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O06001mIeHHbIE IKBHBAJICHTHBIE YCJIOBHS IPOYHOCTH

B pacue€Tax KOMIIO3UTHBIX TEJ

A. 1. MatBeeB

HNuctutyT BeruncaurensHoro Mmoaenuposanus CO PAH
Poccuiickas ®eneparws, 630036, r. KpacHospck, AkaaeMropoaok, crp. 50/44
E-mail: mtv241@mail.ru

Koncmpyxyuu ¢ HeoOHOPOOHOU pecynapHOU cmpyKkmypou (niacmunsl, OAiKu, 000I0UKU) WUPOKO
NPUMEHSIOMCSL 8 MEXHUKe, 0COOEeHHO, 8 ABUAYUOHHOU U paKemHo-Kocmudeckou. B pacuemax na npounocmo
YIpy2ux KOMHO3UMMHBIX KOHCIMPYKYULL C NOMOWbIO Memooa Koneunvlx dnemenmos (MKD) easicno snamo
nocpewHocms  pewienus. A aHanu3a  nozpewiHocmu  peuwleHusi HeoOX0OUMO  UCHOb308aMb
NOC1e008aMeNbHOCb NPUOTUIICEHHBIX peueHull, nocmpoentvix no MKD ¢ npumenenuem npoyedypol
usmMenvyeHuss 0nsl 6a308bIX OUCKDEMHBIX MoOeNell, KOMopvle YYUMblearm 6 pPAMKAX MUKPOnooxood
HEOOHOPOOHYI0, MUKPOHEOOHOPOOHYIO CIMpYKmypy Koucmpykyutl (men). Peamuzayus npoyedypol
usmenvyerus 0ns 6a308vix Mooeneti mpedyem 6orvuux pecypcoe IBM.

B Oanmnoti pabome xpamxo u3nodicen Memoo 9K8UBANEHMHLIX ycaosuti npoyrnocmu (MOVII) ons
pacuema Ha CMAmMuyecKylo NPOYHOCMb YAPY2UX Mmejl ¢ HeOOHOPOOHOU pe2ylspHOU CMpPYKmMypou, O
KOMOPbIX 3a0aHbl MHOMCecmaa pasziuynvlx Haepysicenuti. Coenacno MOVII, pacuem na npounocmw
KOMRO3UMHO20 mead, OAs KOMOpo20 3a0aHO HAzpydlceHue, CEOOUMCS K pacuemy HA NPOYHOCHb
U30MPONHO20 O0OHOPOOHO20 mena (umeloujee0 makoe dice HazpylceHue, KaKk KOMHO3UMHOe meno) ¢
npuMeHeHuem 3KeUBAIeHMHbIX ycaosuti npounocmu. Ilpu uyucnennou peanuzayuu MIVII ucnonvzyromes
CKOPPEeKMUPOBAHHble  IKGUBANICHNHbIE YCNIO0GUSL NPOYHOCU, KOMOpble YYUMbIBAIon HNOZPEUHOCHb
npubaudicennvix pewenutl. 30ece MIOVII pearusyemces na ocnose MKD. Eciu ons KoMnosumuo2o mend
300aHO  MHONCECMBO PA3TUYHLIX HASPYJICEHUU, MO 6 JMOM CAyuyde HNPUMEHSIOMCs 0000ujeHnbvie
IKeusaneHmHwie ycnosus npounocmu. llokazana npoyedypa nocmpoenusi 0000ujeHHbIX IKEUBAIECHMHbIX
yenosutl npoynocmu. Pacuem na npounocmv  komnozummueix men no MOVII ¢ ucnonvzosanuem

MHO20CemOuHbIX KOHeuHblx 2nemenmos mpedyem ¢ 10° +10° pas menvuwe o6vema namsmu IBM, uem
AHATO2UYHBIIL PACYENm C RPUMEHEHUEM USMENbYEHHBIX 0a308bIX MoOeiell Komnosumuvix mel. Ilpueedennwiil
npumMep paciema Ha RPOYHOCHb KOMNO3UMHOU OAIKU, Ol KOMOPOU 3A0aHO MHONCECMEO HASPYICEHUL, C
nomowwio MOVII ¢ npumenenuem 0606UeHHbIX SKEUSAIEHMHBIX YCI0GULL NPOYHOCMU NOKA3bIEAEm €20
8bICOKYI0 d(hghexmusHoCmb.

Knoueswie cnoesa. ynpyeocmby, KOMno3unisl, MHO20Ceno4Hbvle KOHe4YHble oJlemMeHmbl,
CKOppexkmupoeaHHble U 06061/146HHbl€ IKBUBAIEHNTHbLE )Y CIIOBUA NPOUHOCMU.
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Structures with an inhomogeneous regular structure (plates, beams, shells) are widely used in engineer-
ing, especially in aviation and rocket and space. It is important to know the solution error in the strength
elastic calculations for composite structures using the finite element method (FEM),. To analyze the error
of the solution, it is necessary to use a sequence of approximate solutions constructed according to the
FEM using the grinding procedure for basic discrete models that take into account the non-homogeneous,
micro-homogeneous structure of structures (bodies) within the micro-approach. The implementation of the
grinding procedure for basic models requires large computer resources.

