Mamemamuka, mexanuxa, ungpopmamuxa

9. Signature verification using a “siamese” time delay
neural network / J. Bromley, I Guyon., Y. LeCun et al.
// NIPS. 1993. P. 737-744.

10. Learning the kernel matrix with semi-definite
programming // G. Lanckriet, N. Cristianini, P. Bartlett,
L. E. Ghaoui // J. of Machine Learning Research. 2004.
Vol. 5. P. 27-72.

11. Weinberger K. Q., Saul L. K. Distance metric
learning for large margin nearest neighbor classification //
J. Machine Learning Research. 2009. Vol. 10 P. 207-244.

12. Yang L., Jin R. Distance metric learning: A
comprehensive survey [Electronic resource] : Techn. Rep.
Michigan State University. 2006. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
91.4732 (data of visit: 30.07.2011).

13. Yang L. An overview of distance metric learning
[Electronic resource] : Techn. Rep. Carnegie Mellon
University. 2007. URL: http://www.cs.cmu.edu/~liuy/
dist_overview.pdf (data of visit: 30.07.2011).

14. Learning to Learn / S. Thrun, L.Y. Pratt (ed.).
Boston, MA : Kluwer Academic Publishers, 1998.

15. Regularized principal manifolds / A. J. Smola,
S. Mika, B. Schlkopf, R. C. Williamson // JMLR. 2001.
Vol. 1. P. 179-209.

16. Out-of-sample extensions for LLE, Isomap, MDS,
Eigenmaps, and Spectral Clustering / Y. Bengio,
J.-F. Paiement, P. Vincent et al. // NIPS. 2003. P. 177-184.

17. Globerson A., Tishby N. Sufficient dimensionality
reduction // J. Machine Learning Research. 2003. Vol. 3.
P. 1307-1331.

18. Ghahramani Z. Unsupervised Learning // Advanced
Lectures in Machine Learning. Lecture Notes in
Computer Sci. Berlin : Springer-Verlag, 2004. Vol. 3176.
P.72-112.

19. Luxburg U. A tutorial on spectral clustering //
Statistics and Computing. 2007. Vol. 17. P. 395-416.

20. Jain A. K., Murty M. N., Flynn P. J. Data
clustering : A review ACM Computing Surveys. 1999.
P.264-323.

21. Performance prediction challenge / 1. Guyon,
A. Saffari, G. Dror, J. Buhmann // IEEE/INNS conf.
IJCNN 2006. Vancouver, Canada, July 16-21. 2006.
P. 1649-1656.

22. Engel E. A. Modified artificial neural network for
information processing with the selection of essential
connections : Ph. D. thesis. Krasnoyarsk, 2004.

23. Engel E. A. Graphic information processing using
intelligent algorithms // Vestnik. Sci. J. of Siberian State
Aerospace Univ. Ne 4(25). 2009. P. 85-90.

24. Engel E. A. The hierarchical model of decision-
making based on fuzzy neural networks for information
processing, Vestnik. Sci. J. of Siberian State Aerospace
Univ. Ne 1 (33). 2011. P. 83-86.

E. A. Durens, U. B. Kosases

NCIIOJIb30BAHUE UHTEJUVIEKTYAJIBHBIX METOAO0OB VI OBPABOTKN NTH®OPMAIIUA
HA ITPUMEPE PEHTEHUS 3AJIAY WCCI 2010

Paccmompena akmyanvuas npobnema evibopa cmpamezuu peuieHuss ciadoQopmMaru308aHHbIX 3a0at, NPeonoIazaruux
00pabOMKY KaK KOIUYECMEEHHbIX, MAK U KAYeCTBEHHbIX OUHHBIX, BbICOKYVIO PUSMEPHOCb U HPONYCKU 8 OaHHYIX.

Ilpedcmasnen demanvuvlil anaiu3 mooenel nPocHo3a 011 06pabomku OanHviX. IKCHEPUMEHMbL ROOMBEPICOAIOM
apexmusnocms UHMENTEKIMYATbHBIX ANCOPUMMOS, PASPADOMAHHBIX ABMOPAMU.

