Mathematics, mechanics, computer science

A. A. Koltashev
JSC “Academician “M. F. Reshetnev “Information Satellite Systems”, Russia, Zheleznogorsk

A PRACTICAL APPROACH TO SOFTWARE PORTABILITY

This paper describes an approach to porting onboard software for communication and navigation satellites to new
platforms that use various onboard computers and devices. The approach relies on the target(onboard) and the tool
software stratification and strong typing and the Modula-2 programming language especial features.

Keywords: software engineering, satellites onboard software, cross-programming system.

The approach is being resolved by the JSC “M. F. Reshetnev
“Information satellite systems” in collaboration with the Ershov
Institute of Informatics Systems and the Excelsior, Ltd. (formerly
XDS), via an approach based on architectural stratification and
interface standardization both for the onboard software and the
development environment and the Modula-2 programming
language especial features [1], such as strong typing and
separate compilation [2—7].

First of all, a stratification of the OSW was performed
which allowed us to define and implement an OSW
Abstraction layer that provides a standard platform-
independent API (types and procedures) to application
software (i. e. the software of satellite subsystems that solves
functional problems and amounts to up to 80 % of the entire
OSW). Portability of the application software to new hardware
is ensured by the software development system whereas the
use of a new operating system and drivers, by reprogramming
the implementation modules for the OSW Abstraction layer.

Next, a stratification of the cross-programming system
(CPS) was made which allowed us to define platform-
independent and programming-language-oriented user
interfaces: both for programming and testing/debugging
needs, and the CPS Abstraction layer that provides a standard
architecture-independent API (types and procedures) that
isolates architecture—dependent parts of the onboard
computers: CPS components implement code generation and
instruction set simulator.

A successful implementation and an efficient use of both
the OSW and CPS Abstraction layers proved to be possible
to a great extent due to the strong typing and separate
compilation properties of Modula-2.

Moreover, the use of a highly structured language
provided an additional benefit, namely, a possibility to
measure static and dynamic software component
characteristics and to calculate criterions of software testing
completeness for quality assurance.

Onboard software stratification. A canonical three-layer
structure of the OSW was determined. The third layer — the
application software — becomes platform-independent
because its implementation only uses interfaces exported by
the lower, second layer called the Abstraction layer. The first
layer is the employed operating system, i. e. a real-time kernel
and a set of drivers.

The canonical structure of the OSW Abstraction layer
for the given problem area was determined by the analysis of
functionality of several generations of satellites.

Three components are specified in the Abstraction layer:

— standard interfaces for a canonical set of abstract real-
time kernel calls;

72

— standard interfaces for a canonical set of abstract
onboard devices;

— standard types for a canonical abstract data set used
to control subsystems of the satellite in various regimes.

The main features of Modula-2 — the strong typing and
separate compilation — gave a possibility to implement the
Abstraction layer as a set of Modula-2 libraries providing a
complete and platform-independent API. It proved possible
to define the data types independently of addressability,
endian-ness, word size, etc., of various onboard computers.

The strong typing, e.g. enumeration types, provided a
required level of abstraction for data types which is both
maximally close to the problem field and also platform-
independent to a maximal degree.

The separate compilation feature allowed us to
standardize and freeze the API using definition modules, and
made it possible to reuse all the functionally equivalent
application software without any changes in the source code,
which greatly simplified configuration management.

A Modula-2 cross-programming system adaptable to
different target onboard computers. We developed a cross-
programming system (CPS) based on Modula-2, which
implements the code generation for some base computer
implemented via an instruction set emulator. In this CPS,
there were implemented platform-independent programming-
language-oriented user interfaces as well as the CPS
Abstraction layer that provides a standard architecture-
independent interface with parts that depend on the
architecture of the target onboard computer: the CPS
components that implement code generation and the
instruction set simulator.

Adaptation CPS for a new embedded computing system
is performed by creating code generation and the instruction
set simulator components only. The CPS ensures that all
debugging information is provided at the level and in terms
of Modula-2.

The assembly of the project into executable code is done
via a standard CPS shell with the use of the necessary
components of the commercial software development system.
Another important fact is that application programmers can
notice whether a switch to a different target computer
(another command set interpreter) has occurred only through
changes in the program operating characteristics as measured
by the CPS, because all the user interfaces stay exactly the
same.