This paper deals with the method of equivalent strength conditions (MESC) for testing the static
strength of elastic bodies with an inhomogeneous regular structure, for which sets of different loads are
given. According to the MESC, the calculation of the strength of a composite body for which the loading is
set is reduced to the calculation of the strength of an isotropic homogeneous body (having the same loading
as a composite body) using equivalent strength conditions. In the numerical implementation of the MESC,
adjusted equivalent strength conditions are used, which take into account the error of approximate solu-
tions. Here, the MESC is implemented on the basis of the FEM. If a set of different loads is specified for a
composite body, then generalized equivalent strength conditions are applied in this case. The procedure for
constructing generalized equivalent strength conditions is shown. The calculation of the strength of compo-

site bodies according to the MESC using multigrid finite elements requires 10 = 10° times less computer
memory than a similar calculation using crushed basic models of composite bodies. The given example of
calculating the strength of a composite beam, for which a number of loads is set with MESC using general-
ized equivalent strength conditions shows its high efficiency.

Keywords: elasticity, composites, multigrid finite elements, corrected and generalized equivalent
strength conditions.

Introduction

As a rule, the calculation of the strength of an elastic structure is carried out according to the safety
factor and is reduced to determining the maximum equivalent stress of the structure (body) [1-3]. For
an elastic bodyV,, the given strength conditions are of the formn, <n, <n,, where n;, n,, are given,

the safety factor of the body n, corresponds to the exact solution of the problem of the theory of elas-
ticity constructed for the bodyV, . It is believed that the body does not collapse during operation if its
safety factor satisfies the specified strength conditions. The determination of the safety factor n, for a
composite body (CB), where is ny =o; /oy, oy the limit stressc,, [1], i.e. determination of the max-

imum equivalent stress [1] CT that meets the exact solution the task of elasticity is difficult. If the
stresses in the bodies are determined approximately, then in this case we use the adjusted strength
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conditions [4], which take into account the error of solutions. In stress-strain analysis (VAT) the finite
element method (FEM) is widely used [5; 6].

Finite element (discrete) basic models (BM), which take into account the heterogeneous structure
of bodies within the framework of the micro approach [7], have a high dimension. In addition, to ana-
lyze the convergence and error of the solution, it is necessary to use the sequence of constructed solu-
tions using the finite element grinding (FE) procedure of BM CB, which leads to a sharp increase in
the dimensions of discrete models. For the analysis of CB VAT, the method of multigrid finite ele-
ments (MME) [8-14] is effectively used, in which multi-grid finite elements (MNKE) are used and
which is a generalization of FEM, since if MNKE is used in FEM, then in this case, in fact, THE CMI
is implemented. In the areas of MnKE [8-19], the heterogeneous structure is taken into account and
the three-dimensional VAT is described.

It is important to note that MNKE generate discrete models whose dimensions are less than the di-
mensions of BM CB. For a number of CT (for example, for bodies with a microhedel structure), BMs
have such a high dimension that the implementation of FEM using MnKE is also difficult. Existing
methods for calculating CT [20-27] are based on hypotheses, have complex formulations and are dif-
ficult to implement.

The method of equivalent strength conditions (MESC) is proposed in this paper, to calculate the
strength of elastic bodies with an inhomogeneous, microunitive regular structure, which is reduced to
the calculation of the strength of elastic isotropic homogeneous bodies using equivalent strength con-
ditions according to feM. Unlike the works [28; 29], the theorem that underlies the MESC is presented
in detail here. In numerical implementation, MESC uses adjusted equivalent strength conditions that
take into account the error of the solutions. For CB, for which many different loads are specified, gen-
eralized equivalent strength conditions are used in the calculations. Implementation of MEPM on the

basis of FEM using MnKE requires 10° +10°times less computer resources than FEM calculation on
the basis of grinding BM CT. An example of CB calculation according to MESC shows its high effi-
ciency.

1. Basic provisions of the method of equivalent strength conditions

MESC is applied to CB that satisfies the following provisions.

Requlation 1. CB consists of multi-module isotropic homogeneous bodies, the connections between
which are ideal, i.e. at the general boundaries of isotropic homogeneous bodies, the functions of dis-
placements and stresses are continuous.

Regulation 2. Displacements, deformations and stresses of multimodular isotropic homogeneous
bodies correspond to the relations of the linear theory of elasticity [30].

Regulation 3. Approximate solutions of BM CB, built according to FEM, differ from accurate solu-
tions. Such approximate decisions will be considered accurate.

2. Equivalent strength conditions

Let elastic bodiesV, , V, have the same characteristic dimensions, shape, fasteners and static loads,

but differ in modulations of elasticity. Let for the safety factorsn;, n,, respectively bodies V,, V, ,
be given strength conditions

m<n<n, 1)

nZ<n, <nZ, )
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where nt,n? >1; ni,n2,nt,nZ are given; the reserve coefficient n, (n,) corresponds to the exact so-
lution of the problem of the theory of elasticity, built for the bodyV; (bodyV, ).
For bodiesV, , V, , enter the following definition.

Definition. If from the fulfillment of conditions (2) for the coefficient n, follows the fulfillment of
conditions (1) for the coefficient n, and vice versa, if from the fulfillment of conditions (1) for the co-
efficientn, follows the fulfillment of conditions (2) for the coefficientn,, then the conditions of
strength (1), (2) will be called equivalent conditions of strength co-responsible for bodies V,, V; .

