, constrained optimization.

The necessity to develop complex system models
appears in different fields of science and technology such
as mathematics, economics, medicine, spacecraft control
and so on. In the process of modeling there emerge many
optimization problems which are multiextremal,
multiobjective and have implicit formalized functions,
complex feasible area structure, many types of variables
etc. There is no possibility to solve such problems using
classical optimization procedures thus we have to design
and implement more effective and universal methods such
as genetic algorithms (GAs). GAs proved their efficiency
in the process of solving of many complex optimization
problems [1; 2].

The GAs efficiency depends on fine tuning and control
of their parameters. If an untrained user sets arbitrary

parameters values, the GA efficiency may vary from very low
to very high. The recent trends in a field of GAs are adaptive
GAs based on complex hybrid structures and efficient GAs
with reduced parameters set.

A known approach to GA parameters set reduction is
probabilistic genetic algorithms (pGAs) [3; 4]. The essential
difference between pGA and standard GA is that pGA has no
crossover operator and new solutions are generated
according to statistical information about search space.
Thus, collecting and processing such kind of information,
pGAs can adapt to the problems they solve.

PGAs demonstrated their efficiency with many complex
optimization problems and their further investigation and
improvement are promising. There are actual problems of the
pGA’s features analysis for wide-range optimization problems

*This work is supported by State Programs “Scientific and teaching staff of innovative Russia” (project NK-136P/3), by Grant of
the President of Russia to the young PhD for 2009-2010 (MK-2160.2009.9).

31



Mathematics, mechanics, computer science

and parameters set reduction without efficiency loss. This
article is devoted to pGAs efficiency for complex constrained
optimization problems investigation.

Probabilistic genetic algorithm for non-constrained
optimization problems. During its run the GA collects and
processes some statistical information about search space,
but the statistics is absent in an explicit form. PGA uses the
following form of statistics representation — the probabilities
vector of the current population:

P* :(plk’ ""pr,:)ﬁ p[k :P('xik =1), i=1,n,
here p! is the probability of unit value for i-th bit in solution
X¢, k is iteration number.

The general scheme of pGA is:

1. Random generation of the initial population.

2. Selection of  individuals (called parents) on the basis
of their fitness. Evaluate the probabilities vector as:

P=(py....p,),
| —
NS FNE)
i=1

here n is chromosome length, x‘/ is j-th gene of i th individual.

3. Form a new population (called offspring) according to
the distribution P.

4. Apply mutation operator to the offspring.

5. Form a new population from parents and offspring.

6. Repeat 2-5 steps.

As it was previously mentioned, during pGA run the
algorithm collects the statistics about null and unit values
distribution in the population. The experimental results show
that the probability vector components converge to the
corresponding values of the optimal solution vector as shown
in figure 1.
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Fig. 1. The values change for j-th component

of the probability vector

Asitis shown in figure 1, the given j-th component value
of P converges to unit. It means that the value of j-th gene
of optimal solution most probably is equal to unit (for binary
representation). One can use this feature to predict the optimal
solution.

The following prediction algorithm was proposed in [3; 4]:

1. Choose the certain scheme of pGA for the given
problem, set the iteration number 7 =1, ...,/ and the number
of independent algorithm runs £ =1, ..., K.

2. Collect the statistic (p; ), j=1,..,n.Average (p)),
over k. Determine the tendency for p; change.

1
3. Set X;pt =1,if Z((p,)l —05) >0, else x‘(;pt =0.
i=1

The main idea is that the more often probability value is
greater than 0.5, the higher the probability of optimal solution
unit value.
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In practical problems there may be such situations when
pGA collects not enough information at the beginning and
j-th gene value is equal to unit (or zero) for almost every
solution. At the final stage pGA can find a much better
solution with inverted values of j-th gene and it means that
the probability vector values will change their convergence
direction (fig. 2). But the above mentioned prediction
algorithm will give us the primary value, because the j-th
value of probability vector was greater than 0.5 (or less than
0.5 for zero values) for a long time.

Thus one can use the following prediction algorithm
modification:

1. Set the prediction step K. _

2. Every K iteration use the given statistics Pi, i =1, N, ,
N,=t-K, te {1, 2,K } to evaluate the probability vector
change: AP, =Pi—Pi.

3. Set the weights for every iteration according to its
number: 6, =2i/N, (N +1),i=1, K,N,.

4. Evaluate the probability vector weighted change as:

Aﬁ:(A@):%“ci-Aﬁ.
i=1

5. Set the optimal solution: x™ = (xj"‘
if Ap, 20, and x? =0 otherwise.
6. Add the optimal solution in the current population and

continue pGA run.

) , where x}™ =1
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Fig. 2. The situation when prediction can be wrong

The main idea of the given algorithm is that the probability
values on the later iterations have the greater weights as the

algorithm collects more information about search space. The
Ng

weights have values such that 6., >o, 1 Y o, =1.
i=1

Genetic algorithms for constrained optimization problems.
In general GAs and pGAs select an individual in accordance
with its fitness value, but there is no optimization constrains
control. There are many possible methods to solve this
problem.

