A. S. Parshin, G. A. Alexandrova, O. P. Vaituzin, E. P. Berezitskaya, R. E. Tikhomirov, A. A. Chernyatina, V. A. Kharlamov, R. A. Ermolaev, V. V. Mironovich

RESEARCH OF MULTIPURPOSE NANOCOATINGS FOR SPACECRAFTS BY METHOD OF SCANNING PROBE MICROSCOPY

This work is devoted to research of topography of a surface of radiotransparent thermoregulating coatings by a method of Atomic Force Microscopy.

Keywords: radiotransparent, thermoregulating coatings, atomic force microscopy.

© Паршин А. С., Александрова Г. А., Вайтузин О. П., Березицкая Е. П., Тихомиров Р. Е., Чернятина А. А., Харламов В. А., Ермолаев Р. А., Миронович В. В., 2010

УДК 621.38

Л. И. Оборина, Б. Н. Исмайылов, И. В. Стерехов, И. В. Трифанов

ДИЛАТОМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ТРУБ ВОЛНОВОДОВ КВЧ-ДИАПАЗОНА

Представлены результаты дилатометрического определения температурного коэффициента линейного расширения после изготовления волноводов из сплава 32 НКД.

Ключевые слова: температурный коэффициент линейного расширения, волноводы, дилатометрические исследования, пластические деформации.

Для изготовления полосовых фильтров диапазона крайне высоких частот с требуемыми рабочими характеристиками необходимо использовать материалы с низким температурным коэффициентом линейного расширения ТКЛР (1÷2)·10⁻⁶ 1/°С в диапазоне рабочих температур [1]. Таким требованиям может отвечать сплав 32HKД и др. (см. таблицу). Температурный коэффициент линейного расширения связан с упругостью металлов *E*, а также зависит от строения кристаллической решетки металлов [2]. Для металлов ГЦК (гранецентрированная решетка) и ОЦК (объемоцентрированная решетка) решетками выполняется зависимость

$$\alpha V = K \chi_T, \tag{1}$$

где α – температурный коэффициент линейного расширения; *V* – объем; χ_T – коэффициент изометрической сжимаемости; *K* – константа Больцмана.

Лучшей характеристикой по α обладает сплав 32НКД.

Известно, что температурный коэффициент линейного расширения зависит от ряда факторов, например, от пластической деформации. Влияние пластической деформации на коэффициент температурного расширения описывается соотношением

$$\alpha = \alpha_{o}(1 + A\varepsilon), \qquad (2)$$

где α_{o} – коэффициент расширения недеформированного металла.

Коэффициент А рассчитывается по формуле

$$A = \chi_T E \gamma / 3, \tag{3}$$

где *E* – модуль упругости; *γ* – параметр Грюнайзена; ε – степень деформации.

Параметр Грюнайзена может быть представлен следующим образом:

$$\gamma = \frac{\partial \ln \theta}{\partial \ln V},\tag{4}$$

где θ – температура Дебая; *V* – объем.

Параметр *ү* слабо зависит от температуры, однако значение *А* в выражении (3) для ряда металлов находится в пределах 1,3...2,3.

Из этого следует, что деформация увеличивает коэффициент термического расширения металлов. При многостороннем деформировании труб волноводов малого сечения изготавливаемых из сплава 32НКД возникают напряжения в каждом сечении очага деформации при обжатии заготовки роликовой фильерой (рис. 1, 2).

Основные характеристики сплавов с низким температурным коэффициентом линейного расширения

Сплав	$\alpha_{cp} \cdot 10^5, K^{-1}$ (20÷100 °C)	Точка Кюри, °С	ρ, мкО·м	<i>Е</i> , МПа	$σ_{\scriptscriptstyle B},$ ΜΠα	δ, %	<i>Н_С</i> , А/м
36H	1,5	220	0,82	14800	447	45	12,7
32НКД	1	220	0,78	14100	451	41	12,7
35HKT	3,5	210	0,85	_	1110	17,5	15,1

В процессе изготовления волноводов КВЧ-диапазона из сплава 32НКД методом многостороннего деформирования напряжения δ_{z} в каждом сечении зависит от координаты z и определяется в общем виде по формуле [3]

$$\delta_z = T_{g}(z) / F(z) , \qquad (5)$$

где F(z) – площадь поперечного сечения прямоугольной трубы волновода; $T_{e}(z)$ – усилие протягивания.