3. Basic theorem of the method of equivalent strength conditions

Without losing the generality of judgments, we consider bodies with a fibrous structure, which are
widely used in practice and in which the maximum equivalent stresses arise in the fibers. The MESC
is based on the following theorem.

Theorem 1. Let the load and strength conditions of the form F be set for the safety factor n, of the

elastic CT (fibrous structure)

N <ny <n,, @)
where the values n;, n,are given, n, >1, ny=o; /oy, o , is the limit stress of CT (the yield
strength of the fiber), o, is the maximum equivalent stress of CBV,, the stress o, corresponds to the
exact solution of the problem of the theory of elasticity, built for loading F CBV,, the body fibersV,
have the same modulus of elasticity.

Let the homogeneous isotropic body V°and CB V, have the same shape, characteristic dimensions,
fastenings and loading F . Let the elastic modules of the body V ® and the CB fibers are the same. Then
there exists such a number p >0 (equivalence coefficient) that if the safety factor of the bodyV"® satis-
fies the adjusted equivalent conditions of strength

Ph oy < P 4
15, " 1rs, " @

then the safety factor n, CB V, meets the specified conditions of strength (3), where, n, =c; /o, is

oy, the maximum equivalent stress of the bodyV ", corresponding to the numbered solution constructed
for loading the body with an error §,, |5, | <9, , whered, is the upper estimate of the error g, , sat-
isfying the condition

8o <Cq = (np —m)/ (ny +m) ()

Proof.
Safety factor n,, ng , respectively bodiesV, |, VP are found by formulas

nd =o; /oy, (7)
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where o is the maximum equivalent stress of the body V" corresponding to the exact solution of

the problem of the theory of elasticity constructed for loading F the bodyV b,

Let the coefficient n, satisfy the conditions (3). Using (6) in (3), we have

(e
n<-—-L<n,. (8)
Oo

There is such a number p >0 (equivalence coefficient) that

(o)
p=—7. 9)
Op
Given (9) in (8), we get
G-
pn, <—-<pn,. (10)
Op
Using (7) in (10), we have
pn, <nd < pn, . (11)

Let the body's V® safe factor nd satisfies the conditions of strength (11).

Then, substituting (7) in (11) with (9), we have pn sﬁ < pn, . From where, taking into account
Go

(6), the strength conditions for the CB safety factor V, (3) follows. Let’s consider the limit cases.

Let ng = pn, . Using the relations (7), (9) in the last equality, we obtain pZ—Tz pn, . From where ,
0

taking into account (6) n,f,’ = pn, follows. Similarly, we show that if n,=n,, the ng = pn, then .

Letn, =n,. Using (6), (9) in the last equality, we getG—E: pn, . From where, taking into account
Op

(7) follows ng = pn,. Similarly, we show that if ny =n,, then n,f,’ = pn,. So it is shown that (11)
are equivalent strength conditions for CB V, (see definition of paragraph 2). Let the maximum

equivalent stress o, e be found for the bodyV b such that

where 3y is the relative error for oy, , i.e.

8, = (0 —0p)/ o - (13)
From (13) follows o, =(1+35,) og. From here, considering (7) and thatn, = o / o, , we get
nd = (1+38,)n,. (14)
Note , that in (12) C, <1. Letd, = |J,|. Then due to (12)
0<8,= |8,] <5, <1. (15)
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Taking in (14) &, =-9,, 8, = d,sequentially , enter the coefficient
N =0-8)n,, Ny =(1+3p)n,. (16)
Then due to (14), (16) we get
n =nfornd =n;j (17)
Let’s enter the coefficients n{, ng according to the formulas
N =(=8,)n, np =(1+3,)n,. (18)

Because of 0<3, <1, n, >0, it follows from (18)

nd <nj. (19)
Adjusted equivalent strength conditions are of the form (4) or
Py (L+8,) <np (1-85) < pnp(1-8,) (20)
where n, =o; /o, o , isthe limit voltage of CB (the yield strength of the fiber).
Let n, the conditions of strength (20) be fulfilled, i.e. let pn, <(1-5,)n, and (1+3,)n, < pn, Then
it follows that for coefficients nld, ng , taking into account (18), (19) inequalities are fulfilled

pn, <n <nd < pn,. (21)

Comparing (16), (18) taking into accounts (15), the inequality nld <n/, n; < ng follow.
Hence, given, that according to (16) n/ <n;, we get

d d
nd<n/ <nj<ng. (22)

Then by virtue of (21), (22) inequalities are fulfilled
pn, <n/ <ny <pn,. (23)

From the implementation (23) taking into account (17) follows the fulfillment of the conditions of
strength (11) for the reserve factor nf,’ , therefore, the fulfillment of the specified conditions of strength
(3). The constraints on the parameter &, are found from the condition of existence of strength condi-
tions (4), i.e. let pny(1+3,,) < pn,(1-3,,) .Where it comes from

8, <C,=(n,—n)/(n +n,). (24)

Sincen, >n, >1, then from (24) it follows0O<C, <1. Ifs,=C, , then from (4) it fol-
lowsn, = p(n, +n,)/ 2 that it is difficult to perform in practice. Therefore, you should specify such
o, thats, <C,.