The CPS also includes testing and debugging facilities
that use platform-independent testing languages. The
platform-independent dialogue and batch testing languages
allow programming, executing and documenting test



Vestnik. Scientific Journal of Siberian State Aerospace University named after academician M. F. Reshetnev

procedures in the platform-independent terms of the
programming language. The batch testing language allows
one to reuse the test procedures with another platform.

The CPS runs efficiently under MS Windows 2 000/XP
on Intel Pentium chips.

Such an approach was influenced by the XDS
programming environment [5], and the XDS system was used
as a programming environment for the CPS development and
maintenance.

So, the architectural stratification of the OSW and CPS and
the standardization of the two Abstraction layers ensures an
easy adapation of the CPS to a new target computing platform.

An additional benefit of using a highly structured
language. Our CPS allows one to obtain a complete set of
measurements for the program unit being developed
(including the size of stacks, the execution time, etc.) in order
to evaluate some measures of source code quality and to
calculate the C1 (all branches) and C (all decisions) criterions
of unit testing completeness.

This is only possible with a highly structured language,
so this quality allows one to implement in the CPS a complete
check of the program execution process during the testing
procedure and to make the testing procedure (especially
under batch testing) independent of local changes in the
source code of the program being tested.

The described technology of the OSW development
results not only in a high level of reuse and portability of the
OSW, but also a possibility to reuse all testing procedures
for regressive tests of the OSW.

This is true not only for the OSW development, but also
for the CPS. Moreover, it is possible to start the OSW
development not waiting for adaptation of the CPS to a new
target onboard computer by using the CPS available for the
base onboard computer.

The measurement tools of the CPS that are based on the
properties of the programming language allow one to achieve
the high level of quality of the OSW components required
for the spaceflight applications.

73

The standard and stable user interfaces of both the
CPS and the Abstraction layer greatly simplify the
maintenance of OSW by facilitating experience
accumulation and transfer.

The technology successfully worked under development
onboard software for Exspress-AM series communication
satellites and for Glonass navigation system’s satellites.

Bibliography

1. Bupt, H. IIporpammupoBanue Ha a3sike Monyna-2 :
nep. ¢. aur1. M. : Mup, 1987.

2. Koltashev, A. A. Practical Approach To Software
Portability Based on Strong Typing and Architectural
Stratification : Joint Modular Languages Conf., JIMLC 2003.
Klagenfurt, Austria, August 25-27,2003. Proc. Lecture Notes
in Computer Science (LNCS 2789) / A. Koltashev. Berlin :
Heidelberg : N. Y. : Springer-Verlag, 2003. P. 98—101.

3. Konrramres, A. A. TexHonorus mepeHoca 60pToBOTO
nporpammuoro obecreuenust / A. A. Konrarie / OTKpbI-
Thle cucteMsl. 2004. Ne4. C. 3.

4. Kosrraries, A. A. TexHomornueckie acleKThI CO3IaHns
60pPTOBOTO MPOrPaMMHOT0 00ECIIEYEHHS CITyTHUKOB CBSI3H
/ A. H. Autamomkus, A. A. Konrames // Becta. Cub6. roc.
a’pPOKOCMUY. YH-Ta : ¢0. Hayd. Tp. KpacHospck, 2005. Ne 6.
C.93-95.

5. Native XDS-x86 (User’s guide) // The XDS product
family. XDS Ltd. 1997.

6. Cpeacrsa n3mepenus 0OPTOBOTO MPOTPaMMHOT0 oOec-
neuenusi/ A. B. Epemun, O. C. Ho3zemueBa, A. A. Konraimes
u nip. // Bectank CuoI'AY. Bem. Ne 1 (18). KpacHostpek, 2008.
C.52-56.

7. Konrames, A. A. CoBpeMeHHast TEXHOJIOTUS pa3paboT-
KH ¥ COTPOBOXKICHUS OOPTOBOTO MPOTPaMMHOTO oOectie-
YeHUs CIIyTHUKOB CBs3M M HaBurammu / A. A. Koxnraies,
C. T Kouypa, B. B. XaproB // Kocmudeckre Bexu : 0. Hayd.
Tp. // OAO «H(pOPM. CIIyTHUKOBbIE CUCTEMBD» MM. aKa/l.
M. @. PewerneBan. KpacHosipck, 2009. C. 237-251.

© Koltashev A. A., 2009