Let the following constrained optimization problem be
solved:

f(x) > extr,

g,(x)<0,j=1Lr,
h(x)=0,j=r+1,m.
In general, the individual x fitness is evaluated as:

m

fitness(x) = f(x)+8-A(1)- Y. /P (x),

where ¢ is iteration number; § =1 for the minimization
problem; & = -1 for the maximization problem; f;(x) is the
penalty value for j-th constrain break; B is the real number.
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The penalty functions f;(x) are evaluated as:
max {0.g, (x)}.j =17
[, (x)

The following penalty methods are known: the “death”
penalty, the static penalty, the dynamic penalty, the adaptive
penalty and hybrid methods of the individuals “cure”.

As the authors analyzed every penalty method, the
further investigation was limited by the dynamic and adaptive
penalty methods as other methods have a number of
disadvantages.

In particular, the “death” penalty eliminates every
unfeasible solution even if it can have the important
information for new feasible solutions. The static penalty
contains a large set of parameters that should be well tuned —
a non-optimal set of parameters can lead to unfeasible
solutions. The “cure” method involves local optimization
procedures on every iteration of GA, thus such methods use
much more computational recourses.

The dynamic penalty. The method uses the previously
mentioned penalty functions and defines A(¢) in a following
way:

f/(x):

,j=r+lm

Aoy =(C-1)".
The fitness of x individual on the #-th iteration is
evaluated as:

fitness(x) = £(x) +8-(C-1)" -3 P ().

The values C, a, B are set according to a certain problem.
The recommended values are C=0.5,a=0=2 (obtained
experimentally).

The adaptive penalty uses the same penalty functions,
but A(¢) is evaluated as:

B, M), ifb €D,
fort—k+1<i<t
B, A0, if b & D,
for t—k+1<i<t,
A(t), otherwise,

AME+1) =

where b is the best solution in the i-th population,
B, €(0,1), B, >1 and B,B, # 1. The penalty decreases on
the (¢ + 1) step, if the best individual was feasible during the
last k iterations. Otherwise, if it was unfeasible, the penalty
increases.

The method uses three parameters: B,, 3,, k. The
adaptive penalty method uses both kinds of information: if
the solution is unfeasible and if the previous solutions was
unfeasible [5].

Probabilistic genetic algorithms for constrained
optimization problems. The general scheme of pGA is the same
as for the penalty method. The main difference is in the fitness
function definition. Thus, one can extend the optimal solution
prediction method for the constrained optimization problems.
It is appropriate to use the modified prediction procedure as
the objective function surface with penalty can have a lot of
local optima and the general prediction algorithms can lead to
a local solution instead of a global one.
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GA and pGA computational efficiency investigation for
constrained optimization problems. We compare the algorithms
efficiency on a set of test problems of single objective
constrained optimization. The objective functions and
constrains are linear and non-linear functions of several
variables. A part of test problems set is presented in table 1 [6].

We investigate “the best-efficiency” and “the worst-
efficiency” parameters set for both algorithms to determine
how parameters influence the efficiency in a wide range. The
better results for “the worst-efficiency” parameters set give
us better effectiveness for arbitrary parameters chosen by
an untrained user.

As GA and pGA are stochastic procedures, we average
characteristics of algorithms with every unique parameter
set over 100 independent runs.

To estimate algorithms efficiency we will use the following
criteria:

— the rate of runs (%), where the exact optimal solution
was computed;

— the average iteration number (), on which the exact
optimal solution was computed for the first time.

At the first stage we define the constrains control method
that gives the best efficiency with the given test problems
set. We have resumed that the standard GA with “the best-
efficiency” parameters shows the best results with the
dynamic penalty for the whole test problems set. The
standard GA with “he worst-efficiency” parameters shows
the best results with the dynamic penalty only for 60 % cases
(problems). On the average, the dynamic penalty is more
effective than the adaptive penalty in 60 % cases.

PGA both with “the worst-efficiency” and “the best-
efficiency” parameters shows the best results with the
dynamic penalty for the whole test problems set.

Thus, we have determined that the dynamic penalty is
more effective than the adaptive penalty for both GA and
pGA algorithms.

Atthe second stage we compare the efficiency of standard
GA and pGA with dynamic penalty. For “the best-efficiency”
parameters set the standard GA is more effective than pGA
in 67 % cases. But in cases when pGA yelds to GA, their
efficiency differs insignificantly. For “the worst-efficiency”
and “average-efficiency” pGA is more effective than GA in
100 % and 67 % cases respectively. The computational results
of comparison are given in table 2.

At the third stage we compare the efficiency of standard
GA and pGA with dynamic penalty. For “the best-efficiency”
parameters set the standard GA is more effective than pGA
in 67 % cases. But in cases pGA yelds to GA, their efficiency
differs insignificantly. For “the worst-efficiency” and
“average-efficiency” pGA is more effective than GA in 100 %
and 67 % cases respectively. The computational results of
comparison are given in table 2.