In this case, the conditions (11) for the bodyV® safety factor ng can be met using adjusted equiva-
lent strength conditions (4) and numerical solutions that generate such errors 3, for body VP stresses

that| 3, | <&, . It has been shown that the fulfillment of conditions (11) follows the fulfillment of

strength conditions (3). The theorem is proven.

According to theorem 1, the implementation of the MESC is reduced to the determination of the
coefficient p and the safety factor n, of the bodbe , 1.e. to the determination of the maximum equiv-
alent stress o, of the bodyV"® with an error |8,| <8,, n, =o; /o,.

'’
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4. Implementation of the method of equivalent strength conditions
Without losing the commonality of judgments, for simplicity of presentation, the procedure for im-
plementing the MESC will be considered on the example of a bodyV, with an inhomogeneous regular

structure of sizes HxH xH , whereH =6Nh , N is the whole, N >>1,h little. CBV,, located in the
Cartesian coordinate system Oxyz, with y =0rigidly fixed, i.e. aty=0: u,v,w=0. The regular cell
G, CBV,, having the shape of a cube with a side 6h, is located in the local Cartesian coordinate sys-
tem Oxyz, i, j,k=1,...,7 (Fig. 1), the fibers are directed along the axis Oy by cross-sectionhxh, the
fiber sections are painted over. So, the body V, is reinforced with pa-rally axes Oy of continuous fi-
bers. Strength conditions (3) are set for CBV,. BM R, CBYV,, consisting of finite elements (CE) th
of the 1st order of the shape of the cube with a side h (in which the three-dimensional VAT is real-
ized), takes into account the heterogeneous structure of the bodyV, and generates a uniform grid with
a step h. We think that 3 MESC for CBYV, is performed.

jo ¥

kyz /
3h |6h
A
Q1 , i, x
6h

Puc. 1. Perynsapnas siueiika G,

Fig. 1. Regular cell G,
Note that the implementation of the MESC is reduced to the determination of the equivalence coeffi-
cient p, the bodyV® reserve coefficient n, and the construction of adjusted equivalent strength condi-
tions (4).

Finding the equivalence coefficient p
According to the MESC, we will introduce an isotropic homogeneous bodyV® and CB as R° are

follows that the bodiesV®, R%and V, have the same shape, characteristic dimensions, given fastenings
and loads, but differ in modulations of elasticity. The moduluses of elasticity of the body V" are equal
to the modules of elasticity of the CB V, fiber. For the body V b (for CBR®) we define discrete models

VP (models R?) that form sequences{V 3N, {R%}Y, . The modelV, is BM bodyV". The modelV

(model Ry) consists of CE V(™ 1st order of cube-shaped FE with a side h,in which a three-

dimensional stress state is realized and that generates a uniform grid with a dimension n{" x n{"™ x n{”,

step h, , where

™ =6n+1, n{”=6n+1, n{”=6n+1, n=1..,N. (25)
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According to (25), the model an (model R?) consists of a finite number of isotropic homogeneous

bodies G”'s (CT G ) of the same shape and size , with dimensions 6h, x 6h, x6h, , where
h,=H/(6n)=p,h, (26)

where H =6Nh, B, =N/n, n=LN at n<N: B, >1, h,>h, when n—N wehave h, > h,

hy =h.

CBG! has the same number of grid nodes (343 nodes), the number of fibers (cross-section h, xh,)
and the same mutual arrangement as a regular cell G, (Fig. 1). Fibers and matrix CBG? andG, have
the same modules of elasticityn=1 N , (Fig. 2), where h, >hat n<N, i, j,k=1,...,7.

CB Gr? , Gy, (their heterogeneous structures) geometrically differ only in scale. For the convenience
of reasoning, formally for CT Gr? , Gy, let’s write down the ratio

Gy =By Gy (27)
where B, is the scale coefficient, B, =N /n, n=LN,at n—>N: B, -1, By =1, GJ =G,.

i /

3h, |6h,

%hn

Ol N i, x
6h

n

Puc. 2. KT Gr? (perynsipHast siueiika Mozenu Rr? )

Fig. 2. CB G? (regular cell body R?)

Note that since in the regular cell G, the heterogeneous structure is taken into account, then due to
(27) and in CB G_ (n=1 N )the heterogeneous structure using the CEV " of the 1st order of the
shape of the cube with a sideh, is also taken into account, i.e. the model R,? takes into account the
heterogeneous structure. Note that CB Gr?, in fact, is a regular cell of the model. So, the models an,
R,? have the same shape, dimension, the same characteristic dimensions, uniform grids with a step h, ,
fastening and loading, like CBV,, i.e. modeIsan, Rr?, differ from each other only in modulations of
elasticity. Note the following advantages of the models an, R,? .

