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This paper proposes the modification of probabilistic genetic algorithm, which uses genetic operators, not affecting
the particular solutions, but the probabilities distribution of solution vector’s components. This paper also compares the
reliability and efficiency of the base algorithm and proposed modification using the set of test optimization problems and
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The probabilistic genetic algorithm (PGA) is an attempt
to create an algorithm with a scheme similar to that of the
traditional genetic algorithm (GA), preserving the basic
properties of the genetic operators, but defined in terms of
the pseudo-Boolean optimization theory [1].

The probabilistic genetic algorithm explicitly (as opposed
to the traditional GA) computes the components of the
probability vector and has no crossover operator (it is
replaced a by random solution generation operator) but
retains the genetic operators of mutation and selection.

The purpose of this study is to develop a probabilistic
genetic algorithm modification with mutation and selection
operators, effecting not particular individuals, but genes’
values distribution as a whole; and to compare efficiency
and reliability of basic algorithm and modification.

Asymptotic mutation. PGA uses a standard GA mutation
operator, which inverts genes with a given probability (as a
rule, this probability is very low). Since genes mutate

independently, we can study one particular gene. All
following formulas will stand for every gene in the
chromosome. Let us suppose that p – denoting the
probability of that fact was equal to 1 before mutation. We
will determine the probability as equal to 1 for same gene
after mutation (p denotes this probability). The mutation
probability is pm.

The gene can be equal to 1 after mutation in two cases: it
was equal to 1 before mutation and has not mutated or it was
equal to 0 before mutation and has mutated. If x denotes the
gene value before mutation and y – after mutation – the
following equality is:

     1 1 (1 )+ 0
(1 )+(1 ) + (1 2 ).

m m

m m m m

P y = = P x = p P x = p =
= p p p p = p p p



  
Using the aforementioned designations for genes

probabilities before and after mutation we can write down:
+ (1 2 )m mp' = p p p .
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This equation can be used to implement the mutation
operator, not affecting the solution genes, but the
distribution of genes in whole.

The difference of this scheme from the classical one is
that mutation (in the traditional GA sense) is absent, but
after estimating intermediate population genes distribution
each component of the probabilities vector must be
transformed by the formula aforementioned. Such a
transformation can be called “the mutation operator effecting
the distribution” or “asymptotic mutation operator”.

The traditional implement of mutation in the PGA can be
seen as an estimation of gene distribution using the Monte-
Carlo technique. In the end we have a stochastic
approximation of computation formula results. The term
asymptotic mutation states that this procedure is a limited
case of traditional mutation operators if the population size
tends to increase.

Let us examine some properties of the proposed
procedure. The transformation definition is linear, mapping
intervals from [0; 1] to interval [pm; 1 – pm]. The linearity is
obvious and the boundaries can be calculated if we replace
p by 0 and 1. Since the linear function is also monotonous,
the values from interval [0; 1] will be mapped into interval
[pm; 1 – pm]. Thus asymptotic mutation doesn’t let
probability p reach values 0 and 1 exceed pm; this excludes
premature convergence.

It is easy to see that value p = 0.5 is the fixed point of this
mapping, meaning that if the gene values have had equal
probabilities before mutation, this property will remain after
mutation. Thus, the proposed distributing transformation
procedure makes the distribution formal.

Another feature of the proposed procedure is that its
time consumption does not depend on population size
because it performs only simple linear transformations of
gene probability vector components. In the traditional PGA,
random real numbers from intervals [0; 1] are generated for
each gene iteration for every solution, if this number is in the
interval [0; pm] (where pm is the mutation probability), then
the gene will be inverted (flipped). The complexity of the
traditional mutation procedure (for one iteration) is O(N; M),
where N is the population size, and M is the genes’ number.
Most of the genes will not be flipped since mutation
probability is usually small.

Let us compute the probability of a situation where some
solution will stay unchanged after mutation. Let us denote
this probability Q. The solution will not change if all of the
genes remain unchanged. Genes mutate independently, they
will stay unchanged within the probability 1–pm = qm. Using
this rule for calculating the joint probability of independent
events, we get the needed probability, which is equal to
Q = (1 – pm)M. Mutation probability is often set to pm = 1 / M;
in this case Q  e–1. This approximate equality is precise
enough even when M is equal to 10. This means that more
than one third of all solutions will not change during the
mutation procedure; in other words all computations
connected with the implementation of the mutation operator,
affecting the solutions, in more than one third of cases were
performed only to find out that no action must be performed.