Для расчета б_ при напряженно-деформированном состоянии трубы волновода сечением 5,2 × 2,6 мм и 3,6 × 1,8 мм было использовано дифференциальное уравнение равновесия [4]

.11

15

где

$$\frac{d\delta_z}{dz} + \delta_z \left(c + \frac{dn}{dz} \right) = fc(\varepsilon_z - \varepsilon_y) ,$$

$$c = \frac{1 - 0.5K_{\rm rp}^{\rm A}(dh/dz)}{1 + 1.5K_{\rm rp}^{\rm b}(dh/dz)} \cdot \left[K_{\rm rp}^{\rm b} - \frac{dh}{dz}\right] - K_{\rm Tp}^{\rm A}; \qquad (6)$$

$$\frac{dh}{dz} = \frac{Z}{\sqrt{R^2 - Z^2}},$$

где $f = \frac{\delta_i}{\varepsilon_i} - \phi$ ункция пластичности; $\varepsilon_i - \phi$ ункция пластичности деформации; б – функция пластичности напряжения; h(z) – высота сечения трубы волновода; Z – участок давления со стороны ролика на трубу волновода; $K_{\rm rp}^{\rm A}$ и $K_{\rm rp}^{b}$ – коэффициенты трения в парах «трубчатая заготовка - инструмент (дорн)» и «ролик фильеры трубчатая заготовка»; R – радиус роликовой фильеры. Модель участка деформируемой зоны d₂ трубы, которая была принята для расчета напряжений в зоне деформации (6), изображена на рис. 1.

Для уравнения (6) поставим следующие краевые условия: $h(0) = 1; \delta_{-}(0) = K$, причем расчеты выполнены для всех К от 400 до 880 МПа.

Рис. 1. Схема участка деформируемой зоны трубы волновода: т₁, т₂ - касательные напряжения; б₂ - напряжения в каждом сечении; *h* – высота сечения трубы волновода; *dH*- величина обжатия

Схема процесса изготовления труб волноводов показана на рис. 2 [4].

Выполненные расчеты по определению напряжений в сечениях очага деформации волновода (6) показали, что δ₋ зависит от усилий обжатия и координаты очага деформации волноводов сечением 3,6 × 1,8 мм и 5,2 × 2,6 мм и носит нелинейный характер (рис. 3). Расчетным путем было установлено, что при изготовлении волноводов сечением 3,6 × 1,8 мм напряжение в центре деформации достигало 880 МПа, а для волноводов сечением 5,2 × 2,6 мм 400 МПа. Расчеты проводились по разработанной нами программе Volnovod-T.

Рис. 2. Схема процесса изготовления труб волноводов, применяемая для расчета напряжений в зоне деформации: 1 – инструмент-дорн; 2 – трубная заготовка; 3 – ролики регулируемой четырехроликовой фильеры; 4 – хвостик инструмента-дорна

Рис. 3. Напряжение д. в сечении очага деформации: l – для волновода сечением 5,2 × 2,6 мм; 2 - для волновода сечением 3,6 × 1,8 мм

После изготовления волноводов сечением 5,2 × 2,6 мм и 3,6 × 1,8 мм из сплава 32 НКД методом многостороннего деформирования исследовали температурный коэффициент линейного расширения. Для этого использовался индуктивный дилатометр DIL - 402 С фирмы Netzch с программным обеспечением Windows^{тм}, включающий все необходимое для выполнения измерений и расчета экспериментальных данных. Калибровку дилатометра осуществляли корундовым стандартом фирмы Netzch. Измеряемые образцы имели размер 25 ± 0,05 мм, толщину

стенки 1 мм. Измерение ТКЛР проводилось со скоростью 5 К/мин в интервале температур 30–160 °С в атмосфере инертного газа, для исключения окисления образцов при нагревании. Принципиальная схема дилатометра DIL 402 С представлена на рис. 4.