1. Dimensions of models an,
BMR,.

2. When building models{R°}" ., BM R, grinding is not used.

R,? with n < N the force of (25), (26) less than the dimension of

To reduce the dimensions of the modeIsan, R,?, multi-grid FE are used.
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Due to (26), (27) at n=N (hy =h, By =1 i.e. G} =G, ) modelsV,, R} , and BM R,CB V,have
the same dimension, and models RJ and R, in force (27) coincide, i.e. R} =R, . Since, according to
(27), at n— N we have G? — G, , then we get

RO5Ry =R, atn—>N. (28)
Since the models R , V0 , have the same dimension as the BM Ry, for which the positions 3 MESC
are executed, then we consider that the maximum equivalent stress % (stress % ) of the model Ry

(model V) differs little from the exact 5, (o0). Therefore, we believe that
o =c%,cg =G?\‘, (29)

where cg is the maximum equivalent stress of the body V° corresponds to the exact solution of the
three-dimensional problem of the theory of elasticity constructed for the bodbe .
The equivalence coefficient p is found by the formula (9), i.e. p=oc, /cg or including (29)

p=c% /c%. (30)
The approximate value of the equivalence coefficient p, is found by the formula

Pn=0n /o, (31)
where oY (") is the maximum equivalent stress of the model R? (modelV.”).

Due to (26) at V" —V<, n— N should follow . Hence, given (28), we have

ol >o%y, o) 5ol atn->N. (32)

Taking into account (32), (29), (30) in (31), we get
p,—>p atn—>N. (33)
Let it be 5, = p, — Pna |/ P, few wheren=2,3,... . Then we accept

p=p,. (34)

Calculations show uniform (monotonous) convergence of stress 02 , cﬂ , and parameter p,, respec-

tively to stress oy , 6% , and parameter p.

Construction of adjusted equivalent strength conditions

Substituting the found equivalence coefficient p and given values of 5, n;, n, in(4), we deter-

mine the adjusted equivalent strength conditions for CBV,, .
Finding a safety factor n, for a homogeneous isotropic body vP
Let itbe & =|c° —ob | /ol fewand| 87| <8, , where 8, <C,, n=2,3,.... Then we assume

o, =00. (35)
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Using (35) in the formulan, =o; / 5, we determine the safety factor n, for the body V b
n, =oq /ob. (36)
Checking the specified strength conditions
Let the safety factor of the isotropic homogeneous body V °found by the formula (36), i.e., corre-

sponding to the numerical solution of the elasticity problem, satisfies the adjusted equivalent strength
conditions (4) constructed for CBV, . Then, according to theorem 1 (see paragraph 3), the safety factor

n, of CBV,, corresponding to the exact solution of the elasticity problem satisfies the specified condi-
tions of strength (3).

The procedure for constructing generalized equivalent strength conditions for CBV, , for which
many different loads are specified, without losing the commonality of judgments, will be considered
with the CBV, example. Let on the surfaceS of the CB the loading of the form q,, q,, g, acts,

where gy, q,, g,are the surface loads acting respectively in the direction of the coordinate axes Ox,
Oy, Oz; dy, qy, d, €Qy, , Qy, is a set of different loads given for CB V,,
Qqz ={0x, dy, 4,1 G, dy, G, — miankue GyHkumy, 3ananube Ha S} (37)

smooth functions given on S. BCTABUTH TEKCT
To find the (upper, lower) boundaries for the set P of equivalence coefficients corresponding to the

load set (37), we calculate for a number of characteristic loads of CBV,: q,=q{", q,=q{",
q, =™ (a{”, q, q{™ smooth functions), n=1,N,, N, - given. Enter the coefficients
py=min(p™), p, =max(p™), n=1,Ny,T.e. VpeP: p<p<p,. (38)
Let the condition for CTV, be met
p,C, < p,C,, (39)
whereisC, =n /(1-56,), C, =n, /(1+3,).
For the equivalence coefficient p, €[p;, p,] , which is found by FEM for body load-
ing dy, dy, d, €Qy, , the strength conditions (4) take the form
PeCr <Ny < pCy (40)
where n, is the safety factor of the isotropic homogeneous bodyV b,
According to (38) we have p,C; < p,C;, p,C, <p,C, . Using these inequalities and (39), we
get p,C; < p,C; < p,C, < pyC, . Let the loading of the body gy, g, d, € Q,, be such that
PeC1 < PG <ny < p,C, < pyCy, (41)
i.e. the following conditions of strength are met for the body V ° safety factor n,
P,Cy <np < p,C,. (42)
Let the coefficient n, for the bodbesatisfies the conditions of strength (42) for load-

ingay, dy, 4, €Q,, . Then the conditions (41) are met for the coefficientn,, i.e. the conditions of

strength (40). According to theorem 1 (see paragraph 3), from the fulfillment of the conditions of
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strength (41) follows the fulfillment of the specified strength conditions (3) for load-
inga,, dy, d, €Q,, CBV,. Note that according to the MESC, the bodyV" and the CBV, have the

same loads (see paragraph 4). Thus, it is shown that from the fulfillment of the conditions of strength
(42) for a body having a load, the fulfillment of the strength conditions (3) follows for loading
Ay, dy, 0, €Qy, CTV, . Conditions (42) will be called generalized equivalent conditions of strength. In
fact, the following statement is proved above.

Theorem 2. Let for the setQ of different loads given for CBV, , according to the MESC, general-
ized equivalent strength conditions (42) are constructed. Let for the reserve factor n, of an isotropic

homogeneous bodyV " having a load F €Q, the strength conditions (42) are met. Then the specified
strength conditions (3) for loading F CBV, are met.