At the forth stage we compare the efficiency of standard
GA and pGA with optimal solution prediction. For «the best-
efficiency» parameters set the pGA with optimal solution
prediction is more effective than the standard GA in 60 %
cases, “the worst-efficiency” pGA is more effective in 67 %
cases. Moreover, the pGA with optimal solution prediction
finds the optimal solution at much earlier iteration. The
comparison of computational results are in table 3.
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The results of the investigation shows that the pGA
algorithm is more preferable than the standard GA, because
it is more effective on the average and it has smaller number
of parameters. The pGA with optimal solution prediction
allows to compute optimal solution at much earlier
iterations.
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Table 1
The test problems for constrained optimization
The problem statement The exact solution
z=x>+y" — max
. x=4
y<T+sin(2-x)
. »=7.989358247
y2>1-sin(2-x) .
z =79.82984520
xe[0,4]
z=5-x+0.5-y > max 13
y<—2-x+5 x =" =2.16666
y>2x-15 2
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x20 == 1116666667
y=0 6
z(x,y)=2000x + 2400y — max
x>0
y=>0
x |y
=+ <
120 110 x=50
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XL g
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N=4 x=0,i=1LN
2x, —3x, +4x, <10 2 =0
4x, —5x,+x, <1
10x, +7.5x, —8.4x, <3.5
—-3.1x, +21.7x, —36.4x, <16.2
N
z=3(0.1-x —4cos(0.8x,) + 4) —> min
i=1 JRE—
No x=0,i=1N
X7 +9x; <36 Zy =0
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Table 2
The GA and pGA with the dynamic penalty efficiency comparison
for constrained optimization problem
The best-efficiency parameters The best-efficiency parameters The average-efficiency parameters
The problem GA pGA GA pGA GA pGA
% N % N % N % N % N % N
Linear problem 1 76 31.05 64 32.81 12 16.83 14 14.14 | 41.78 27.67 (4022 |[26.2
Linear problem 2 100 472.04 | 100 | 4469 0 0 0 0 61.19 35738 |61.56 |375.58
Non-linear 58 32.28 66 | 32.39 8 25 24 18.25 | 34.22 28.95 (4133 [26.49
problem 1
Non-linear 100 21.22 98 15.02 44 9.93 68 9.12 76.07 1449 ([83.56 |[12.24
problem 2
Non-linear 20 18.8 68 | 29.94 0 0 22 13.64 7.41 19.45 [40.89 |[24.68
problem 3
Non-linear 94 35.77 92 36.09 52 43.42 48 42.96 | 72.81 33.07 [72.44 |[31.86
problem 4
Rastrigin function 100 54.4 100 | 334 5 10 100 76.92 | 56.85 58.32 1100 48.22
Ackley (and) 100 2.76 100 | 4.51 95 61.21 100 69.71 | 99.63 23.02 (100 32.92
Ackley (or) 100 1.94 100 | 3.79 100 | 63.04 100 42.24 100 12.57 [100 13.41
The number of 7 6 6 3 2 2 7 6 3 4 7 5
wins
The rate of wins 53.85  66.67 77.78 75 70 55.56
The number of 4 2 0 5 1 3
double wins
The rate of double 66.67 100 75
wins
Table 3
The GA and pGA with optimal solution prediction efficiency comparison
for constrained optimization problem

The best-efficiency parameters The best-efficiency parameters The average-efficiency parameters

The problem GA pGA GA pGA GA pGA (prediction)
(prediction) (prediction)
% N % N % N % N % N % N

Linear problem 1 76 31.05 48 34.29 12 16.83 22 24.64 | 41.78 27.67 | 39.33 32.8
Linear problem 2 100 472.04 | 100 | 438.4 0 0 2 8 61.19 | 357.38 60 350.82
Non-linear 58 32.28 46 | 23.96 8 25 0 0 34.22 28.95 | 21.78 19.49
problem 1
Non-linear 100 21.22 66 18.12 44 9.93 28 14.21 | 76.07 1449 | 45.11 16.91
problem 2
Non-linear 20 18.8 34 | 29.47 0 0 0 0 7.41 19.45 17.33 21.45
problem 3
Non-linear 94 35.77 100 | 38.92 52 | 4342 60 41.77 | 72.81 33.07 84.22 30.84
problem 4
Rastrigin function | 100 54.4 100 | 32.36 5 10 98 55.22 | 56.85 58.32 | 99.78 47.82
Ackley (and) 100 2.76 100 3.06 95 61.21 100 50.57 | 99.63 23.02 100 29.74
Ackley (or) 100 1.94 100 347 100 | 63.04 100 56.65 100 12.57 100 15.58
The number of 7 4 5 6 3 4 6 4 5 5 5 4
wins
The rate of wins 58.33 60 50 66.67 50 50 55.56 50
The number of 2 3 2 4 1 2
double wins
The rate of double 60 66.67 66.67
wins
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