The proposed mutation implementation approach has no
such drawbacks. Its algorithmic complexity is O(M) meaning

that the time for this procedure does not depend on the
population size, in practice meaning that the time
consumption of the mutation procedure is relatively small
compared to other procedures, the complexity of which
depends on the population size (in the proposed algorithm
such a procedure is selectional).

The proposed mutation implementation does not require
a generation of random numbers (which can be expensive
operations). The probabilities of genes values are computed
independently; therefore the proposed procedures may be
implemented on parallel or vector hardware.

This approach does not contain conditional logic
(branching statements), and therefore is more suitable for
modern processors with instruction pipeline [2].

It is necessary to notice that in spite of the fact that the
proposed PGA modification has no traditional mutation
procedure; the parameter of this procedure – mutation
probability – retains, it means that user has to specify the
parameter. This can be seen as both an advantage and a
disadvantage. On the one hand, it is handily for user to not
specify and tune parameters. On the other, the proposed
modification makes no assumption about the mutation
probability, and therefore it can be used with any mutation
probability setup method, including self-adjusting (the tuning
of mutation probability during an optimization process).

The proposed distribution transformation procedure can
be seen not only as a mutation implementation procedure,
but as an additional step of the estimation of distribution,
the purpose of which is the avoiding of premature
convergence. The connection between the distributions
before and after mutation is analogous to the connection
between the classical and Bayesian statistical estimations of
probability based on sample rates. This connection is
expressed by the following formula:

pB
+ ,

+2
np Cp =
n C

where pB is the Bayesian estimation of probability, p is the
classical estimation of probability, n is the total experiment
number (sample size), C is the parameter, (usually equal to 1).
After simple transformations we can find out, that the Bayesian
estimation of probability is equivalent to the“mutating”classical
estimation, if the mutation probability is equal to /(n + 2C).

Asymptotic selection. Let us now consider the selection
procedure. During this the PGA (and traditional GA)
intermediate population is generated – the probability is to
be selected in the intermediate population is higher for
individuals with better health. After the intermediate
population estimation has been completed, the mutation and
estimation of the genes’ values probabilities are performed.
This procedure is known as the Monte-Carlo estimation (as
it was done for the mutation procedures in the previous
section. Since the distribution is known exactly, we can
simply compute the distribution.

Let the population contain individuals x1, ..., xn, the
probabilities to be selected (in one experiment) are g1, ..., gn.
The expected value of the probability of this case is that the
i-th gene will be equal to 1.

( ) ( )
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.
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k k
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It is possible to calculate the distribution of genes in the
intermediate population without explicit selection procedure
using the given formula. This approach can be called
“asymptotic”, since it distributes the genes in the limit for
distributions, generated by the traditional approach in
situations when the population size tends to infinity.

Proportional and ranking selection methods calculate
selection probabilities explicitly; therefore the asymptotic
approach can be applied directly to these methods. During
the tournament selection the explicit selection probabilities
are not used and the asymptotic approach can not be applied
without modifications. However, tournament selection is
often more efficient and reliable than other selection methods,
and therefore distributing the asymptotic approach on
tournament selection is important problem.

It can be shown, that tournament selection is a kind of
ranking with implicit selection probabilities. Let us consider
selection procedure of this method: tournament groups are
generated randomly (not considering an individuals’ health),
and the winner of the tournament is an individual with the
best health (in tournament groups). The issue is to find a
solution with a maximal fitness value; values themselves have
no importance – we can consider only the ranks of these
values.

To build an asymptotic selection method, equivalent to
tournament selection it is necessary to find out the dependence
between selection probabilities and fitness ranks.

Let the tournament group size be denoted as S. Let us
assume (for simplicity), that the population does not contain
individuals with equal fitness values. Our objective is to find
the probability of selecting an individual with a k-th fitness
value. Tournament groups are random – distribution is
uniform. A tournament winner is an individual with highest
rank, meaning that the winner’s rank has same distribution
as maximal S uniformly distributed random values [3]:

( 1) .
S S

k S

k kg =
n

 

Let us now assume that the population consists of
individuals with equal physical values. Let the population
consist of K different fitness values; k-th value appears in
the population nk times. It is clear that following equality is:

1

K

k
k=

n = n .