6. Results of numerical experiments
Consider the model problem of calculating the strength of a cantilever composite beamV,, the di-

mensions H xLxH , where H =96h, L=1152h, h is given (Fig. 3). The regular cell G,of CB
V, has the shape of a cube with a side 6h, the fibershxh are parallel to the axis Oy (Fig. 4), the fiber
sections in the plane Oxz are painted over. So, the bodyV, is reinforced with parallel axes Oy with
continuous fibers, the distance between the fibers is2h . Wheny =0 CT V,is rigidly fixed and at
z=H has a load of the formq,, g, , where g, (q,) is the force acting on the beam in the direction of
the axis Ox (axisOz).

“ t
) T m-961
re L !
q. !
y
X ’ L=1152h P H=961

Puc. 3. Pasmepsi Tema V, (tema V°, moneneit A Rr? )

Fig. 3. Dimensions of the body V, (body VP, modelsvnb, Rr?)

The basic discrete model R, of CBV,, consisting of single-grid finite elements (1 cCE) th of the 1st
order of the cube shape with a side h [5; 6] (in which the three-dimensional VAT is implemented [30]),
takes into account the heterogeneous structure of the bodyV, and generates an equal-dimensional (basic)
grid with dimension 97 x1153x97 steph . Fig. 4 shows the base grid of the regular cell G, . Since the
BMR, has 32517504 (over 32 million) unknown FEMs and sinceh/H <<1
(h/H =h/(96h)=0,0104), we will assume that the maximum equivalent voltage of the BM R, differs
little from the exact solution, i.e. put. 3 MESC for CBV,, is performed (see paragraph 1).
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Fig. 4. Regular cell G,

For the CBV, safety factor n,, the strength conditions of the type are set
1,3<n,<35. 43)
Initial data for CB V,: h=0,2083; oy =5; v.=v,=0,3 E.,=1, E, =10 , whereE_, E, (v,
v, )are the Jung modules (Poisson coefficients) respectively of the binder material and fiber, on the
surfaceS ={0,5L<y<L, z=H} of the CBV, there is a uniform loading ¢, = ¢, =0,000285, o is
the yield strength of the fiber.
According to the MESC, we will introduce an isotropic homogeneous body V®and CBR® such
that the bodies V°, R® and V, have the same shape, characteristic dimensions, given fastenings and

loads, but differ in modulations of elasticity. Body V °elasticity modules are equal to fiber elasticity
moduluses CBV, . For the body V" (for CBR®) define discrete modelsV." (models R®) that form se-

quences{V, ¥, {RI}; . The modelV,” (model Ry) consists of a 1st order cube shaped 1cCEV ™
with a side h, in which the three-dimensional VAT is realized and which generate a uniform grid with
a dimension n xn{” x n{" step h, , where
n™ =6n+1, n{" =12x6n+1, n{" =6n+1, n=1,2,3,.... (44)
The stepsh(™, h{™, h{" of the grids of the modelV,? (model RY) respectively along the axis Ox ,
Oy, Oz , are equal to h{=H/(n), h{®=L/(72n), h{®=H/(6n) . SincelL=12H,
thenh, =h{" =h{"™ =h{" . From here, given that H = 96h , we get
hy, =Bnh, (45)
where B, =16/n, n=12,3,...,at, n<15 B, >1, h,>h.

According to (44), the model an (model Rr?) (Fig. 3) consists of a finite number of isotropic ho-

mogeneous bodies Grﬁ’ (CB Gr?) of the same shape and size 6h, x6h, x6h, (Fig. 5).
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Fig. 5. Regular cell G?

CB G has the same number of fibers (cross-section h, x h, ) and their same mutual arrangement as
aregular cell G, (Fig. 4), fibers and binder material CB Gr? and G, have the same modules of
elasticity n =116 . So, CB Gr? , Gy, (their heterogeneous structures) geometrically differ only in
scale. Then, for the convenience of reasoning, taking into account (45), for CBG., G, we formally
write down the ratio

Gy =B,y (46)
where B, is the scale coefficient, with n —16, we havep, =1, Bz =1 ,i.e. G} =G, .

Note that since the regular cell G,takes into account the heterogeneous structure, then due to
(46) and in CB Gr? (n=12,3,...) the heterogeneous structure is also taken into account with the

help of 1cCEV™ of the 1st order of the shape of the cube with a sideh, , i.e. the model RY takes

into account the heterogeneous structure. Note that CB Gr? is essentially a regular cell of the mod-

el R,? , h=123,... . So, the modeIsVnb , R,? have the same shape and dimension, the same character-
istic dimensions, uniform grids with step h, , fastenings and loads like CBYV, .