Рис. 4. Принципиальная схема дилатометра DIL 402C (Netzsch): 1 – образец волновода; 2 – трубчатый держатель; 3 – толкатель; 4 – индуктивный датчик перемещения; 5 – печь; 6 – термопара образца; 7 – термопара печи; 8 – цифро-аналоговый преобразователь сигналов

Образец 1 находился в гомогенной области температурного поля печи 5. Печь нагревалась и охлаждалась по заданной программе. Управление температурой печи осуществлялось термопарой 7. Температура образца измерялась термопарой 6. Через толкатель 3 изменение длины механически передавалось на индуктивный датчик смещения длины 4, с цифрового аналогового преобразователя подавался сигнал на компьютер, где производилась обработка информации и построение графиков $\alpha = f(T); L/L_0 = f(T).$

Графики дилатометрических исследований температурного коэффициента линейного расширения и относительного линейного расширения, полученные после изготовления волноводов сечения $5,2 \times 2,6$ мм и $3,6 \times 1,8$ мм методом многостороннего деформирования, представлены на рис. 5. Графики 1 и 3, 2 и 4 показывают, что относительное удлинение dL/L и температурный коэффициент температурного расширения α у волновода сечением $3,6 \times 1,8$ мм существенно выше, чем у волновода сечением $5,2 \times 2,6$ мм.

Изменение α (кривая 1) для волновода сечением 5,2 × 2,6 мм в сторону отрицательных значений, а затем в сторону положительных значений вероятно связано с пластической деформацией и релаксацией дефектов кристаллической решетки. В диапазоне 100÷140 °С α изменяется более быстро в сторону увеличения, достигая 1,75·10⁻⁶ 1/°С.

Для волновода малого сечения 3,6 × 1,8 мм α растет более интенсивно и достигает значения 3,8 · 10⁻⁶ 1/°С при T = 140 °С. Это увеличение б связано с большей деформацией волновода сечением 3,6 × 1,8 мм ($\sigma_z = 880$ МПа), чем для волновода сечением 5,2 × 2,6 мм ($\sigma_z = 400$ МПа) при обжатии $\Delta = 0,15$ мм во время изготовления многосторонним деформированием.

Рис. 5. Зависимости коэффициента линейного расширения волноводов α и относительного линейного удельного расширения dL/L_0 : 1, 3 – α для волноводов сечением 5,2 × 2,6 мм и 3,6 × 1,8 мм; 2, 4 – dL/L_0 для волноводов сечением 5,2 × 2,6 мм и 3,6 × 1,8 мм

Таким образом, при изготовлении волноводов КВЧдиапазона методом многостороннего деформирования рекомендуемое напряжение $\sigma_z \le 400$ МПа для обеспечения $\alpha = 1 \div 2 \cdot 10^{-6}$ 1/°C. Рациональный рабочий диапазон для использования волноводов T = 20÷100 °C.

Библиографические ссылки

1. Григорьев А. Д. Электродинамика и техника СВЧ : учеб. пособие для вузов. М. : Высш. шк., 1990. С. 78.

2. Материалы из металлических порошков с заданным температурным коэффициентом линейного расширения РД 107.460094.1179–89.

3. Малинин Н. Н. Технологические задачи пластичности и ползучести. М.: Высш. шк., 1979. С. 20–56.

4. Трифанов И. В., Бабкина Л. А., Щербак Г. А. Технологические особенности создания элементной базы антенно-фидерных устройств // Вестник Сиб. аэрокосмич. акад. под ред. Г. П. Белякова; Сиб. аэрокосмич. акад. Красноярск, 1999. С. 109–116.

L. I. Oborina, B. N. Ismajylov, I. V. Sterekhov, I. V. Trifanov

DILATOMETRIC RESEARCH OF PHYSICAL PARAMETERS OF WAVEGUIDES EHF-BAND PIPES

The results of delatometric determination of linear expansion temperature coefficient are presented after the waveguides made of 32 SIDS alloy have been produced.

Keywords: temperature coefficient of linear expansion, waveguides, dilatometris research, the plastic deformation.

© Оборина Л. И., Исмайылов Б. Н., Стерехов И. В., Трифанов И. В., 2010