In this case it is simple to find out the expression for
cumulative probabilities Gk, defined by the following
formulas:

1 1
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Since solutions are selected for tournament groups
without considering their physical abilities, then all possible
tournament groups have the same probability, and the k-th
cumulative probability is equal to the number of tournament
groups containing solutions where the fitness is less or equal
to k-th fitness value, divided by the total number of
tournament groups:
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Asymptotic selection does not generate intermediate
population; therefore this approach consumes less memory
(if as usual the genes’ number is high consuming half of the
memory necessary for traditional PGA).

Using proposed selection and mutation techniques we
get the following modification of the PGA procedure:
– create and estimate initial population within uniform

genes distribution;
– if the termination condition is met – stop;
– compute genes distribution using asymptotic selection;
– transform genes distribution using asymptotic mutation;
– generate new population using computed distribution,

estimate it;
– return to step 2.
Algorithm comparison using test problems. Quality

characteristics of stochastic optimization methods are
reliability (number of experiments in which the algorithm
found global optimum divided by total number of experiments)
and the average number of objective value computations
required for reaching the optimum (average over successful
experiments). The primary characteristic is reliability: if two
algorithms have equal reliability, the algorithm which performs
a lower number of objective computations is better.

The number of objective computations is a secondary
characteristic, since this criterion can be inadequate if the
reliability of the optimization algorithm is low; in such case
the algorithm can be used to find global optimum only if the
initial population is extremely promising (many solutions
belong to the attraction region of the global optimum),
therefore the algorithm will converge very quickly.
Furthermore, low reliability means that the average is
calculated over a sample small in size, therefore the variation
is high.

PGA is a stochastic optimization algorithm; its quality
cannot be determined by one experiment, it’s necessary to
perform many experiments and average the results.

We have used the following settings: the population size
is equal to 100, the maximum iterations number is 50, the
number of experiments for qualified estimation of the
characteristics is 1,000, the mutation is weak, and the coding
method is Code Grey. We have used same test problems as
set in the paper [1].

To define if the difference between the two methods is
statistically significant – the Wilcoxon–Mann–Whitney
nonparametric test [4] (with samples sizes 5) was used. The
results of experiments are summed up in table 1.

The result column contains a number of testing problems
where the differences between algorithms are statistically
significant. Values for base algorithm and modification are
divided by a slash (the total problems number is 16).

The results show that in all cases the difference between
algorithms is not statistically significant and that the
modification’s performance is better than the one of base
algorithm. The proposed modification’s reliability is not worse
than that of base algorithm (and in some cases surpasses it),
but in most of experiments the modification performs more
calculations of the objective value. Since PGA is a global
optimization algorithm, such a trade-off can be acceptable.

The observed increase of reliability and computational
cost can be explained by the fact that selection probabilities
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for solutions with small fitness values are also small.
Therefore such solutions, selected in the intermediate
population affect genes distribution rarely in traditional
selection. In the case for asymptotic selection all solution
can contribute into distribution (the contribution of “bad”
solution is low). It is clear that accounting of “bad” solutions
decreases the speed of local convergence and the probability
of finding a local minimum; in turn this increases the
probability of global convergence.

Algorithm comparison within the problem of the bank
loan portfolio. Let us compare standard PGA and the
proposed modifications within the bank loan portfolio
problem [5]. This problem is a constrained pseudo-Boolean
optimization problem (constrained optimization of the
function with Boolean domain and real values). The dimension
of the search space is equal to 50. The constraints dynamic
penalty method was used [6]. The population size was equal
to 1,000, the number of iterations was 100, and the number of
averaging experiments was 100.

For each selection method we test the equality of the
expected values of profitability best loan portfolios, defined
by the base algorithm and modifications. To test the statistical
significance of the difference we’ve used the Student two
sample test [4]. Since the sizes of the samples are quite high
we can use the asymptotic value. For the significance level
0,95 it is approximately equal to 1.97.

For the bank loan portfolio problem we’ve performed a full
comparison of all the four possible variants of PGA: base
probabilistic genetic algorithm (PGA), PGA-M – probabilistic
genetic algorithm with asymptotic mutation (and traditional
selection),PGA-S–probabilisticgeneticalgorithmwithasymptotic
selection (and traditional mutation), PGA-MS – probabilistic
genetic algorithm with both asymptotic mutation and selection.

The results of the experiments were placed in the
following table. Table 2 contains the averages of the best
objective values found by optimization algorithms, the
standard deviation of these quantities, and time consumption
(in seconds).

