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NEW EXACT SOLUTIONS WHICH DESCRIBE 2-DIMENSIONAL
VELOCITY FIELD FOR PRANDTL’S SOLUTION*

New velocity fields are found for the well-known Prandtl’s solution which describes pressing of a thin layer of plastic
material between two parallel stiff and rough plates. The method of construction of other velocity fields is considered.
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The 2-dimensional ideal plasticity equations in case of
steady-state problem have the form:
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here o is hydrostatic pressure, 0 is the angle between the
first principal direction of stress tensor and axis Ox, k is
plasticity constant, V,v, are components of velocity vector
of strain field.

Prandtl’s solution is one of the practically applied and
frequently used in different computations. This solution
describes in particular the pressing of a thin layer of plastic
material between two parallel stiff and rough plates, and it
has the following form:
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p is an arbitrary constant.
It is well known that to describe the plasticity state of
material completely one should know velocity field.
Let’s substitute the equations (2) into the system (1). We
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One can see that because of its linearity the system (4)
has an infinite set of solutions which can be used for the
analysis of the stress-strained state of a plastic medium.

At the present moment two classes of solutions of this
system are known, Nadai’s solution [ 1] and Ivlev—Senashov’s
solution [2], which are the following:
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here a, B, C,, C, are arbitrary constants (if o = 0 Nadai’s
solution comes out).

Let’s point out others solutions of the system (4). Notice
that in variables &, n, wherec = k(&—i—n), 20=&—-n, the
equations (2) are written as follows (5):
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If we put new variables into (5) using the formulas:
v, =ucosf-vsin6,
v, =usin®+vcoso, (6)
we’ll get a system (7):
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Further we use the following procedure: we solve the
system (7), put expressions from Prandtl’s solution for £ and
n into this system, make substitution (6) and find a velocity
field which corresponds to the solution (3).

Let’s do it, for example, using the simplest solution of the
system (7). It is obvious that

v=u= exp%(§+n)
is a solution of the equations (7). Put it into the (6). We get:
v, =(cos6—sin O)exp%(i +1),
v, =(cos0+sin e)exp%(ﬁ +n).

From Prantl’s solution (3) one can get easily

p

§+n=—;—x—sin29, cos20=y. ®)

And finally we find a new velocity field:
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v, =exp| > —;—x—sm29 (cos6+sin0).

By using this scheme some other velocity fields are found.

For the equations (7) solutions are given in [3]. Further
with respect to these indicated solutions, 5 more classes of
new solutions of the equations (5) are built.
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Here A4, B, u, A are arbitrary constants; u* —A> =1.
In this case

8u —&sin (Ké-’-—nj x

87] 2 2

{Acos(u%] +Bsin(pg’_7nﬂ +
+—cos( a nj[Asin(ua_—nj—Bcos
2 2 2

From the equations (7) we get
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Making substitution for #, v into the equations (6) and

taking into account the equalities (8) and 0 = E"_Tn we get
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Here A4, B, p, L are arbitrary constants; p> —A* =1.
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Here A, B, p, A are arbitrary constants; A2 —u =1.
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THE ASYMPTOTIC PROBABILISTIC GENETIC ALGORITHM*

This paper proposes the modification of probabilistic genetic algorithm, which uses genetic operators, not affecting
the particular solutions, but the probabilities distribution of solution vector s components. This paper also compares the
reliability and efficiency of the base algorithm and proposed modification using the set of test optimization problems and

bank loan portfolio problem.
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The probabilistic genetic algorithm (PGA) is an attempt
to create an algorithm with a scheme similar to that of the
traditional genetic algorithm (GA), preserving the basic
properties of the genetic operators, but defined in terms of
the pseudo-Boolean optimization theory [1].

The probabilistic genetic algorithm explicitly (as opposed
to the traditional GA) computes the components of the
probability vector and has no crossover operator (it is
replaced a by random solution generation operator) but
retains the genetic operators of mutation and selection.

The purpose of this study is to develop a probabilistic
genetic algorithm modification with mutation and selection
operators, effecting not particular individuals, but genes’
values distribution as a whole; and to compare efficiency
and reliability of basic algorithm and modification.

Asymptotic mutation. PGA uses a standard GA mutation
operator, which inverts genes with a given probability (as a
rule, this probability is very low). Since genes mutate

independently, we can study one particular gene. All
following formulas will stand for every gene in the
chromosome. Let us suppose that p — denoting the
probability of that fact was equal to 1 before mutation. We
will determine the probability as equal to 1 for same gene
after mutation (p’ denotes this probability). The mutation
probability isp .

The gene can be equal to 1 after mutation in two cases: it
was equal to 1 before mutation and has not mutated or it was
equal to 0 before mutation and has mutated. If x denotes the
gene value before mutation and y — after mutation — the
following equality is:

P{y=1}=P{x=1}(1-p,)tP{x=0}p, =

= p(l-p,)+(1=-plp, = p,tp(1-2p,).
Using the aforementioned designations for genes
probabilities before and after mutation we can write down:

p'=p,tp(1-2p,).
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