Kniouegvie cnosa: obpabomxa dannvix, craboghopmanuzosantvle 3a0a4u, UHMELIEKMYAIbHbIE AN2OPUMMBL.
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M. B. Frost

DETERMINING THE SOURCE OF TRANSVERSE OSCILLATIONS
OF AN ELASTIC ROD

Solvability of an inverse problem for the equations of transverse oscillations of an elastic rod (determining
the source of oscillations on the basis of the rod deflection at the final time) is proved.

Keywords: elastic rod, inverse problem, source of oscillations, solvability.

Many issues of engineering, geophysics, and medicine
involve problems whose sought quantities are elements of
initial-boundary problems for differential equations.
These unknown elements are determined on the basis of
additional information. Such problems are called inverse
problems for differential equations. The advanced theory

of inverse problems and numerous publications can be
found in [1].

Let us consider an inverse problem of determining the
source of transverse oscillations of an elastic rod. The
initial-boundary problem of transverse oscillations of a
simply supported rod with a constant cross section and a



Becmnux Cubupcrozo cocydapcmeentozo aspokocmuieckoeo ynusepcumema umenu akademuxa M. @. Pewiemnesa

length / under the action of a distributed load ¢(x,7) is
posed [2] as follows:

u, +a'u,, =q(xt), (1)
u(x,0)=m(x), u,(x,0)=n(x), (2)
u(0,0)=u(lt)=u, (0,t)=u,(Lt)=0,  (3)

Here, wu=u(xt), 0<x<l/, 0<s<T is the
deflection, a is a constant, m(x) and n(x), 0<x</

are given functions satisfying the conditions
m(O):n(O):m(l)zn(l)ZO. “4)

Let us consider an inverse problem of determining the
source of oscillations. We assume that

q(x,t):(o(t)k(x), (5)
where @(z), 0<7<T, is a known function of time, and

A(x), 0<x</ is an unknown function determined with

the use of an additional condition (deflection at the final
time t=T):

u(x,T)=p(x), 0<x<I, p(0)=

We integrate Eq. (1) with respect to ¢ from 0 to 7,
and then from 0 to 7. Taking into account equalities
(2-5), we obtain

plo) (o) 1n(x) 1 fr ()i -

0

p(1)=0,T>0. (6)

. (7
x)JUco(t)dr]dt.
(A1)
Let us assume that
T
h zj T)dt#0. (8)
0
Then, equality (7) yields
M) =i (p(x) =m(x)=Tn(x)+
T 9
+ aZJ‘(T— )ity (x,r)dt].
0
Substituting Eq. (9) into Eq. (1), we obtain
T
u, +a’u, —h'a’o(t) [ (T-1)u,, (x,1)dt=
! (10)

=n' (p(x)—m(x)—Tn(x))co(t).
Thus, the problem of determining the function u(x,t)

is reduced to the initial-boundary problem for the loaded
equation of oscillations (10) under conditions (2—4). In
this case, condition (6) is satisfied automatically. The

function A(x), 0<x</ is then determined from
equality (9).

Let us study solvability of the initial-boundary
problem (10), (2—4) under the following assumptions:

— the function is @ () >0 (or w(7)<0)for 0<¢<T,
®(0)=0, o(T)=0; the function w(r) is continuously
differentiable on [0,7];

— the following expansions are valid:

m(x)= imk sin(kij, mk| <%;

n(x):inksin(—kmj,|nk|<—’: :

pam l ke
= . (k :

p(x)=2n Sm(_;tx)’ || < kljﬂ

k=1

(11

(e, m , n and p are positive constants).
We seek for the solution of problem (10), (2-4) by the
Fourier method of separation of variables in the form

-Suiom’)

Substituting Eq. (12) into Eq. (10) and taking into
account Eq. (2), (11), we obtain an infinite system of
ordinary differential equations with initial conditions for

the functions U, (¢), k=1,2,...