The Students’ test of equality means shows that the
efficiency of algorithms with asymptotic mutation or
asymptotic selection (PGA-M and PGA-S) doesn’t
significantly differ in statistics from the base algorithm (with
the significance level 0.95). Furthermore, the difference
between these two algorithms is also not statistically
significant. The difference significance between PGA with
asymptotic mutation, selection (PGA-MS), and other
algorithms depends on the selection methods: it is
significantly higher when using the proportional and ranking
selection efficiency of PGA-MS, than the efficiency of the
other three algorithms. However in tournament selection
there are no statistically significant differences.

Let us now consider the time consumption of the PGA
variants. It can be seen that in all cases the base algorithm
consumes more time than its asymptotic modifications.
Furthermore, PGA-MS surpasses both PGA-M and PGA-S, if
we use proportional or ranking selection. Only in the case of
tournament selection, the algorithm PGA-M is the most rapid.
This can be explained by the fact, that the asymptotic variant of
the tournament selection performs a relatively expensive
operation: the sorting of population, which traditional
tournament selection does not (ranking without sorting – is
one of the most important features of tournament selection).
However the usage of asymptotic mutation and/or selection
does not slow down the algorithm when comparing to the PGA.

We can conclude that asymptotic variants of probabilistic
genetic algorithmperformaccording to their designed goals, i. e.
to give statistically equivalents of probabilisticgenetic algorithm
consuming fewer amounts of computational resources.
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THE MODELING OF THE WORLD SOCIO-ECONOMIC STRATEGY
AS AN OPTIMAL CONTROL PROBLEM*

An approach to the modeling strategy of global social-economical development on the basis of the economic-
mathematical optimum control model, considering interaction of the basic economic agents of the world social-economic
system (WSES) – industrial, consumer, financial sectors, as well as the operating center (the world government) is
described in this article. The task of optimizing the global social-economic development is formulated; the main principles
of the analysis, restrictions and target criteria are analyzed.

Keywords: global economical crisis, sustainable development, mathematical models of optimal control.
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Interest to the problems of human survival and the
balanced development of the world socio-economic system
is aroused under the conditions of the world socio-economic
crisis. It is clear that such a kind of development requires the
coordination of interests between business, consumer, and
financial sectors. It also requires participation of a united
control center (the world government). In this context the
elaboration of the mathematical model of the global economy
that will consider the balance of interests of required sectors
is still relevant. Some mathematical models which describe
the global development had been elaborated in the 1950s by
scientists from The Club of Rome ([1] etc.). At the heart of
these models is the system of usual first order differential
equations. The analysis of such models showed the reality
of crisis occurrences in world development. To these
occurrences belong the greenhouse effect, over-population,
the depletion of natural resources, etc. A necessity to fight
them is confirmed by ratifying the Kyoto Protocol, which
reduces emissions of greenhouse gases. It is important to
note that the specified models don’t solve the problem of
optimal process control in global development and need a
large amount of numeral experiments. These experiments do
not always lead to optimal or quasi optimal development
scenarios. Currently, the interest in investigating global
development problems is aroused. This is connected with
the series of world financial crises, which happened during
the last years; which were caused by the imperfection of the
world financial system, oriented on the dollar as the only
world currency; and the domination through this, the
geopolicy of one country. Let’s mark works [2–4] as

representative modern publications on this issue. An
approach to solving the problem of global social-economic
development management is based on solving the
multicriterial, multistage linear optimal control problem.

It is necessary to note that for the management of global
social-economic development, the operating agency of the
WSES needs to accomplish several complicated and
interconnected tasks: 1) socially-industrial (the maintenance
of high production volumes with a solvent demand,
employment, and high standards of living); 2) financial-
industrial (first of all, the elimination of the financial system
imbalance and production sector); 3) ecological (preserving
a suitable living environment).

Let’s consider the main elements of the prospective
approach below. Let’s formulate the following task, which
will be called the main task of global social-economic
development. We shall consider the available number of
branches in the world’s production sectors: food, clothes,
housing, the articles of prime necessity etc. It is required to
determine the amount of main production funds and the
production volumes of the mentioned branches in set time
moments, during which the total net present value of cash
flows for industrial, social and financial sectors of world
economy will be the greatest at a set planning horizon. The
formulated task in our opinion can be considered as a global
investment project (IP) of optimum WSES development
management in a view of statutes to be mentioned. Let’s
suppose that in the global development model (GDM), the
simultaneous economic agents aforementioned are the
decision makers (DM), interested in a balanced development