In the calculations we use two-grid FE (2sKE). When constructing a 2sCE Vd(z) with dimensions
Bhx6hx6h [15-19], we use two nested grids: a small uniform grid hy with dimension7x7x7 step
hand a large grid H, of dimension2x3x2, Hy; chy . Along the axesOy,Oz the grid H, has a
step 6h, along the axis - a step. 3h On Fig. 6 grid H, nodes marked with dot 12 knots. The grid h; is
generated by the basic partition of R; 2cKE, which consists of 1cCE th of the 1st order of the cube
shape with a side h (in which the three-dimensional VAT, j=1,...,M is realized, M is the total num-

ber of 1sKEVjh , M =216) and takes into account the heterogeneous structure of the ZsKEVd(Z) .
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Fig. 6. Small and large grids 2gFE Vd(z)

On the partition R, we build a superelementV using the condensation method [5]. The total poten-
tial energy 77 of the superelement Vg is represented in the form of

1
1 =5q£ [Kslds —agFs (47)

where T is transposion; [Kg] is the matrix of stiffness (dimension654x654); Fg, gg are the
vectors of nodal forces and displacements (dimensions 654 ) of the superelemenVg t. The basic func-
tion Ny (x,y,z) for the node i, j,k of a large grid Hy using Lagrange polynomials is written in the
form Ny, =L (X)L;(y)L(2), where
2 3 2

L= [] o L= [T e Le- I1 e

y_y Zk—Za

a=Lo=i N T Mo a=lozj Jj o a=1,a=k

where x;,Y;,zare the coordinates of the grid Hgy node i, j,k in the coordinate systemOxyz ; ijk
is an integer coordinate system introduced for grid nodes Hy, i,k =12; j=1,2,3 (see Figure 6).

Denote: Ng =Ny, Up =Ujc, Ve =Vij, W =Wy , where Uy, Vi, Wy are the values of the
movements u, v, winthe gridH, ,i,k =12, j=1,2,3, e=1,..,12 nodei, j,k, Then the approximation

functions of displacements u®, v@  w®  2sKEV(? represent

12 12 12
u®@ =ZNeue’ v :zNeVe w@ =ZNeWE' (48)
e=1 =1 e=1

Denote: q, — vector of nodal displacements of a large grid H, (dimension 36), i.e. vector of nodal
unknown ZsKEVd(Z) . Using (48), the vector qg of nodal displacements of the superelement Vg is ex-

pressed through the vectoq,r, i.e.

ds :[Ag] Qg (49)

where [Ag] is the rectangular matrix (dimensions 654 x 36 ).
Substituting (49) in (47) we get IIg =II5(q4). From the executiondllg /0qy =0 we obtain the
equality [Ky1q, =F4, where [K,1=[AJT [KSI[AJ] , where[K ], F,, is the matrix of stiffness (di-

mension 36 x 36 ) and the vector of nodal forces (dimension 36) 2cCEVd(2) .
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The solution built for the ZcCEVd(Z) grid H, is projected using the formula (49) on the grid of the
superelementV , then using the ratios of the condensation method - on a fine grid h, of ZcKEVd‘Z)
which allows you to find voltages in 1SKEV" basic partitioning Ry 2cKEV,?).

On the model V> (R?) we build a two-grid discrete model, which consists of a 2cCE typeV,? of size
6h, x6h, x6h, , where h, =16h/n, n=1, 11and which we denote V'’ (R, ). Note that the modelsV.?,
R, , have the same dimension. For models Vno, R, ., we find (according to the 4th theory of strength

[1]) respectively the maximum equivalent stresses 02 , 60, n=35,..,11. . The results of the calcula-

tions are presented in Table. 1, where
85 (%) =100%x| P, — Py | /Py (50)
where n=5,7,9,11; p,=02/c>; N°, hare the dimension and width of the tape SU FEM model
V0, n=35,.11.
The analysis of the results of the calculations shows a uniform monotonous convergence of the
stressc? , ¢, parameter p, and error 5P . Let’s consider the calculation of CB V,,on the basis of BM.

Note that in CB calculations, as a rule , three (or more) discrete models are used to analyze the con-
vergence and error of numerical solutions. In this case, we use three models: R; =R, models R, and

R,obtained by grinding BMR,. On a discrete modelR,, using a 2cCE typeV ? of
size 6h, x6h,, x6h,, define a two-grid discrete model R} , where is the step of the uniform grid of the
model R,, h,=h/n, n=123.

The results of calculations for models R,,, Ry are given in Table. 2, where N, , b, , is the dimen-
sion and width of the tape SU FEM model R,; N? and by are the dimension and width of the model
tapRy; n=123. e;. The coefficientk, is found by the formulak,=(NJxb2)/(NZxb}) ,
where N7 x by is the amount of computer memory required for the model R} ; n=1,2,3; N xb}
the amount of computer memory required for the model V,J, where N2 =114048, bY =906 , which is
used in the calculations of CB V, according to MESC (see Table 1). So, the implementation of MESC
in the calculation of CBV, V, requires 1,169 x10° several times less computer memory than the im-
plementation of the calculation of CB V, based on the grinding of the BM R, (see Table 2). Find the
voltages, for the body VPand the equivalence coefficient p. Since the stresses

oh =0,477and o%; = 0,515 differ by a small amount &=(0,515-0,477)/0,515=0,07379 (see Table

1), letc, =c?, , i.e. o, =0,515. Test calculations show that the stress ot; is found with an error of

no more than15 % . Then we assumed, =0,15 . Note that the condition (24) is fulfilled, i.e. we

have§, =0,15<C, =0,458 . Since & =0,221 (%) is the small value (see Table 1), we take
p=py; =4,54183.
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Table 1
CBY, calculation results

n A NS be ol R, o Pn 85 (%)