(12)

2
ddgk+uZUk(t)—ekw(t) k=12,.., (13
dU kZTEZ
U, (0)=m,, . ,:oznk’“":alz . (14
T
e, =h"' (pk—mk—nkT)+h_lp.kJ‘Uk (t)(T-1)dt. (15)
0

Solving Eq. (13) with the initial condition (14) for

k=1,2,..., we obtain
U, (t) =e—kjw(r)sin(uk (t-7))dt+
Hi o

(16)
n—ksin(ukt).

k

+my cos(w,t)+

Letususe t=T7, U, (7) = p, in Eq. (16) and assume
that

o, = [o(t)sin(u, (T-1))dt#0, k=12,... (17)

The following equality is valid:
e M o
e, = (pk —-m, cos(ukT)—H—sm(ukT)J . (18)
k
As p, > with k — oo, then, by virtue of the as-
sumptions made for the function (D(l), we obtain [3] for
large values of &

Po(T
|mk|~M

272 °
an'k

(19)
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Therefore, the series determining the function u/(x,7)

by equality (12) with allowance for Egs. (16, 18, 19), is
absolutely converging, and it can be differentiated four
times with respect to x and two times with respect to 7.
It satisfies Eq. (10) and conditions (1-4).

This solution is unique in the class of functions that
admit twofold differentiation with respect to ¢ and
fourfold differentiation with respect to x. The function
A(x) for 0<x </ is uniquely determined by equality (9)

in the form of an absolutely converging series
Ax)=D e sinkTm .
k=1

Equality (6) is also satisfied. The constructed functions
u(x,t) and A(x) uniquely determine the solution of the

inverse problem (1-6).
Note that condition (17) is always satisfied for the
linear function o)(t):(xt for 0<¢t<T, where a is a

constant, because
| sin(p,T)
w.T

The algorithm of the numerical solution of problem
(1-6) can be constructed as follows. Let n=0,1,2,... be

the number of the iteration. We seek for the function

>0 forall p,, k=1,2,...

u" (x,¢) numerically, using the grid technique or the

finite-element method [4] to solve the equation of rod
oscillations with a known right side determined via the

function u"™' (x,)

(x,r)(T—t)dr+

XXXX XXXX

+h! (p(x)—m(x)—Tn(x))m(t),

and satisfying conditions (2-4). An arbitrary function
satisfying conditions (2—4) can be used as the initial
approximation. The calculations are performed until

f (I (e () =i, (xar))(T—r)erz dx <3,

(AN

2 T
u" +a*u” =a—(x) £)fu!
et o) o

where O is an arbitrary, rather small number.

This condition means a small value of the integral
!
2
J-(k" (x) - (x)) dx,
0
where A" (x) is calculated via u" (x,7) by Eq. (9).
In conclusion, we can mention that the Fourier method
can be used in a similar manner to prove unique
solvability of the inverse problem of determining the

source of oscillations of an elastic rectangular constant-
thickness plate with sides a and b, which is simply

supported on its edges. In this case, u=u(x,p,t),
0<x<a, 0<y<bh, 05¢t<T; u__ in Eq. (1) should

be replaced by a biharmonic operator A’y for the
variables x and y [5]; the transverse load should be

XXXX

taken in the form ¢(x,y,t)=o(7)A(x,y), where o(¢) is
a known function of time and A(x,y) is an unknown

function of coordinates, which is determined from the
known value of the deflection at the final time # =T .

An inverse problem for the equation of transverse
oscillations of an elastic rod with a constant cross section
(determining the source of oscillations on the basis of the
deflection at the final time) is considered in the paper.
The problem is reduced to solving an initial-boundary
problem for the loaded equation of oscillations containing
a functional of the solution. Unique solvability of the
initial-boundary problem for the loaded equation and then
of the inverse problem is proved by the Fourier method.
An algorithm of the numerical solution of the inverse
problem is proposed.
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M. b. ®poct

OINPEJIEJIJEHUE UICTOYHUKA IMTONEPEYHBIX KOJEBAHUI
YHOPYIOro CTEPXXHsA

Paccmompena 3a0aua onpedenenus ucmouHuKa NONEPeyHsblX KOACOAHUU YNPY2020 CIMEPICH NO OONOTHUMENbHOU
uHpopmayuu — 3Ha4eHUuIo nPo2uba 6 PuHAILHLIN MOMEHM 6PEMEHU.

Kniouegvie cnosa: ynpyauii cmepoicens, obpamuas 3a0a4d, UCHOYHUK NHONEPEUHbIX KOACOAHU, pa3peuumoce.
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