3 A 3456 114 0.319 R 0.169 0.52907 -

5 A 12960 240 0.383 Rs 1.741 4.54020 88.35

7 vy 32256 414 0.434 R, 1.979 4.55590 0.345

9 Vg 94800 636 0.477 R 2.173 455185 0.089

11 A 114048 906 0.515 Rit 2.339 4.54183 0.221
Table 2

Calculation results for modelsRr,,, R®

n hn Rn Nn bn Rg Ng bg kn

1 h R, 32517504 28524 R? 332928 1791 5.77

2 h/2 R, 257465088 112332 RS 2509056 6639 161.21

3 h/3 R, 865945728 251436 RS 8297856 14559 1169.18

Substituting in the representation (4) p=4,54183, n, =13, n, =35, §, =0,15 , for CB V,we
obtain the adjusted equivalent strength conditions

6,95<n, <13,82. (51)

For a bodyV ", the reserve factor n, is determined by the formula n, =o; / o, , taking into account

thato; =5, o, =0,515 , we obtain n,=5/0,515=9,71. The reserve factorn, =9,71 of the body

VP satisfies the conditions of strength (51). Then the safety factor n, of CBYV, satisfies the conditions

of strength (43) (see theorem 1 of paragraph 3).
7. Application of generalized equivalent strength conditions

Let us consider the construction of generalized equivalent strength conditions for CBV, (Fig. 3), for
which a set of different loads Q,, of the form
Qq ={0x G2 9=, 0, =P, 0<a,p<o0}. (52)

is given at the CBV,, boundaryS ={0,5L<y<L, z=H} .
To find the (upper, lower) boundaries for the set P of equivalence coefficients corresponding to the
load set (52), calculations are made for a number of characteristic loads of CB V,: g, =q\", q, =q"

(g™, g{™ =const). The results of the calculations are given in Table. 3, where the equivalence coef-

ficient p(™ is found for loading g™, q'" , using the modelsV,%, Ry, seep. 6n=1,4, .
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Table 3
Calculation results for loadings q{, q{™,
n q" x107 q{” x107° p®
1 q® =0 W =0,225 4.53868
2 @ ~0,180 ) =0,325 4.54185
3 ® —0,275 a® =0 455305
4 §4) =0,750 §4) =0,750 454129

Because of the linearity of the problem of the theory of elasticity and the relation (30), the equiva-

lence coefficient p , which is defined for loading g, =", @, =0,q" does not depend on o,
where o,y =const, O0<ag, <o, n=14 . Then, for any a,>O0for loads q, =o,q®,q, =0gq, =0,

A, =00y (G =0, 0, =eaf? and o, =oa(”, 0, =0, where o =qf¥)) respectively
we get p=p® u p=p® (p=p?® u p=p®) (see Table 3). It follows that if q, —q,, then
p—p?; ifq,=a, , g, >0 then p—p®: if q,=a,, g9, >0 , thenp—p® | if q,#q,,
0,.9, 20, then p® < p< p®, that is confirmed by the calculations. So, for any loads g, , g, , in (52)
we havevpeP: p® <p<p®.
Enter the coefficients
p,=min(p™), p, =max(p™), n=14,1.e. VpeP: p<p<p,. (53)
For CBV,, the condition (39) is met, i.e. we have
P,Cy < pCy, (54)
whereisC, =n/(1-5,), C, =n,/(1+3,) .
In fact, following the initial data for CBV, and the results of Table. 3, we haveC, =1,5294,
C,=3,0435, p,=p® =4,53868, p,=p® =4,55305 . We get p,C,=6,963, p,C,=13,81, i.e.

condition (54) for CBV, is met. For the body VP reserve factor n, , the generalized equivalent strength
conditions are of the form (42), i.e.,

P2Cy <y < p,Cy. (55)

Thus, the calculation of strength according to MESC CBVY,, for which many different loads are
given (52), is reduced to the construction of generalized equivalent strength conditions (55). Accord-
ing to theorem 2, if the reserve factor n, of a bodyV" having a loadq,,q, €Q,, satisfies the general-

ized equivalent strength conditions (55), then the coefficient reserve n, CBV, meets the specified
conditions of strength (43) for loading q,.,q, €Q,, -

For CBV,, the generalized equivalent strength conditions (55) are of the form

6,96 <n, <13,81. (56)
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In this example p, =4,53868, p, =4,55305 , and sinceAp=p,—p, =0,01437 is little, the

strength conditions (51) and (56) are almost the same (see paragraph 6).
The advantage of the generalized equivalent strength conditions (55) is that they are applied to all
different loads of the CBV,, setQ,,. Consequently, there is no need to define equivalent strength con-

ditions (40), i.e. the equivalence coefficient p, for each given load q,,q, € Q,, , which leads to a reduc-

tion in the time spent on the implementation of the MESC when using different loads g,,q, €Q,, in
the calculations for the strength of the CBV .

Conclusion

We briefly described the method of equivalent strength conditions for calculating the strength of a
body with an inhomogeneous, microunhomogeneous regular structure, for which many different static
loads are specified. The proposed method is implemented on the basis of FEM using multi-grid finite
elements and is reduced to the calculation of the strength of isotropic homogeneous bodies using gen-
eralized equivalent strength conditions. The implementation of the method requires low time and
computer resources.
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